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Abstract- We present a field programmable gate array code and an outer convolutional code, namely serially con- 
(FPGA) implementation of a turbo-like decoder for a serially catenated pulse-position modulation or SCPPM. ~41. We may 
concatenated pulse-position modulation (SCPPM) code. NASA approximate true ML decoding while limiting [he SCPPM 
developed this coded modulation scheme for deep space com- 
munications from Mars. Under a nominal mission condition, the decoder complexity by iteratively decoding the modulation and 
SCpPM coded system can operate within a one dB signal energy the ECC. This is in fact the "turbo" principle and more details 
gap from capacity. can be found in 1-51. 

The structure of SCPPM makes direct application of the  hi^ article is a companion to [6] and focuses on design 
conventional turbo decoding algorithm very inefficient. Here, we issues critical to hardware implementation that are often 
describe techniques to increase the throughput and performance 
of a hardware SCPPM decoder. using our optimizations, we not addressed in a high-level design. We also present novel 
demonstrate a 6 mega-bits per second (Mbps) decoder realization techniques that optimize the SCPPM hardware decoder. The 
on a single FPGA. Extension to a higher data rate decoder using organization is as follows: in Section I1 we provide a model of 
multiple FPGAs is readily achievable. Similar codes designed for the optical communications channel. In Section 111, we give an 
the optical channel can benefit from our optimization techniques. overview the SCPPM code and its decoding algorithm. In 

Section TV, we discuss some of the challenges associated with 
I. INTRODUCTION hardware implementation of the SCPPM decoder and describe 

Communication over deep-space is difficult. Communica- our efficient approaches in detail. In Section V, we present a 
tions beams spread as the square of the distance between fast prototype decoder along with its hardware resource usage 
the transmitter and the receiver. For example, geosynchronous and error rate performance. 
Earth orbit (GEO) satellites are about 40,000 kilometers (km) 
in altitude and the average Mars-Earth distance is 80 million 11. SYSTEM DESCRIPTION 

km. Therefore, the extra distance that a communication beam We an optical system that uses 
have to travel from Mars to Earth make data direct photon detection with a high-order pulse-position mod- 

transfer 4 million times more difficult than from a GEO ulation (PPM) ,I, Ch. I,2l. An M-order PPM modulation 
satellite to Earth. The signal power required to meet this extra uses a time interval that is divided into possible pulse 
effort and to cover this distance squared loss is greater than locations, but only a single pulse is placed into one of the 
66 dBs! possible positions. The position of the pulse is determined by 

One way to increase the transmission rate from deep-space the information to be transmitted. A diagram of the optical 
is through the use of more powerful transmit and receive communications system in discussion is shown in Fig, 
antennas. However, this comes at a cost in increased antenna The information bits U = (Ul,  U2, . . . , Uk) are independent 
sizes which makes realization impractical. Another way is identically distributed (i.i.d.) binav random variables assumed 
to communicate using frequencies much higher than radio to take on the values and with equal The 
frequency (RF) such as that of optical signals. Beams at higher vector is encoded to - icl, &, . . . , cnj, a vector of 
frequency are more directionally concentrated and this allows PPM symbols. At the receiver, light is focused on a detector 
a more efficient Of the transmit energy [I? '1. that responds to individual photons as illustrated in Fig. 2. 

NASA's legacy error-correcting 'Ode (ECC) design for RF For each photon sensed, the detector produces a band-limited 
communication is the concatenation of an inner convolutional waveform for input to the demodulator. This waveform is used 
code and an Outer Reed"So1omon (RS) code r21' Decoding to estimate the photon count, ki, within each slot i ,  On the 
is performed in one pass utilizing hard bit-decisions. The Poisson channel, a nonsignaling slot has average photon count 
discovery of turbo codes [3] and their suboptimal but effective nb and a signaling slot has average count n, + n b  SO that the 
low-complexity iterative decoding provided NASA a new code likelihood ratio of slot is given by 
family with improved coding gains. NASA's first use of turbo 
codes is on the Messenger spacecraft launched in August of kt  

2004. L R ( ~ ~ )  =eP"' (I+:) . (1) 
An efficient ECC design for the deep space optical channel 

is the serial concatenation of an inner high-order modulation More on the receiver design can be found in [7]. 



Bockground Liglit 

p(u; I )  = 0 

Fig. 4. The SCPPM decoder. 

Fig. 1. An opticai communication system. 
a-posteriori LLRs to reduce undesired feedback. More on the 
SCPPM code and its decoding algorithm can be found in [4]. 
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IV. HARDWARE IMPLEMENTATION 

We now discuss design considerations that arise in im- 
plementing the SCPPM decoder on a field programmable 
gate array (FPGA). These hardware level details, often not 
addressed in a top-level design, have an impact on decoder 
error and throughput performance. 

1 I band-limited 
I  I waveform* A. Metric Q~~antizcation 

In a fixed-point implementation, numbers are represented as 
integers in two's complement form. The quantization parame- 
ters are bit width w, base b, and precision p. We set b = 2. The 
integer representation of a floating-point number f is given by 

Fig. 2. From PPM symbols to decoder inputs. 

111. THE SERIALLY CONCATENATED PULSE-POSITION 
MODULATION (SCPPM) CODE 

The SCPPM encoder, shown in Fig. 3, consists of an outer 
(3, $) convolutional code, a polynomial interleaver, and an 
inner accumulate PPM (APPM) code. The trellis that describes 
the inner code consists of 2 states and M / 2  parallel branches 
between connecting states. 

A high level block diagram of the SCPPM decoder is 
illustrated in Fig. 4. The symbol I indicates input to the 
constituent decoders and 0 indicates output. The inner decoder 
operates on the APPM code and the outer decoder operates on 
the convoIutional code. For each code trellis, the Bahl-Cocke- 
Jelinek-Raviv (BCJR) algorithm [8J is used to compute the 
a-posteriori log-likelihood ratios (LLRs) from a-priori LLRs 
by traversing the trellis in forward and backward directions. 
Extrinsic information (the difference between the a-posteriori 
and a-priori LLRs) is exchanged in iteration rather than the 

f, = min (max (round (f . 2 P )  , -2w-pp1 i- 1) , 2 " - P - l -  I> 
(2) 

To minimize hardware cost, we select the best pair (p, w) 
that maintains an acceptable loss between simulated floating- 
point and fixed-point decoder performance. In this selection 
procedure, we quantize the channel LLRs and all decoder 
metrics using the same w and p. 

I) Binary Precision: To determine p, we set w sufficiently 
large as render effects of dynamic range negligible. With our 
channel model and p = 2, the loss in signal energy is less 
than 0.2 dB and with p = 3 the loss is less than 0.1 dB [9]. 
We use three bits to represent binary precision. 

2) Dynamic Range: To determine w, we set p = 3 and 
reduce w until the performance loss becomes unacceptable. 
An error floor occurs if w is too small. For our setup, using 5 
bits for w satisfies our error floor requirement 191. We use a 
total of eight bits: five-bit dynamic range and three-bit binary 
precision for quantization. 

B. Log-Domain Decoding 

Each constituent decoder applies the BCJR algorithm to the 
trellis that describes the corresponding code. Operations are 
performed in the log-domain to avoid multiplications which 

outer code are costly to implement in hardware. This approach is known 
as log maximum a-posteriori (log-MAP) decoding [IO]. Each 

SCPPM encoder log sum of exponentials can be expressed as the max of the 
Fig. 3. The SCPPM encoder. exponents plus an adjustment term. This operation is known 



as the maxstar function: 

The adjustment term can be precomputed and stored in a 
lookup table to reduce complexity at an increase in memory 
usage. We can also ignore the adjustment term entirely to 
save on memory - this approach is known as max log-MAP 
decoding. Some of the loss incurred from this approximation 
can be recovered by scaling the extrinsic information that is 
passed between the inner and outer decoder 11 I]. 

C. The m*ax Look-Up-Table 

To reduce complexity, we implement the rnk operation 
as a Look-Up-Table (LUT). Montorsi and Benedetto [12] 
suggested a way of generating the fixed-point m*m LUT with 
m entries, where 

Each entry in the fixed-point m*m LUT is indexed by the dif- 
ference between the two fixed-point arguments 6 = Jxq - y q (  
and has a value computed as 

v (6) = round In 1 + ep6j2') - 2 ~ )  . ( ( 
Calculating m*ax (x, y)  in fixed-point representation is there- 
fore done by 

D. Fast Modulo Normalization 

The BCJR algorithm consists of traversing the code trellis 
and updating a set of state and branch metrics. Since these 
metrics are represented by finite bit width variables in two's 
complement form, we would need to normalize and clip the 
results of these update operations so that the values do not 
overflow. However, the clipping operation requires a compar- 
ison with the maximum allowed value and this increases the 
path delay in a circuit. It turns out that we can avoid the need 
to normalize and clip as long as the quantization bit width 
is sufficient to account for the maximum differences between 
any two possible metric values [12j, 1131. 

In modular arithmetic, a metric mj is mapped into its 
modulo metric 

C 
f i i j  - ((,mi + 4) mod C )  - (7) 

so that -$ 5 mj < $. This can be visualized by wrapping 
the real number line around a circle with circumference C. 
Going around the circle in a counter clockwise direction 
traverses a path in increasing magnitude and going around the 
circle in a clockwise direction traverses a path in decreasing 
magnitude. 

For any two real numbers rni,mj such that their absolute 
difference is bounded by some finite value, that is A = 
Jmi - mj 1 < $, their modular difference Imi - T7aj 1 equals 
their actual difference (mi - mjI. Proofs are given in [13]. A 

circumference is C 

Imi - mjl < C/z 

Fig. 5. The idea of modulo metric normalization. The reference metric is 
fil. 

general description of modulo metric normalization is given 
in Fig. 5. The angle a is the result of two's complement 
subtraction of fiz from iizl. We know that ml < mz because 
a < .ir and its sign bit is 1. The angle a' is the result of 
two's complement subtraction of ~ 7 ~ 1  and f i3.  We know that 
ml > ms because a' 2 .rr and its sign bit is 0. 

E. Parallel Trellis Edges and Partial Statistics 

The trellis that describes the inner accumulate-PPM 
(APPM) code contains many parallel edges. To efficiently 
handle this large number of parallel edges, Barsoum and 
Moision [4] developed a method of grouping the many trellis 
edge calculations per stage into one, and this combined value 
can be computed in a pipeline. We use notations that are 
standard in description of the BCJR algorithm. An edge e 
connects an initial state i (e)  with a terminal state t ( e ) .  The 
backward recursion log-domain state metric ,1!3 for state s and 
stage k is computed as [14]: 

The log-domain edge metrics are calculated as 

Since the yis, or we refer to as "Super Gammas", are not a 
function of a recursively computed quantity, they may be pre- 
computed via a pipeline and this reduces the edge computation 
time per trellis stage to one clock cycle. The a's are formed 
similarly. 

To reduce the channel likelihood storage requirements, we 
may discard the majority of the channel likelihoods and use 
partial statistics [151. This may be accomplished by processing 
only a subset consisting of the largest likelihoods during each 
symbol duration-the likelihoods corresponding to the slots 
with the largest number of observed symbols. The observation 
of the remaining slots is set to the mean of a noise slot. In 
low background noise, a small subset may be chosen with 
negligible loss. 

E Interleaver Design 

The interleaver used is characterized by a second order 
polynomial f ( j )  = a j  + bj2.  The bit position j is mapped to 
the position [f ( j ) ]  where [ a ]  is the mod N operation. Let 



us factor the codeword length N as products of primes, that is, 
&' -d'. Any polynomial [16] with b = plp2 . pe 
and a set to a number that does not have pl,pz,. . ., or pe 
as a factor is a candidate interleaver. The mapping for the 
( j  + i)th interleaver position can be expressed as a function 
of the current interleaver position j :  

where g (2, j )  = 2ijb 4- i (a  + bi). This property enables an 
algorithmic implementation that does not require the mapping 
to be precomputed and stored [14]. For SCPPM parameters, 
we found the polynomial f ( j )  = llj  + 210j2 to have good 
performance. 

G. Decoder Windowing 

where deg [r ( x ) ]  < n - k. The codeword polynomial is 
expressed as c  (x) = m  ( x )  . x " - ~  + r ( x )  . 

To verify the CRC of a codeword block E ( x )  = c ( x )  -+ 
e ( a )  that might be corrupted by an error polynomial e ( x ) ,  
we compute R,(,) [E (x)] = Ry (z) [e ( x ) )  . Therefore, if the 
remainder is zero, the CRC passes and the error poIynomial 
is zero. If the remainder is nonzero, then the codeword is 
corrupted. Note that we won't be able to construct the error 
polynomial e (x) from the CRC remainder Rg(zl je (x)]. 

In windowed-based turbo decoding, the output bit streams 
to be fed into the CRC are generated in parallel. We describe 
how a CRC circuit can be modified to handle this parallelism. 
Let the code trellis be partitioned into j distinct windows. The 
codeword polynomial can be written as 

The inner trellis consists of N/log2M symbols or segments. c ( x )  = cl (z) x8' + c2 ( x )  xS2 + . . - + Cj ( x )  . (IS) 
The outer code trellis is a rate 112 code and has N/2 segments. W, can then write the check polynomial as 
For PPM orders M greater than 4, the outer code trellis 
will contain more segments than the inner code trellis. If a Rg(,) [c ( x ) ]  = Rg(z) [CI  (x) xS1 + C2 ( x )  xS2 f . . . + cj  ( x ) ]  
straightforward scheduling is used to traverse the two trellises, = a,(,) [Rg(,) [cl ( x )  xs11 + R~(x) 1 ~ 2  (2)  xS21 
the inner decoder will have to wait longer for the outer decoder 
to complete a treHis pass. It is advantageous to have both + . . + Rg(x) [ ~ j  (x)I] 

decoders complete an iteration in the same amount of time. = %{z) [R,(z) [cl ( a )  K l  ( x ) ]  (16) 
The latency in this case is reduced because the wait time of %(z)  [c2 (2)  K 2  ( x ) ]  1- . . A + R g ( z )  [ ~ j  ( x ) ] ]  , 
the inner decoder is reduced. To do so, we partition the outer where K~ = Rg(,) [xsi] ,  i = 1,2, - .  - ,  j - 1, and each ni ( x )  
code trellis into distinct windows and apply a window-based can be pre-calculated. The CRC LFSR circuit for the window- 
BCJR algorithm to decode the windows in paralIel. based decoder will consist of both feed-forward and feedback 

For SCPPM parameters and M = 64, the outer decoder tap connections. The feed-forward taps are given by the XOR 
is windowed by three. In this scenario, we observed through 

of K i  (x )9s  and the feedback taps are given by the generator 
simulations that no warmup windows are required to obtain a 
performance close to that of the non-windowed decoder. 9 (2) -  

H. Cyclic Redundancy Check V. DECODER SPECIFICATIONS AND PERFORMANCE 

A CRC can be used together with iterative turbo decoding The SCPPM decoder for M = 64 and N = 15120 

to flag codeword errors or to stop decoding iterations. In is currently implemented on a Xilinx Virtex 11-8000 FPGA 

windowed-based turbo decoding, the bits to be input to the part, speed grade 4 (XC2V8000-4), which sits on a Nallatech 

CRC are generated in parallel more than one at a time. BenDATA-WS board. The memory requirement is reduced 

Therefore, the conventional serial input linear feedback shift by taking only the top 8 channel LLRs as decoder input. 

register (LFSR) circuit that implements a CRC needs to be We have implemented two versions of the decoder: The first 

modified to handle this parallelism. is the log-MAP decoder with clipping and normalization 

Let us write a length k binary message block m = circuits. The second is the max log-MAP decoder with fast 

(mk-1, mk-2,. . . , mo), that is to be protected by a CRC, in modulo normalization and windowing. The outer code trellis 

polynomial form: is windowed by three. The total FPGA resource utiIization 
as well as a breakdown by modules for the two decoders 

m ( x )  = mk-1~"' + mk-zxkp2 -t . . . + m ~  (1 1) is given in Table I. The miscellaneous blocks that consume 

Let the length n CRC protected codeword be c = resources are the circuitries and memories instantiated for 
the interleaver, deinterleaver, and FPGA interface. The m*ax 

(cn-1, h - 2 ,  - , co) or lookup tables (LUTs) for the log-MAP decoder are realized as 
c (2) = &-lxn-' + & - 2 ~ " - ~  + a - . + co (12) read-only memories (ROMs) using Xilinx internal distributed 

and the CRC generator be random access memory (RAM). The channel symbol memory, 
state metric storage memory, and interleaver LUTs are all 

xn- k g(x)=gn-k + - " $ g o -  (13) implemented using Xilinx internal, dual-ported block RAMS 

The CRC polynomial r ( x )  is caIculated by first shifting the (BRAMs). 

message polynomial left by n -k positions and then by taking The max log-MAP decoder, with all of the proposed 

the modulo g ( x )  operation throughput optimizations, supports a maximum clock rate of 
60 MHz and a data rate of 6.4 Mbps based on 7 average 

r (4 = Rg(s) [ m  (x) - xnpk]  , (14) iterations . 



SCPPM DECODERS ON THE VIRTEX-I1 8000 FPGA. 

log-MAP 
BRAM 
Slices 

Top 8, fixed-point (8,3), qz0.2, M=64, R=112, illl=I 5120 

Misc. 
40% 
6% 

log-MAP (floating-point) 

Misc. 
32% 
6% 

UsedlTDtal 
1011168 

30174146592 

Inner 
19% 
52% 

TABLE I 

30-71 1 8  i 
2.5 3 3.5, 4 

nS average photon counts per slot In dB 

Utilization 
60% 
64% 

Outer 
9% 
6% 

Utilization 
89% 
53% 

Inner 
19% 
32% 

max log-MAP 
BRAM 
Slices 

Fig. 6. SCPPM decoder performance on the Poisson channel 

Outer 
30% 
15% 

UsedITotal 
1581168 

24587146592 

The decoder performance is shown in Fig. 6. The word 
error rate (WER) is plotted versus n,, the average number of 
signal photos per PPM signal slot in dB. The average noise 
photons per slot is n b  = 0.2. Each codeword consists of 7560 
information bits. A word error is declared when the decoder 
decision could not converge to the correct codeword in the 
maximum number of allowed iterations which is set at 32. 
Out of the 7560 bits, 2 bits are used to terminate the trellis 
and 22 bits are used for CRC. The CRC polynomial is x22 + 
x5 t x4 + x3 + 1 and has an undetected word error probability 
of approximately 7 . 2 ~ ~ ~  = 1.67 x assuming 7 average 
iterations. To reduce the undetected rate, the decoder runs a 
minimum number of iterations first before validating the CRC. 
In doing so, the undetected probability is lowered to roughly 
the product of the frame loss rate and 1.67 x 1F6, a very 
small value. 

We make the following observations in the performance 
plot. Fixed-point impleinentation (circle-line) has a 0.1 dB loss 
compared to the floating-point decoder (dashed-line). Clipping 
and and normalization of the state metrics led to a floor at 

Max log-MAP decoder with fast modulo normalization 
(square-line) has a 0.6 dB loss compared to log-MAP decoding 
(circle-line). Max log-MAP decoder with a scaling of the 
extrinsic information by 0.5 (diamond-line) recovers 0.4 dB 
out of the 0.6 dB lost. 

VI. SUMMARY 

NASA developed a serially concatenated pulse position 
modulation (SCPPM) coding scheme for deep space optical 
communications. The structure of SCPPM makes direct ap- 
plication of conventional turbo decoding inefficient. In this 
work, we discussed a set of criteria important in hardware 
impIementation of the SCPPM decoder. These criteria, usually 
not addressed in a top-level design, have an impact on the 
decoder cost and performance. To meet the challenges set 
by these requirements, we developed novel optimization tech- 
niques for hardware realization. By applying these techniques, 
we demonstrated a 6 Mbps SCPPM decoder on an FPGA that 
performs with in 1.2 dB of the Shannon capacity. 
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