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Whispering Gallery Mode resonators

... Come in various shapes and sizes.

We are mostly interested in the : :
disk resonators. They: |

- have cleaner spectrum; Low microwave power EO modulators

- are 1deal for electro-optical applications;

- may have very small mode volume Continuously tunable, narrow-band
(good for nonlinear optics). pass and stop optical filter

[References available]
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Transmission

Typical WGM spectrum
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Important parameters

V\
Cavity f1eld build-up Small size and optical
factor and linewidth energy density

E.g. V=mx] mm x100 pm x10 um

Figure of merit for nonlinear processes:

Purcell’s factor: n=1 SRS and FWM: n=2  Frequency doubling: n=3

[V.S. Hchenko et al.,
JOSA B 20, 1304 (2003)]
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For crystalline resonators, linewidth is ultimately determined by the material
absorption o
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For «a >~ apy e v /A + ap A4 + arg e~ MR/A
: : E.D.Palik, “Handbook on optical
constants of solids”, Academic, NY, 1998
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Hyper-parametric oscillations in fluorite resonators
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lock prism

0 =2x10" at A =1310nm

Selection rules
FWM: TE-TE
SRS: TE-TM

Transition diagram

Optical spectrum
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Microwave power, dBm

Microwave beat note observed
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175> Second-order (2Q;,) beat note is insignificant

75> Raman scattering is not observed (expected at 322 cm')

A.A.Savchenkov et al.,
Submitted to PRL (2004)
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Analysis

Kerr Hamiltonian: H = Ho+V, Hp = hwpa’a + hwy bl by + fw_ bl b_, where

vV =Chl(alataa +blbl0, by + 0Ll o b D 2ng(blbl b b + a*bi;m@

Self-phase modulation — hg(b! bl aa +atalb b ) Cross-phase modulation

Four-wave mixing

Equations of motion in an open system:

6 = —(iwo +i6(T) +v0 +ve0)a +iglaTa + 201 by + 26T b_]a + 2iga’by b_ + fo + feo,
by = —(iwy +ik(T) + v +Yer )by +ig[2aTa + bl by + 267 10y +igh" aa + f1 + foy
b_ = —(iw_ +ik(T) + v + v )b_ +ig[2a’a + 2b:ﬁb+ + bib_]bm + igblaa + fo+ feu
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Where (feo) =
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Results of analysis

1. Complex dynamics of the system (laser lock helps)

2. Threshold power: Py, ~ 1.54 "
3. Phase modulation (when critically coupled)

- . 1,
4. Beat note frequency w — G- = @4 —w = —(wg —w-_),
is independent on the nonlinear dynamics of the system

o) e
5. Phase diffusion is very low: Dy, = (70 +70)°  hw
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To be tested
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Summary and conclusions

Very high Q-factor and small volume allow us to reach the oscillation threshold
for the four-wave mixing process in WGM disk resonators with low power DC
optical fields.

The generated fields can be represented as the sidebands of the phase-modulated
carrier (the pump). The sidebands frequency is very stable in spite of complex
mode dynamics of the system, which suggests the possibility of its application as
a secondary frequency standard.

The absence of the SRS in the pump polarization (TE) 1s a consequence of the
selection rules; however its absence in the TM polarization is surprising and is

in contradiction with the results for amorphous materials [S.M. Spillane,
T.J. Kippenberg, K.J. Vahala, Nature 415, 621 (2002)]. This may be due to asymmetry of
the Brillouin zone in crystals. Further research is needed.

Just like parametric down conversion, hyper-parametric conversion can produce nonclassical
(e.g. entangled or squeezed) light. We plan on carrying out the research of quantum optical
properties of our system.
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