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Abstract-For real-time stereo vision systems, the standard 
method for estimating sub-pixel stereo disparity given an initial 
integer disparity map involves fitting parabolas to a matching 
cost function aggregated over rectangular windows. This results 
in a phenomenon known as "pixel-locking," which produces 
artificially-peaked histograms of sub-pixel disparity. These peaks 
correspond to the introduction of erroneous ripples or waves in 
the 3D reconstruction of truly Rat surfaces. Since stereo vision 
is a common input modality for autonomous vehicles, these 
inaccuracies can pose a problem for safe, reliable navigation. 
This paper proposes a new method for sub-pixel stereo disparity 
estimation, based on ideas from Lucas-Kanade tracking and 
optical flow, which substantially reduces the pixel-locking effect. 
In addition, it has the ability to correct much larger initial 
disparity errors than previous approaches and is more general 
as it applies not only to the ground plane. We demonstrate the 
method on synthetic imagery as well as real stereo data from an 
autonomous outdoor vehicle. 

Real-time stereo vision has proven to be a viable, cost- 
effective method for acquiring range data necessary for au- 
tonomous navigation. Range is determined from an estimated 
disparity map, which is the set of correspondences between 
pixels in the left and right images. More precise disparities 
produce more accurate range data, which will of course result 
in safer, more reliable navigation and obstacle detection. Since 
most, if not all, real-time stereo algorithms start by estimating 
disparities at the integer level, refining those estimates to sub- 
pixel accuracy is usually necessary to achieve highly accurate 
range estimates, which depend quadratically on disparity. This 
is particularly true when either the imagery js low-resolution or 
the stereo setup has a narrow baseline (small distance between 
the cameras). In either case, the total disparity range is small, 
meaning the actual 3D range is heavily quantized. 

Typically, sub-pixel disparity is estimated by fitting parabo- 
las to the cost function used for matching data between the 
left and right images. The analytical minimum cost can then 
be determined and the corresponding fractional offset used 
to adjust the initial integer disparity. This is highly efticient, 
but has widely been observed to result in "pixel-locking": 
a disproportionate number of sub-pixel disparity estimates 
around the initial integer disparities. This phenomenon is 
depicted in Figure I .  For a planar structure, the histogram 
of sub-pixel disparities should be perfectly un~form, as shown 
in the top plot. Starting with initial integer disparities, simple 
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Fig. 1. Example histograms of sub-pixel disparities for a planar region, 
illusaating the "pixel-locking" effect. Using standard parabola fitting artificial 
peaks are clearly visible in the histogram, while our approach produces the 
desired nearly-uniform distribution, closely matching ground truth. 

parabola fitting results in the obviously-peaked sub-pixel dis- 
parity histogram shown in the middle. The method described 
in this paper is capable of producing the much flatter histogram 
at the bottom. If the planar structure is the ground plane, for 
example, parabola fitting would produce an artificially-rippled 
3D reconstruction of the ground while our approach would 
produce a more accurate flat surface, potentially leading to 
improved navigation and planning capability. 

It is important to note that our method is applicable not only 
to estimation of a single ground plane. The reconstruction of 
any locally-planar structure in the scene will be improved. 
This differs from several other approaches ([I], [2], [ 3 ] ,  
(411, and has particular application in man-made environ- 
ments (particularly indoor), where many planar structures 
with varying orientations often exist throughout the scene. In 
addition, for very rough terrain where there may be significant 
bumps and ditches that deviate from an assumption of a 
single ground plane, other methods may not produce accurate 
reconstructions of these important obstacles. Our approach 
only makes assumptions of local planarity, and should be able 
to handle such conditions. 

As will be described, our method refines initial integer 



disparities by using local estimation techniques in the spirit 
of classical optical flow or the Lucas-Kanade (and Tomasi) 
tracker ( [ 5 ] ,  161). The method utilizes the original imagery 
(instead of an already-computed cost function) and adaptable 
affine windows to mitigate foreshortening effects and produce 
more accurate sub-pixel disparity estimates. In addition, it has 
the ability to correct for much larger errors in the initial integer 
disparity estimates than existing methods. A more detailed 
description of our technique, its relation to existing work, 
and results on synthetic and real imagery are provided in the 
remaining sections. 

This section details the approach we follow, first providing 
notation and a mathematicalformulation of the problem. Then, 
determination of the initial integer disparity map is described 
along with the typical parabola-fitting approach and an existing 
improvement method, followed by details on our approach. 

Without loss of generality, let us assume our stereo pair is 
constructed such that we have left and right images, I L ( x ,  y) 
and I R ( s ,  y ) ,  and that the images have been rectified such 
that corresponding pixels lie on the same horizontal scanline 
in both images. ~ r e a t i n g  the left image as the reference image, 
we seek to find the best disparity map, d(x,  y), that matches a 
pixel (s. y )  in IL to its corresponding location ( x - d ( s ,  y ) ,  y )  
in I R  so as to minimize some matching function match( . ,  .). 
In order to reduce ambiguity when finding the minimum 
matching cost along a given scanline, the matching cost 
is aggregated over a window around (s, y), designated by 
Li*r[z,y): 

For the remainder of this paper, we will consider the de- 
sired disparities in two parts: a coarse integer part, di,,[ E 
{0,1,2,  ..., D  ,,,, ), and a small fractional offset, d o f f  E R, 
such that the best estimate for the total disparity at each pixel 
is the sum of the best estimates of each of these parts: 

A. Initial Integer Disparities 

To compute the initial integer disparity at each pixel, 
we must compute the matching cost between I L ( z ,  y) and 
I R ( 2  - y )  for each integer value of dtnt and choose the 
one which results in the minimum cost. The matching cost 
computed at each pixel and every disparity is often referred to 
as the Disparity Space Image, D S l ( x ,  y ,  d ) .  Thus, the initial 
integer disparity map is related to the DST by: 

dtn t (x ,  y )  = arg m i n U S l ( x ,  y ,  d )  
d 

R. Parubolu Fitting and Pixel Locking 

A selected integer disparity di,,l(x, y )  is, by definition, a 
local minimum of I )S I ( z ,  y ,d )  along the d-dimension. We 
could therefore fit a parabola to the three cost values centered 
at D S I ( x ,  y ,  d Z n t ( x ,  y ) )  and find the sub-pixel location of that 
minimum. If we let C ( s )  = DSI (x ,  y, dtnt(z,.y) + s), the 

offset from center of the analytical minimum of this parabola 
can easily be determined as 

While obviously simple to implement, this method results in 
the pixel-locking effect discussed above and depicted in Figure 
1. Shimizu and Okutomi [7] study this effect in detail and 
analytically derive a function describing the error in sub-pixel 
disparity estimation. Observing the error function's symmetric 
properties and its period of one pixel width, they attempt 
to cancel the theoretical errors as follows (see [7] for more 
details): 

I) Compute fractional offsets to initial integer disparities 
using parabola fitting, as described above. 

2) Effectively recompute the DSI using image intensity 
values interpolated at half-pixel locations in the left 
image (either 0.5 pixels to the left or right of the original 
sampling, depending on the direction of the initial offsets 
from step I ) .  

3) Recompute fractional offsets using parabolas fit to the 
DSI created in step 2 from the interpolated image data. 
Compensate the results by f 0 . 5  to account for the 
interpolation. 

4) Average the initial offsets from step 1 with those found 
in step 3. 

The analysis in [7] also predicts a significant (approxi- 
mately five-fold) attenuation of pixel-locking error simply by 
employing squared differences instead of absolute differences 
for the matching cost function. They also observe this effect 
experimentally, as do we. Noting that many existing real- 
time stereo approaches utilize absolute differences for their 
improved robustness on real-world data, we nevertheless use 
squared differences for the matching function in the remainder 
of this paper for consistency and assurance that we are not 
exacerbating unnecessarily the pixel-locking problem we seek 
to ameliorate1. 

C. Our Approach: Leveraging Lucas-Kanade 

Unless all pixels in the window W over which matching 
cost is aggregated actually have the same disparity (corre- 
sponding to a fronto-parallel plane in the scene), this aggre- 
gation introduces errors into the values stored in the DSI. 
This is because all the pixels in the two windows do not 
actually correspond, e.g. due to foreshortening. Thus, any 
methods (including simple parabola titting and Shimizu and 
Okutomi's approach) which utilize a DSI aggregated with 
simple rectangluar windows to find a sub-pixel minimum will 
be biased. 

Our approach circumvents this problem by locally adapting 
the shape of the aggregation window W in the originul images 
to determine the best sub-pixel disparity value. We only use 
the DSI as described above, which can be implemented very 
efficiently when aggregated with simple rectangular windows, 

' ~ n  exception is [he parabola filling example in Figure I .  This resulr was in 
fact generated using absolute differences to highlight the pixel-locklog effect 
for illustrative purposes. Note the more pronounced peaks as compared to 
result5 using squared differences later in the paper. 



in order to get the initial integer disparity estimates, d,,t(x, y). 
These estimates provide good starting points for positioning 
corresponding windows in the left and right image. We then 
consider the finding of sub-pixel offsets, d o f f  (x, y), as well 
as better shapes for each W(,,y), to be a classic optical flow 
or template tracking problem, as explained in the remainder 
of this section. 

The estimation of optical flow, in the standard sense, is the 
determination of the motion of each pixel in an image over 
time. In other words, we wish to find a displacement vector 
field (u(x ,  y), v(x, y))  which maps the pixels in an image 
at one instant in time to their observed locations at the next 
instant in time: 

The two images in our case are not from a temporal se- 
quence but instead are the simultaneously-captured images 
from the left and right cameras. Because they are rectitied, 
only horizontal displacement (equivalent to disparity) must be 
considered, and thus 7~ - d and v + 0. In addition, we already 
have an initial estimate for the coarse, integer portion of the 
disparity. Let xd = x - dint be the corresponding horizontal 
position in the right image for position x in the left image, 
according to the initial integer disparity estimate. We are only 
seelung the sub-pixel update to this initial estimate, yielding 
the following relation: 

A first-order approximation yields 

In order to s o h e  for d o f f ( x ,  y), we can again consider a 
window W around the locat~on ( x ,  y) and solve a least squares 
problem: 

d o f f .  ( r ,  y )  = arg  min 
d ( d 1 , + 1 , ) ~  

( ~ > J ) € ~ V ( ~ , ~ )  

where I, = and I, = ( I L ( i ,  j )  - I R ( i d  - IZ. j ) )  for 
notational simplicity. Note that we compute I, simply using 
tinite central differences. 

At this point, we are still computing the single disparity 
offset which will minimize the difference between all pixel 
intensities within corresponding windows in the left and right 
images. If we drop the assumption that the disparity is constant 
within W and instead allow it to be a (locally) linear function 
of the (2 ,  j )  coordinates within the window, we can handle the 
case that the scene is locally planar and the variation of scene 
depth within the window is small compared to the distance 
to the camera. Thus we replace d  in the equation above by a 
linear function of local window coordinates i and j :  

Now our goal is to solve for the plane parameters ( a ,  b, c), 
again in a least squares framework. After some algebraic 
manipulation, this can be written as 

Ci212 CiJI; EiI: [;I = -  [ X i j I :  rj21: X j I :  
CiI," CjI: C I," 

1 -' [ ] 

where the summations are over all (i, j )  in the window W. 
Solving the above system for (a, b, c) not only allows us to 

compute the best sub-pixel offset for the pixel at the center 
of the window, which corresponds to d o f f ( x ,  y), but also 
the spatially-varying updates for all points within W .  Thus, 
we effectively have an improved guess for the shape of the 
window over which to aggregate the error I, for position 
(s, y). We can now repeat the estimation using the improved 
correspondence window to better our estimate of do,, (and 
W ) ,  iterating until convergence. In cases where the above 
approach does not converge, we resort to standard parabola 
fitting. In practice, this is only necessary for approximatety 
1% of the pixels in the image. 

Iteratively re-estimating the offset has the additional advan- 
tage of allowing offsets greater than one pixel to be found as 
the window warps and shifts across the right image in search 
of the lowest matching error. This has the effect of potentially 
correcting initial integer disparities that are wrong by more 
than a single disparity level. In fact, corrections on the order 
of half the width of the aggregation window are possible. 
Large initial errors of more than half a pixel are possible 
due to foreshortening when using simple rectangular windows 
to compute the DSI. Note that in such cases, the disparity 
minimum in the flawed DSI - whether found to integer or 
sub-pixel accuracy - does nor actually correspond to the true 
disparity in the scene. Thus parabola fitting, which cannot 
produce sub-pixel offsets larger than 2~0.5, is doomed to fail 
from the outset in these cases. Our approach can succeed due 
to its use of adaptive windows in the original imagery rather 
than using the already-biased DSI. 

Also note that between iterations, only the position and 
shape of W in the right image change. Thus, the only t e r n  
which must be updated in the linear system above is the 
error term I,. The other terms - including all those of the 
expensive matrix inverse - need only be computed once, 
saving significant computation. We can therefore consider each 
pixel and its local window in the left image as a template for 
which we are seeking the best position and window shape in 
the right image to minimize an aggregated matching cost. The 
above formulation is therefore exactly that of standard affine 
Lucas-Kanade (LK) template trackers, but we are treating 
every pixel as a template and restricting tracking to be along 
scanlines since the images are rectified. 

The use of discrete windows for summing matching error 
requires a few additional practical considerations. First, to 
avoid artifacts due to sharp changes in matching cost as the 
window's size or position change, we use a Gaussian-shaped 
weighting function. In addition, we ignore any pixels (by zero- 
weighting them) which are marked as occluded or invalid in 
the initial integer disparity result (e.g. those that fail a left-right 
consistency check). In our implementation, such pixels are 
marked by a disparity of - 1 .  Finally, if the window straddles 
an occlusion boundary, the center pixel's computed offset will 
be influenced by pixels from a different physical surface in 
the image. Since we have an initial estimate of disparity (and 
thus the occlusion boundaries in the scene), we also ignore any 
pixels in the window whose initial integer disparity differs 
radically from that of the central pixel whose offset we are 



computing. The weights can thus be written as: 

o Idi,t(i,j) - di,t(O,O)I > T 
w ( i ,  j )  = d d n t ( z , j )  = - 1  

otherwise 

We use a a equal to half the window width and let T=2 for 
our results. We also normalize so that the total weight for each 
window is one. 

Strictly speaking, the formulation in this section assumes 
perfect brightness constancy between corresponding windows 
in the left and right images. In reality, the captured intensities 
for corresponding regions in each camera may vary substan- 
tially. This may be due, for example, to differing camera or 
framegrabber gain settings or to the slightly differing view- 
points of the two cameras. A common solution is to preprocess 
the images with a Laplacian filter, usually implemented as a 
difference of Gaussian-smoothed images. Unfortunately, this 
approach will smooth across occlusion boundaries, resulting 
in problems similar to those discussed above with windows 
which contain pixels from two different scene surfaces. We 
instead use a difference of bilaterally-filtered images [81, [91, 
as this better preserves edges in the images. 

111. RELATED WORK 

Perhaps the first documentation and analysis of the pixel- 
locking effect was in [4] (called "linearization error" in 
that work), which also studied errors from ground plane 
foreshortening, window effects, and vertical misalignment. 
They recommend fitting a quartic instead of a parabola to 
reduce pixel-locking, but the improvements are not dramatic. 
We chose to compare our work to the more recent method 
of Shimbu and Okutomi [71 discussed above. Both papers 
derive analytical functions for the pixel-locking error with very 
similar shapes, though the formulation in [4] is much more 
compact. 

Also closely related is the excellent analysis in [lo]. There, 
issues surrounding appropriate sub-pixel sampling when cre- 
ating the DSI are addressed, but an explicit analysis of pixel- 
locking is not provided. In addition, we seek a method which 
can be applied as a post-processing "fix" to existing (real-time) 
integer disparity estimation techniques. Their approach, which 
is also potentially expensive in memory and computation, 
modifies the disparity estimation process from its outset. A 
similar approach to ours, which utilizes local image gradient 
information, is discussed in [ I l l ,  but in a different context, 
with a very different formulation, and without specifically 
addressing pixel-locking. 

Various authors attempt to handle the well-known fore- 
shortening problem on the ground plane by some form of 
pre-warping of one image of the stereo pair ([I], [21, [31, 
[4]). This is an efficient approach since simple, rectangular 
windows may still be used for disparity estimation, but it only 
works for a single plane in the image (i.e. the ground plane) 
and may require some knowledge of that plane's orientation 
(or a search for it). The work of [I21 addresses sources of 
and fixes for stereo errors on horizontally slanted surfaces, 
but does not discuss foreshortening on the ground plane or 
provide an explicit analysis of pixel-locking. As discussed 

above, our approach is more general than these methods as 
it is not restricted to planes of a specific orientation. 

There do exist other methods which attempt to estimate sub- 
pixel disparity from the beginning rather than adjusting initial 
integer results (e.g. [13], [14], among others). These methods, 
which fit smooth parametric surface patches to an over- 
segmented scene, can be quite computationally expensive. For 
our approach we chose to compute initial integer disparities 
and then refine them for computational reasons: the cost 
of adaptive windows at all locations and all disparities is 
prohibitive. We therefore assume that the initial integer guesses 
will be close to the uue optimal disparity. 

Adapting correspondence windows' positions or shapes is a 
well studied class of techniques and is often used to improve 
stereo results ([IS], [16], [14], [171, [I81 among others), 
but mainly in the context of improving performance near 
occlusion boundaries. To our knowledge, this is the first work 
which specifically evaluates their efficacy for combating pixel- 
locking in sub-pixel disparity estimation. 

IV. RESULTS 

We compare our approach to simple parabola fining as well 
as our implementation of the error compensation approach 
of Shimizu and Okutomi. To allow quantitative analysis, we 
first evaluate results on synthetic imagery. The left image of a 
synthetic stereo pair along with the corresponding ground truth 
disparity map are shown in Figure 2, depicting a rectangular 
mom with various textures mapped to the planar ceiling, floor, 
and walls. Because the four surfaces in the room are planar, the 
true distribution of (sub-pixel) disparities along each should 
be uniform. (Note that any stair-stepped pattern visible in the 
disparity map is due to color quantization; the disparities do 
indeed vary smoothly.) A histogram of ground truth sub-pixel 
disparities for a region on the room's ceiling is shown at the 
top of Figure 3. 

Fig. 2. Left image of a tenture-mapped synthetic room and the corresponding 
ground truth disparity map. (The blue lines are for visual aid only, to help 
distinguish the surfaces in the room. The red dashed rectangles indicate the 
ceilinglfloor regions used for analysis - see tent.) 

Initial integer disparities were computed for the pair as 
described above. Windows for all results provided were 7x7 
pixels. A histogram of the resulting integer disparities for the 
same ceiling region in the synthetic room is shown in Figure 
3, with spikes at each corresponding integer disparity. After 
applying parabola fitting to estimate sub-pixel disparity, we 
see in the same figure the typical pixel-locking effect as peaks 
of sub-pixel disparity. Applying the approach of Shimizu and 
Okutomi improves the "peakiness" somewhat, and using our 
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Fig. 3. Histograms of sub-pixel disparity from a region on the ceiling of the 
synthetic room. 

LK approach with constant windows yields similar results (not 
shown). But once we enable affine warping of the windows, 
we see the more drastic flattening of the histogram shown at 
the bottom of the figure, which more closely resembles the 
ground truth distribution. 

A similar comparative analysis of the disparity distributions 
for a region along the floor of the room is provided in 
Figure 4. Parabola fitting and Shimizu and Okutomi's approach 
produce very ragged, peaked distributions. Again we see the 
best attenuation of pixel-locking when using our affine LK 
approach. Some of the final warped window shapes from a 
region on the floor are shown in Figure 5 .  

Floor Region 

Fig. 4. Histograms of sub-pixel dispuity from a region on the floor of the 
synthetic room. 

Pig. 5. Corresponding windows with ailine adaptation enabled 

In addition to comparing disparity distributions, which shed 
light on the pixel-locking performance, it is important to check 
the actual disparity errnrs as well. For the initial integer 
disparity map shown in Figure 6 (a), consider its absolute 
error versus the ground truth disparity map, shown in (b). The 
errors have been capped at 0.5 to de-emphasize outliers and 
highlight initial smaller errors. Note that most of the errors 
on the floor start larger than 0.5.  This is most likely due to 
signficant foreshortening, as the synthetic camera is positioned 
fairly close to the ground plane (the disparity gradient on the 
floor is approximately eight times higher on the floor than 
the ceiling). As discussed above, this high initial error does 
not bode well for parabola fitting, as we shall see. The error 
maps after sub-pixel disparity estimation by parabola fitting, 
the approach of Shimizu and Okutomi, and our affine LK 
method are shown in (c), (d), and (e), respectively. Note that 
the errors on the floor are significantly reduced only when 
using our approach. 

In Figure 7 ,  we compare the RMS error over the ceiling and 
floor regions for the various approaches. To suppress influence 
of outliers, we ignore pixels whose initial integer disparity 
error was greater than 3 when computing the following RMS 
values (note that the choice of the threshold does not radically 
alter these results). For the ceiling, both parabola fitting and 
the method of Shimizu and Okutomi do reduce the error from 
the initial integer estimates by about 65%. But our affine LK 
approach reduces the error even more: by 78% . On the floor, 
where the errors are much higher initially, both methods based 
on parabolas are quite limited in their ability improve the 
integer estimates. The error is only reduced by about 6% using 
those approaches. But with the adaptive window capability of 
our approach, a dramatic 86% reduction in error is possible. 

Next we compare results on a real stereo image pair, taken 
from an outdoor autonomous vehicle. At the top of Figure 
8,  the left image of the pair is shown alongside the initial 
integer disparity map. Below these, histograms of estimated 
sub-pixel disparity are shown for the selected ground region 
using parabola fitting, Shimizu and Okutomi, and affine LK. 
We do not have ground truth for this pair, but because the 
ground is roughly planar, we can expect a smooth distribution 
of disparity. Once again, the pixel-locking effect is clearly 
visible for simple parabola fitting. Shimizu and Okutomi's 
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Fig. 6.  Ahsolute disparity errors for the synthetic roam imagery, capped at 
0.5. The large initial erron on Ule flmr are corrected only using our affine 
LK approach. 

method shows marked improvement for this pair, but our affine 
LK approach still produces the smoothest histogram with the 
smallest peaks. 

An additional example on real data is provided in Figure 9. 
The error compensation of Shimizu and Okutomi somewhat 
reduces the peaks of the standard parabola fitting method, but 
the affine LK method produces a smoother result. 

In Figure 10, we compare the artificial rippling of the 
ground plane in the 3D reconstructions of the data in Figures 
8 (left column) and 9 (right column). Each row provides an 
overhead view of a reconstruction using a different method for 
computing the sub-pixel disparities. The approximate camera 
viewing directions are indicated by white arrows in the top 
row for reference. Our affine LK approach results in the 
least undesired artificial structure on the ground plane, while 
leaving only the bumps which are due to actual obstacles or 
terrain in the scene. In addition to the methods and parameters 
discussed above, we have also included for comparison the 
results for parabola fitting when using absolute differences 
to construct the DSI (top row) and the results for the affine 
LK approach with larger windows (bottom row). Note in the 
right column that the larger windows result in a slightly less 
noisy reconstruction and that details which could be confused 
with the artifical structure are retained (e.g., the small log in 
the lower left of the original image data, visible in the lower 
right of the reconstmctions). The incorporation of occlusion 
information into the window weights helps prevent the larger 
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Fig. 7. RMS sub-pixel disparity erron from the floor and ceiling regions of 
the synthetic room imagery. 

windows from simply oversmoothing the data, while the affine 
adaptability prevents errors due to the increased effect of 
foreshortening with a larger window. 

V. CONCLUSIONS AND FUTURE WORK 
By iteratively shifting and warping correspondence win- 

dows, our proposed affine LK approach for estimating suh- 
pixel disparity given an initial integer disparity map has shown 
to be very effective at reducing the commonly-observed pixel- 
locking effect, especially as compared to standard parabola 
fitting. In our experience, the performance of the method de- 
scribed in [7] was quite variable, depending largely on image 
content, while our approach seems to produce consistently 
less pixel-locking. In addition, our LK method is better able 
to correct for initial disparity errors which are too large for 
approaches that rely on parabola fitting. Finally, compared to 
methods which pre-warp one image to account for foreshon- 
ening on a single global ground plane, our approach is more 
general as it can handle planar structure of any orientation 
anywhere in the image automatically. This generality may find 
application in very rough outdoor terrain, where assuming the 
ground is approximated well by a single large plane could be 
dangerous, or in man-made (particularly indoor) environments, 
where much of the above-ground structure is often also planar. 

A major thrust for our future work will be the evaluation 
of computational efficiency of this approach since we are 
interested in incorporating it into a real-time stereo system. 
There exists much prior work on efficient (even real-time) 
implementation of Lucas-Kanade tracking and optical flow 
(e.g. [19], [ZO]). so there is reason to believe a real-time stereo 
vision system using the described approach is possible. Note 
that the restriction of motion along scanlines in the rectified 
images reduces computation substantially. 

We will also incorporate our approach with the real-time 
multi-window stereo approach of [IS], which will likely 
improve performance near occlusion boundaries. This would 
provide better initial integer disparities as well as further 
information for tayloring the window weights for LK updates. 



Fig. 8. The left image of a real stereo pair with associated initial integer Fig. 9. The left image of a real stereo pair with associated initial integer 
disparily map and sub-pixel disparity distributions for the ground region disparity map and sub-pixel disparity distributions for region on the gmund 
(designated by dashed yellow lines). Here. Shimizu and Okulomi's method (designated by dashed yellow lines). The method of Shimizu and Okutomi 
seems to help, but our affine LK method still produces the least peaked offen minor improvement over parabola fining. Once again, our affine LK 
distribution. method produces the smoothest distribution. 

Finally, we are interested in investigating sensitivity with 
varying window size and extending the approach to allow for 
perspective distortions, which could better model the effect 
of foreshortening by allowing windows to taper. For example, 
this may reduce the errors on the walls of the synthetic room 
from Figure 6. This would likely be more computationally 
expensive, however. 
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Fig. 10. Overhead views of the 3D ground planes rcconswucted from sub-pixel disparity maps for the imagery in Figures 8 and 9, with camera viewing 
directions indicated by white arrows. The least artificial rippled soucture is visible using our afine LK approach. Using larger windows with the affine LK 
method improves the result even funher 




