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Abstract

Dynamic scene perception is very important for
autonomous vehie/es operating around other mOVing
vehicles and humans. Most work on real-time object
tracking from moving platforms has used sparse features
or assumed flat scene structures. We have recently
extended a real-time. dense stereo system to include real­
time. dense optical flow. enabling more comprehensive
dynamic scene analysis. We describe algorithms to
robustly estimate 6-DOF robot egomotion in the
presence of moving objects using dense flow and dense
stereo. We then use dense stereo and egomotion estimates
to identifY other moving objects while the robot itself is
moving. We present results showing accurate egomotion
estimation and detection of moving people and vehicles
under general 6··DOF motion of the robot and
independently moving objects. The system runs at IB.3
Hz on a 1.4 GHz Pentium M laptop. computing 160x120
disparity maps and optical flow fields. egomotion, and
moving object segmentation. We believe this is a
significant step toward general unconstrained dynamic
scene analysis for mobile robots. as well as for improved
position estimation where GPS is unavailable.

Keywords: Dynamic scene analysis, egomotion,
moving object det(:ction, object tracking, optical flow,
visual odometry.

1. Introduction
Detection and tracking of moving objects in imagery is

important in many applications, including autonomous
navigation of unmanned vehicles, intelligent passenger
vehicles, human-robot interaction, video surveillance, and
a variety of other video compression, editing, and related
tasks. Our focus is primarily on intelligent manned or
unmanned vehicle applications. As such, we seek motion
analysis algorithms that can operate in real-time (i.e.
many frames/sec) with CPU and memory resources that
are practical for mobile systems, including man-portable
robotic vehicles.

The literature on dynamic scene analysis is vast; here
we can only cite a few representatives of key threads of
related work. A recent review of vision technology for
intelligent vehicles [I] has noted that while several
solutions have been proposed to the problem of dynamic
object detection in real-time, a clear feasible system has
not emerged so far. This is primarily due to the fact that

algorithms with superior performance require huge
amounts of computing resources, whereas current real­
time implementations make restrictive assumptions about
object or robot motion or scene structure. Dynamic scene
research from moving vehicles primarily is divided into
background subtraction methods, sparse feature tracking
methods, background modelling techniques, and robot
motion models. We discuss these solutions briefly below.

A great deal of moving object work has been done with
stationary cameras, particularly for surveillance. Such
work often begins with background subtraction for
moving object detection using grayscale/color images [2,
3] and stereo disparity background models [4] for people
tracking. This clearly is not sufficient by itself when the
camera is also in motion. Solutions with adaptive
background update algorithms have been built to handle
illumination variations, background changes over time,
andlor slow camera motion [4]. However, they fail when
the camera motion is fast and the scene is complex.

Another line of work detects and tracks moving objects
on the ground from moving cameras on relatively high
altitude aircraft, where the stationary background surface
can be modelled as essentially planar and subtracted out
by affine registration of the entire background [5]. This is
not adequate where the moving camera is on a ground
vehicle and the environment has significant variations in
depth. Ground-based vision systems have also used affine
models to detect cars on flat roads [6]. However, such
assumptions fail when the background is not flat or has
complex 3D structure.

A family of solutions in dynamic object detection from
mobile platforms assumes restricted camera/robot motion
in the attempt to simplify the egomotion estimation and
object detection problem. In [7], the author assumes
purely forward camera motion and detects moving objects
as outliers that violate this motion model. Effects of
rotational egomotion are cancelled using a-priori trained
rotational motion templates. The motion model is less
restrictive in [8], where 3 DOF robot motion is estimated.

For moving cameras at ground level, motion analysis
has often been done by tracking point features. This
includes work that assumes moving camera(s) and a static
scene, doing either monocular structure from motion [9]
or stereo structure and egomotion [10, II]. Multi-body
structure from motion has been addressed by using
factorization to batch process points tracked in long,
monocular image sequences [12]. Kalman filter-based
algorithms have also been used to locate moving cars in



stereo image sequences acquired from a moving car using
sparse feature points [13]. These approaches have
achieved considerable success. though the recovered
world model is necessarily limited by the sparseness of
the point features that are tracked. Monocular methods,
such as [91 compute motion estimates only up to a scale
factor. Batch algorithms [12], while potentially robust,
are slow and not suited for real-time systems. Prior
Kalman filler-based tracking [13] solutions assume
translational motion and was designed to find only one
moving object in the scene. Additionally. it only shows
segmentation results on 6-JO manuaJJy selected features:
the computational limitations of the technique on dense
feature sets is not discussed.

Our solution combines dense stereo with dense optical
Oow and yields an estimate of objectlbackground motion
at every pixel; this increases the likelihood of detecting
small I distant objects or those with low texture where
feature selection schemes might fail. Considerable work
was done in the 1980is on multi-body structure and
motion estimation from monocular and binocular dense
optical now fields [14-16]. but with no aspiration to r03I­
lime performance,. Techniques thal employ dense oplical
flow include dominanl motion detection schemes. but
such methods fail when scene structure is complex. In
[171, egomotion infonnation was obtained from an
odometer and moving objects were locared by Clustering
the dense optical flow field into regions of similar
motion; however, the same limitations for complex scene
structure apply here since 3D depth infonnation is not
used. Depth from stereo could overcome these
limitations. Waxmanis seminal paper [151 derived the
relation between stereo and dense optical flow for planar
scene patches. Our work builds on the basic principles
derived in that paper. but does not need the planar scene
patch assumption, and extends it to real-time robust
dynamic scene analysis by combining dense stereo and
optical flow.

Several research groups and companies now have the
ability to produce dense stereo disparity fields at or near
video rates with compact computer systems, using
variants on area-based matching algorithms. We have
adapted such algorithms to compute optical flow in real­
time [18]. In this paper, we extend this line of work to a
more comprehensive approach to moving object detection
on~the-move by using stereo disparity fields and optical
flow fields to estimate egomotion, and using predicted
and observed flow and disparity to detect moving objects.
The novelty of our work is in the fact that our solution
enables detection of moving objects in real-time without
any constraints on object or robot motion or on the scene
structure, in contrast with prior approaches that constrain
camera/robot motion [7. 81, make flat scene assumptions
IS, 61, or work only when camera motion is slow or non­
existent [4]. Section 2 outlines our approach in greater
detail and reviews our results on fast optical flow field
estimation. Section 3 describes how we use disparity and
flow to estimate egamotion. Section 4 gives the extension

of the formulation to detect moving objects. Section 5
presents quantitative and qualitative experimental results
for egomotion estimation and shows results for moving
object detection on-the-move with several image
sequences. This whole process runs al 18.3Hz (54.6
mslframe) on a Pentium M 1.4 GHz machine with 750
MB RAM, using 16Oxl20 disparity and now fields. We
draw conclusions in Section 6.

2. Overview of Approach

The crux issue in moving object detection on-the-move is
to distinguish the apparent motion of the static
background from that of the moving objects. Ifwe have a
depth map, which current stereo systems provide, and if
we know the motion of the cameras, then in principle we
can predict the optical now and Ihe change in depth Ihat
the camera motion will induce for the background,
difference that from the measured optical flow and
change in depth, and flag large non-zero areas as potential
moving objects. This reduces the crux issue to the
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Figure 1: Algorithmic architecture for moving object
detection on-the-move
following question: can we estimate the camera motion,
depth map, and optical now field well enough and fast
enough to make this scheme practical for intelligent
vehicles? We show that the answer to this is yes. Note
that the scheme does not depend on having fully dense
depth or optical flow data, because it can work with
however many pixels have such data. Figure I illustrates
this approach. In the figure. we refer to the optical flow
and change in depth induced just by the camera motion as
egojlow, to distinguish it from the measured flow and
depth change that could include separate object motion.
The 3D egoflow field refers to image plane (x,y)
components of flow plus the associated temporal disparity
change. not to 3D coordinates in the X-Y-Z sense.

SoJjd~state (MEMS-based) inertial measurement units
(IMUs) are becoming small, cheap, and accurate enough,
as well as essential enough, that virtually all robotic
vehicles (and in the future all passenger vehicles) can be
assumed to have an IMU. This will provide information
about camera motion. as will other state sensors. like
wheel encoders. However, for a variety of reasons this is
not sufficient. because problems like wheel slip. IMU
saturation. and calibration errors between the IMU and
the cameras may cause inaccurate motion estimation.



Thus, it is essential to also estimate the camera motion
directly from the imagery; ultimately. this will be fused
with other state sensors to produce a more accurate and
reliable joint estimate of camera/vehicle motion. This will
augment the i egomotioni box shown in figure I. Several
groups have reported stereo egomotion estimation (also
called visual odometry) based on tracking point features
that is reliable and accurate to 1-3% of distance travelled
and a few degrees of heading over hundreds of frames
[10. II]. Thus. the basic feasibility of visual egomotion
estimation is established, and the remaining issues in that
department are engineering the speed, accuracy, and
reliability of the competing approaches to the problem n
including reliability with other moving objects in the
image.

Both egomotion estimation and moving object
detection require some form of low-level image motion
estimation. Where speed is an issue, this has generally
been done by extracting and tracking feature points. For
long-term generality, we believe it is desirable to extend
this to dense optical flow fields. Moreover, it turns out
that current real-time, dense stereo algorithms are readily
adaptable to computing useable optical flow estimates
quite quickly. Conceptually, instead of searching a I-D
disparity range that lies completely within one scanline.
the disparity search is broken into segments on adjacent
scanlines in a rectangle that defines the maximum
tolerable 2-D optical flow. We suppress the details of the
implementation for brevity, but the algorithmic change in
the correlation stage from doing stereo is quite small. Our
implementation is based on the SAD similarity measure
applied 10 bandpass or highpass filtered imagery, as is
relatively common in real-time stereo. Subpixel flow
estimates are essential; for speed, we implement this by
fining I-D parabolas separately to the horizontal and
vertical components of flow. We currently search a ISxlS
pixel window centered on the source pixel; for reasons of
speed, we encode the flow components in one byte, so
subpixel resolution is quantized to 1/16 of a pixel. Bad
matches do occur; currently, we filter those just by
removing small disconnected blobs in the estimated flow

Figure 2 shows a sample optical flow result, computed
with imagery from a robot with cameras about I foot
above the ground, driving in a curving arc to the left on a
paved lot with a person moving in the field of view.
Observe that the flow field is quite dense and is in
qualitative agreement with the known camera motion.
The moving person causes some discordant flow in the
upper left portion of the image. Some wild points are
present near the shadow in the lower right~ these tend to
be filtered in subsequent stage of the process shown in
figure I, but do represent an issue for further work. Note
that dense flow is obtained on the relatively low contrast
pavement. Our emphasis in this whole approach has been
to produce useable flow fields in a fast implementation;
thus, the large literature on more sophisticated flow
algorithms [19] is germane but requires much more
computation. Even with our approach, optical flow is still
much slower than stereo, because a ISxlS search region
is 225 disparities, whereas for 32Ox240 stereo it is typical
to compute on the order of 40 disparities.

3, Egomotion Estimation
The terms egomotion estimation and visual odometry

are both in common use for essentially the same function;
in this paper we use the term egomotion. Although
various prior authors have assumed restricted robot
motions and/or restricted scene geometries to simplify or
constrain this problem, such as 3 degree..()f~freedom

(DOF) motion on a planar terrain, we make no such
assumptions. This is warranted by the fact that
implementations already exist that use stereo point
tracking to obtain accurate 6 DOF egomotion [10, II).
Our goal here is to formulate the motion estimator in
terms of our observables (disparity and optical flow) in
such a way as to obtain fast, accurate estimates in the
presence of egomotion and independent scene motion.

Since we have disparity and optical flow, we formulate
the motion estimator with the classic equation relating
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Figure J: 3D ma/ion and projection 10 2D image.
instantaneous velocities to range and optical flow [20].
This is valid for the small motions compatible with the
tracking range of our optical flow algorithm. Coordinate
frame conventions and notation for this are illustrated in
figure 3. The origin of the coordinate system is at the
projection center of the camera, with X let\, y up. and Z
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optical flow resu/l; see textFigure 2: Typical
discussion.
field. Some additional refinement of that is still desirable
to remove wi Id estimates that are connected to areas of
good estimates. On a 1.4 GHz Pentium M laptop, using
II x II SAD templates and a 15x 15 search, we can
compute 320x240 now fields (not including image
decimation and rectification) at 6 Hz; the speed on the
same machines for 16Oxl20 flow fields is 33.2 Hz.



(3)

(2)

forward for a right-handed system. (x.y) are image
coordinates, d is disparity, 8 is disparity change between
frames, and I and b are focal length and stereo baseline,
respectively.

3.1. Optical Flow and 3D motion

The equation for the general motion of a point P
(X, Y.Z) in 3D space about the center of the camera
projection point is given by [20] :

dP /dt = - ( V +n x P) ( I )

where n = [w, ,()) r ' W z 1is the rotational velocity and

V = [V",vyJ'z] is the translational velocity. For
perspective projection cameras,

IX IY
x=Z,y=Z'

Optical flow (u. v) is the time derivative of this:
I dX dZu=-(f--x-),
Z dt dt
I dY dZv=-(f--y-).
Z dt dt

Equations (I) to (3) yield the relation between 2D

OP[:]:;~;~;!~jinates~Z. and 3D motion:

-tv: (4)

Iyl:x]-Ix Y
(JJ:

Dividing out lone more time normalizes x.y.u. v and
makes I not explicitly visible in this equation. Since u. v
and d =I b / Z are measured, this is a linear least squares

problem for estimating the motion parameters.
Most current approaches to stereo-based egomotion

estimation formulate the problem by first triangulating
feature points to get 3D coordinates, then solving the
resulting 3D to 3D pose estimation problem. To obtain
satisfactory results, this requires including a 3D Gaussian
uncertainty model for the 3D coordinates, which
ultimately requires an iterative solution. It also introduces
a small bias, because the uncertainty on the 3D
coordinates is not truly Gaussian, but has a slight
asymmetric distribution in depth. Also, solving for
motion as a 3D to 3D problem requires not using points
with zero disparity: however, these points can contribute
significantly to the attitude estimate. Such points can be
used with equation (4). Finally, 3D to 3D formulations
require full floating point implementations, whereas
keeping the problem in image and disparity space allows
more use of shorter word sizes and fixed point arithmetic,
hence enables a faster implementation. Thus, for several
reasons, the image space formulation of equation (4) has
advantages over the more typical 3D to 3D formulation.

3,2, Robust Solution for Dynamic Scenes
Independent scene motion, as well as inevitable

disparity and optical flow errors, require a robust solution
to (4) that copes with outliers. In a system context, an
IMU and other state sensors can also contribute to solving
this problem; however, we do not explore such details
here. The dense disparity and optical flow fields do yield
a highly over-determined system of equations from which
the egomotion can be estimated accurately, even in the
presence of moving objects.

There is a large and well known literature on robust
estimation techniques, which we do not survey here.
Since our immediate goal is to do proof-of-concept
testing of this approach in situations where independent
scene motion and other outliers affect a modest fraction
of the pixels, it is sufficient at present to use an iterative
least mean-square error (LMSE) estimation technique
where we estimate the motion parameters using all data
points, reject outlier data points based on the estimated
motion parameters, and re-estimate the motion parameters
with LMSE using only the inlier points. The initial LMSE
estimates using all data points are first computed, from
which the difference between measured and predicted 2D
optical flow { U-U<S/, v-v.., }at every point can stored. The
sample standard deviation a( { U-Ue.l / }), etc. for each flow
component is computed, and points within ±CTare
retained as inliers; these correspond to static background
pixels. These inliers are then used to re-estimate the
correct motion parameters using LMSE.

4. Moving Object Detection Under General
Motions

4.1. Predicting optical and disparity flow
As part of the outlier detection process described

above, we predict the optical flow at each pixel, given the
estimated 6 DOF egomotion parameters and the estimated
disparity at each pixel. These predictions are differenced
from the observed optical flow to form residuals for
outlier detection. Objects that are not rigidly tixed to the
stationary background will generate optical flow that
results in such outliers, modulo noise thresholds. For a
given object velocity, however, the induced optical flow
with be larger if the object is moving parallel to the image
plane than if it is moving parallel to the optical axis
(looming); hence, looming motions will be harder to
detect. Up to now we have not discussed using predicted
versus observed change in disparity (i disparity flowi) to
assist with outlier or moving object detection. Since this
is particularly valuable for detecting objects moving
along the optical axis, we discuss that now.

Following [15], from the relations d = I b / Z and
8 = dd / dt. we obtain:

8= -dZ Ib =-dZ d
2

(5)
dt Z2 dt Ib

From equation (I ),



dZ I' (6)---;jf=-r z -(J)xY+Wyx

Combining (4) and (5) gives the fol1owing relation
between disparity, disparity flow, and egomotion:

V d2 do=_z_"-+-(ttJxY-Wyx) (7)
fb f

Thus, once we have estimated disparity and egomotion
at a given frame, equation (7) gives the change in
disparity that the s(:ene point at each pixel will experience
due to egomotion. Differencing this from measured
change in disparity helps detect outliers and independent
scene motion, particularly for looming motions. Note that
implementing this requires using the predicted optical
flow vector at timl~ t H to index into the disparity map
time t to get observed disparity change for each pixel.
Since the optical flow vectors are estimated to subpixel
precision, we do bilinear interpolation of the new
disparity field in this process. If any of the four neighbor
disparities are missing, we omit this test at that pixel.

4.2, Postprocessing and Moving Object
Segmentation

So far. we have discussed our approach to estimate 6
DOF robot motion and predict the 3D flow field
(temporal derivatives in the (x,y) monocular image and
change in stereo disparity space) due to the robot
egomotion. The difference between predicted robot
image/disparity egoflow fUR yR If} and computed
image/disparity flow [u' y' /I} yields residual image
optical and disparity flow fields where moving objects are
highlighted. This involves a 3D vector difference:

ruM yM OM]:=[URyROR]_[U'Y'o"] (7)

that gives a 3D flow field attributed purely to moving
objects. This operation in effect cancels out the effects of
temporal inter-frame changes caused by robot motion,
and ideally yields zero-valued flow vectors on static
background pixels. Therefore, thresholding the flow and
disparity residual fields at every pixel will yield a binary
map that potentially contains moving objects as binary
blobs or groups of moving pixels.

A few false alarms may be present in the binary
mapdue to errors in disparity estimates and/or egomotion
estimation errors. Advanced post processing that uses
range measures and clusters groups of pixels based on
consistency in rangl: and velocity will assist in false alarm
removal. Possible solutions include Markov Random
Fields that model velocity and spatial similarities, or the
Expectation Maximization algorithm to cluster points in
an unsupervised manner. However, such advanced image
processing and clustering cannot run in currently
available processors at near-video rate frame that is
needed for fast motion detection.

We do a fast 3D blob labeling and motion outlier
process where we take 3D measures to reject false blobs,
and merge blobs that are adjacent in 3D space. While true
3D blob labeling will involve 26-connectedness of a 3D

matrix (containing 3D X,Y.Z coordinates), it is not
suitable for real-time implementation. We use a simpler
approach, which is computationally effective, yet robust
at rejecting false alarms. We separate the binary motion
residual image into depth planes. where we find a list of
possible moving pixels at each depth plane. In our
experiments, we used a resolution of 5 meters for each
depth plane. We then do a 2D blob label1ing to cluster the
pixels at each depth plane. This is extremely fast, since
efficient 2D blob coloring algorithms exist. A 2D blob
area threshold is used to remove blobs with small 2D

areas. The 3D distance Xl)' Yl) between neighboring

blobs with centers (xo,Yo) and (X1'YI) are estimated

using the following approximations:

X - (x _ x ) Z PUN}, Y _ (y _ Y ) Z PUN"
D- 0 If' D- 0 \ f .

y y

Disconnected blobs that are spatially adjacent are merged

into one. For a given depth plane at range Z NANE' the

3D height and width of each blob in the depth plane is
also estimated using the perspective projection relations:

H H zPUNE A"I h' . d3D = 2l) --- . sImI ar tec mque IS use to
f y

estimate 3D width. Blobs with very large or small 3D
width and height are rejected as false alarms. These steps
are repeated at every depth plane. The binary mask
formed by the union of postprocessed binary blobs at
each depth plane is the final segmented moving object
mask. This 3D blob segmentation was found to
effectively remove outlier regions due to errors in flow
and range estimation.

5. Results
We present results from two main components of our

algorithm. Results of our real-time egomotion algorithm
are presented in Section 5.1. and our real-time moving
object segmentation results from moving robotic
platforms are shown in Section 5.2.

5.1. Visual Odometry

Our 6-DOF robot egomotion estimation algorithm is
computational1y efficient since it involves two iterations
of LMS estimates with an outlier rejection step. It was
observed to run at 11.8 ms/frame (85 Hz) on a 1.4 GHz
Pentium M machine. which makes it well suited for real­
time systems. We evaluated the egomotion algorithm on
three image sequences. The first sequence involves
accurately measured translational robot motion on a
translation stage with transverse object motion. The next
sequence involves roughly transverse robot motion over
an extended traverse in a static scene. The last sequence
involves transverse and rotational robot egomotion
estimation in the presence of a moving object i\ this helps
us evaluate the outlier rejection capabilities of the
egomotion algorithm when the robot undergoes rotational
and translational motion..



In the first sequence, the camera was placed on a
translation stage and a car moved transversely parallel to
the image plane at about 15 m (see Fig. 6 for
representative image and Section 5.2 for description of

of motion along X (sidewards) and along Z (depth), The
total estimated motion was 39.6 metres, which translates
to a 5.7% error. Since the same calibration files were

I
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(b) Stereo disparity image(a) Input image

(e) Detected moving object
Fig 6: Results of moving object detection (e) from
moving robotic platform combining stereo-disparity
(b), flow (c), ond visual odometry (d).

used as in the previous test, we feel that the egomotion
estimation error could reduced with better camera
calibration.

The third sequence (Figure 5) was the toughest. with a
moving object , and rotational and translational robot
motion. In this sequence. the robot moved forward, while
rotating from left to right and back along the vertical axis.
The outlier rejection successfully estimated the robot
rotationaJ motion, and displacement along the Z·axis
(Figure 5b, bottom), while a moving object moved
parallel to the image plane ,as shown in the top row of
Figure 5. The robot rotational motion for one frame is
revealed in the 2D optical flow field (figure 5a); note the
now due to the moving human in the right portion of the
image.

5.2. Detection of Objects with General Motions
We tested our moving object segmentation algorithm

for moving cameras on several real test cases, with a
variety of motions, ranging from controlled and precisely
measured robot motion to combinations of rotational and
translational robot displacement. We tested dynamic
scenes with transverse and radially moving objects.

In the first case. the cameras were placed on a
translation stage and had well-calibrated interframe
motion along the Z-axis. A car moved from left to right
parallel to the image plane across the entire sequence.
The object tracking result for one frame pair is shown in
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(a)
ROBOT DISTANCE MOVED VERTICAL AIUS ROTATION

Fig 5: (a) Rotational motion sequence with moving
human as shown by optical flow and stereo disparity.
and (b) robot egomotion displacement and rotation
results.

image in the sequence are shown in Fig. 4(a). The robot
travelled a total distance of 42 metres along the alley. The
estimated robot motion is shown in Fig. 4(b) as a function

.. '
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X dlaplileernent

(a) (b)
Fig 4: Robot egomotion estimates (b) from straight
line motion along an alley, showing (a) first frame

the data), The true motion per frame was 20 mmlframe.
The average estimated egomotion (with outlier estimation
to reject pixels on the moving car) along the Z·axis per
frame was 18.7 mm/frame. corresponding to a translation
displacement error of 6.5%. The standard deviation of the
displacement estimate in the Z·axis was O.35mm/frame.
significantly lesser than the mean error. This hints at the
possibility of a consistent bias in the egomotion estimates
that could be due to a miscalibration of the stereo
cameras.

In the static scene. the robot moved down an alley, in a
relatively straight path (Z-axis) with a small, steady
displacement to the left side (X axis). The first and last
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Figure 6. The corresponding disparity and optical flow
images are shown in Figures 6(b) and 6(c) . The virtual
egoflow field (computed from our 6-DOF visual
odometry algorithm) caused by robot motion is shown in
Figure 6(d). The difference of the computed flow and the
virtual egoflow fields highlights the moving object in the

Section 5.1. The moving object segmentation results are
shown as a bounding box for various frames in the
sequence in Figure 8. False alarms were obtained in 15
frames out of a total of 188 frames. The false alarms were
caused by errors in flow and range estimates. False alarms
could be reduced by introducing temporal filtering to

(a) Input image
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(b) flow image (c) disparity image (d) Closer object in same sequence

Fig 7: Resulls oflooming car sequence as robot moves forward

scene. which is then thresholded to segment the moving
object (Figure 6(e».

In our second tesL the object moved radially towards
the camera (looming motion) as the camera moved
forward. Due to object and camera motion along the Z­
axis. the 2D image optical flow field has less infonnation
to segment the approaching moving objecl, as seen in
Figure 7(b). Discriminating object motion along the Z­
axis can be derived from inter-frame changes in the
disparity flow field (or disparity flow). as discussed in
Equation 6. Figure 7(c) shows the disparity image for the
frame in Figure 7(a). The rectangular bounding box in
Figure 7(a) for the first frame in the sequence shows the
segmented moving object, in this case at a distance of 19
m. Figure 7(d) shows the last frame of the sequence.
where the car was 16 m from the camera.

We then tested the moving object detection algorithm
with unconstrained robot motion by placing the cameras
on a Packbot robot (see Figure 5). This is a difficult case

retain consistent tracked objects and reject noisy regions
in intennittent frames.

Our moving object segmentation algorithm, including
stereo, optical flow, and robot egomotion estimation. was
implemented in C/C++. The final blob segmentation
module is implemented in MATlAB and not included on
the run-time numbers. Initial tests of our algorithm
indicate that the entire algorithm (end to end), including
image capture. processing and display, runs at 54.6
mslframe (18.3 Hz) on a 1.4 GHz Pentium M. This real­
time demonstration of unconstrained moving object
detect'ion in complex scenes under general 6 DOF robot
motion by fusing dense stereo and optical flow is, to our
knowledge. the first of its kind in the computer vision and
robotics community. Further speedup is expected after
optimisation of the egomotion estimation code.

6. Conclusions and Future Work
We have discussed a new methodology to detect and
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Fig 8: Tracking a moving human under general rotational and translational robot motion.

since the contrast of the moving object relative to the
background is poor. as can be seen in Figure 8. The robot
egomotion estimates for this sequence was discussed in

segment moving objects in the presence of general
camera/rooot motion in real-time by combining range
from stereo with dense optical flow. A robust robot



egomotion algorithm is discussed that estimates all the 6­
OOF robot motion. This egomotion estimate is then used
to remove flow caused by robot motion. A novel scheme
for detecting 30 object motion by evaluating 20 optical
flow in conjunction with disparity flow is detailed. Our
results show the potential of the real-time algorithm for
egomotion in complex, cluttered scenes, and its use in
detecting moving objects with unconstrained motion. Our
algorithm has potl~ntial applications in dynamic scene
analysis for automated transportation systems, unmanned
air and ground vl:hicles, and also for navigation and
position/pose estimation indoors/outdoors during loss of
GPS and IMU failure.

Potential improvements to our algorithm include
temporal tracking of multiple moving objects, handling of
occlusions, and combining sparse feature tracking with
dense optical flow to further improve tracking accuracy
and speed of the algorithm
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