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An approach is presented to the inversion of gravity fields based on evaluation 
of partials of observables with respect to gravity harmonics using the solu- 
tion of adjoint problem of orbital dynamics of the spacecraft. Corresponding 
adjoint operator is derived directly from the linear operator of the linearized 
forward problem of orbital dynamics. The resulting adjoint problem is similar 
to the forward problem and can be solved by the same methods. For given 
highest degree N of gravity harmonics desired, this method involves integra- 
tion of N adjoint solutions as compared to integration of N2 partials of the 
forward solution with respect to gravity harmonics in the conventional ap- 
proach. Thus, for higher resolution gravity models, this approach becomes 
increasingly more effective in terms of computer resources as compared to the 
approach based on the solution of the forward problem of orbital dynamic- 
s. The presented theoretical framework is illustrated by results of validation 
numerical experiments. 
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1. Introduction 

Inversion of gravity fields from data of orbital tracking of plane- 
tary spacecraft (see, e.g., [I]) provides important data for: 

Geophysical studies of planet's interior 
Accurate prediction of evolution of the orbits of spacecraft 

From the general viewpoint, this is a typical problem of remote 
sensing, where observable data of orbital tracking of the space- 
craft (usually, range and Doppler shift) are interpreted in terms 
of harmonics of the planetary gravity field. As usual, this problem 
reduces to two sub-problems: 

(1) Evaluation of partials, i.e., sensitivities of observables with 
respect to data to be retrieved, in this case - gravity har- 
monics for a current gravity model 

(2) Update of the current (gravity) model based on discrepancies 
between predicted and actual observables (residuals) 

This presentation deals with the first sub-problem. There are two 
alternative approaches to its solution. The widely-used conven- 
tional approach is based on the solutions of the linearized for- 
ward problem of orbital dynamics (Section 3) computed all the 
sensitivities with respect to individual gravity harmonics. The 
approach presented here is based in the solution of the corre- 
sponding adjoint problem (Sections 4, 5). This approach is being 
successfully used in numerous areas of remote sensing, but, to the 
best of authors7 knowledge, was never used in the area explored 
here. 



2. Physical background 

Initial, nonlinear 3D problem: 

Introducing the state vector X ( t )  : 

it can be rewritten in the form of a 1st order matrix differential 
equation with an initial condition: 

where the matrix coefficient 

is a block matrix built of four 3 x 3 matrices, and I is an identity 
matrix. The right-hand vector term has the form 

In spherical coordinates, the gravity potential U can be written 
in the form of expansion (see, e.g., [2]) : 



+- C - C P," (sin p) (Cnm cos mX + Snm sin mX) " r n=l (:)nmll 
and its gradient V U  obtains the form: 

-(n + I) P r  (Cnm cos mX + Snm sinmX) 
m sec ppp (-Cnm cos mX + Snm sin mX) 

cos ~ P C '  (Cnm cos mX + Snm sin mX) 

To simplify the presentation here, we assume that the values of 
the vector of observables R( t )  at the instants t are obtained, using 
some known procedure, from instant values of six components of 
the state vector X( t ) .  The matrix W ( t )  = ( d ~ ( t ) / d ~ ( t ) ) ~  is, 
thus, also known. 

The goal is to evaluate the Jacobian of sensitivities K = dR/dH 
of observables R to the vector of gravity harmonics H consisting 
of the coefficients of expansion of the gravity potential U. 

The discrepancies R' between actual and modelled observables 
can be reduced in terms of updates H' of gravity field harmonics 
solving corresponding inverse problem 

KH' = R' 

by an appropriate least square routine. 

The conventional and adj oint approaches to evaluation of dR/aH 
are presented below. 



3. Conventional forward approach 

Initial non-linear forward problem is linearized around the base- 
line solution: 

Here, we have: 

(u)' = U' + oTur', (vu)' = VU' + o V T u r '  

and resulting linearized forward problem has the form: 

Here: 

The matrix C ( t )  contains div grad of the unperturbed potential 
computed along the unperturbed trajectory: 

avu 1 aou iaou vvTu = [-, - --] 
ar r cos p dX ' r d p  

where (see 121): 
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Perturbations of gravity harmonics, JA, CA,, and SAm are con- 
fined in the right-hand term: 

N n + l)Pn 
VU1=--  0 + - C ( % )  

r2 p [ : ]  $n=l  r - cos 0 pPA 1 
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The conventional forward approach is based on a direct applica- 
bility of the linearized forward problem to evaluation of partials 
ax /dH: 



where the partials wrt gravity harmonics are as follows: 

dVU1 -(n + l)Pn 
-- 
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Then the jacobian of sensitivities K at given instant, t is obtained 
simply as 

It is important to point out that the specific expressions for 
VVTu,  and dVUf/dH displayed above, as well as the imple- 
mentation computer code, are re-used virtually unchanged in the 
adjoint approach described below. Same refers to the specific im- 
plementation of the matrix W. 



4. Straightforward adjoint approach 

This approach is based on the solution of the adjoint problem 
which is uniquely defined by the linearized forward problem and 
by matrix W (see, e.g., [3]): 

-- + cT (t) X* (t) = W(t) ( :t ) 

This is a final value problem where the adjoint matrix solution 
X* is defined by its value at final instant of integration to. 

Once the adjoint solution X* (t) is obtained, the jacobian matrix 
of sensitivities is evaluated by doing the convolution of X*(t) with 
the right-hand term of the linearized forward problem above: 

An advantage of the adjoint approach here, as compared to the 
forward approach, is in the number of elements of the solutions. 
The solution of the linearized forward problem, BX/dH has 6 x 
Nh elements, where Nh is a total number of gravity harmonics 
in the model (N  lo4 or more). The adjoint solution has up to 
62 = 36 elements. 

A disadvantage of the adjoint approach in the form presented 
above is that one has to perform the integration over the time 
interval involved for each specific set of observables. The version 
of the adjoint approach presented below lifts this problem. 



5. Using an adjoint propagator 

We define the adjoint propagator as a matrix solution P ( t )  of the 
following adjoint problem [4] : 

where I is a 6 x 6 identity matrix. 

It can be shown that the jacobian of sensitivities K at given 
instant t  can be obtained as follows: 

In practical applications, the integration needs to be done once, 
from to to t l ,  with saving of values at a reasonable grid of values 
of the intermediate upper limit t  and interpolation to the instants 
corresponding to actual observations. 



6. Results of numerical experiments 

We have performed numerical experiments to verify the theoret- 
ical background illustrated above. We simulated the gravity field 
of the Moon using 18 order by 18 degree truncated gravity mod- 
el. We have simulated the Doppler-only data (Is that correct? 
What units?) of tracking of an orbiter in a low Moon orbit (polar 
circular, 100 km) 

The results of computation of partials using conventional and 
adjoint approach are presented in Appendix A. As it can be seen, 
the values are in good agreement. 



7. Discussion and conclusion 

As any method, the adjoint approach has its advantages and dis- 
advantages. The obvious disadvantage of this approach is that 
it is profoundly counter-intuitive. Indeed, we have to run a non- 
physical, adjoint problem with the source term defined by the pro- 
cedure of obtaining o bseruables. The gravity potential, or rather, 
its partials with respect to gravity harmonics enter into play after 
the adjoint solution is obtained. 

The advantages of this approach are due to the fact that it re- 
sults into a much less computer-intensive code. The 6x6 matrix 
adjoint solution is independent on the number of gravity har- 
monics to be retrieved. Moreover, if the adjoint propagator is 
used, corresponding adjoint solution is independent on the nature 
of observables either. Also, the algorithm is suit able for parallel 
computations, which promises substantial additional benefits in 
terms of computer time and memory requirements. 
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Appendix A. Observables and partials computations 

OBSERVABLE: 

Forward 8.67498757077283 Adjoint 8.674987570 

Jn PARTIALS 

n Forward Adj oint 

Cnm PARTIALS 

n m Forward Adj oint 

Fractional Difference 

Fractional Difference 







Snm PARTIALS 

Adj oint E n m Forward practional Difference 








