
Low-Complexity Lossless Compression of Hyperspectral 
Imagery Via Adaptive Filtering 

M. Klimesh 

July 26, 2005 

Abstract 

A low-complexity, adaptive predictive technique for lossless compression of hyperspectral 
data is presented. The technique relies on the sign algorithm from the repertoire of adaptive 
filtering. The compression effectiveness obtained with the technique is cornpetit ive with that 
of the best of previously described techniques with similar complexity. 

1 Introduction 

On-board compression of hyperspectral imagery is important for reducing the burden on down- 
link resources. Here we describe a novel adaptive predictive technique for lossless compression of 
hyperspectral data. This technique uses an adaptive filtering method and achieves a combination 
of low complexity and compression effectiveness that is competitive with the best results from 
the literature. Although we are primarily interested in application to hyperspectral imagery, the 
technique is also generally applicable to any sort of multispectral imagery. 

The algorithm described in this article seems to represent a particularly effective way of 
using adaptive filtering for predictive compression of hyperspectral images. However, although 
much analysis, experimentation, and refinement was needed to reach this point, the current state 
merely represents a convenient point to  stop and document the results. There are many potential 
avenues for further development and improvement, some of which are mentioned in Section 4. 

Estimation of sample values by linear prediction is a natural strategy for lossless compression 
of hyperspectral images. The differences between the estimates and the actual sample values 
are encoded into the compressed bitstream. This is a form of predictive compression, or, more 
specifically, a form of differential pulse code modulation (DPCM). Only previously encoded sam- 
ples are used t o  predict a given sample in order that the prediction operation can be duplicated 
by the decoder. 

We would like t o  have a predictor that produces estimates that  are as accurate as possible. 
Developing a technique t o  do this is a central task in the overall compressor development. The 
primary contribution of this article is a novel prediction method that  relies on a low-complexity 
adaptive filtering technique. Specifically, a key feature of our compressor is that it uses the sign 
algorithm. 

The sign algorithm [6] is a relative of the least mean square (LMS) algorithm [21,22], a 
well-known low-complexjty adaptive filtering algorithm. The sign algorithm is also known as the 
sign-error algorithm and the binary reinforcement algorithm. There are many other relatives 
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of the LMS algorithm, and some of these may be useful for our application as well. The LMS 
algorithm and its relatives have found extensive application in audio compression. 

There are a few reports in the literature concerning the application of the LMS algorithm to  
images for various filtering operations such as denoising. A straightforward extension of the LMS 
algorithm to two-dimensional (2-D) images is described in [B]; they observe that it may be useful 
for image compression. Later the same authors analyze the effect of a nonzero mean in images 
and show that it has a detrimental effect on the LMS algorithm [9]. They propose normalization 
of filter weights to unity to alleviate the problem. Lin et al. [13] describe a method of local mean 
estimation and subtraction prior to use of the 2-D LMS algorithm, with application to image 
processing. Several variations of this strategy are compared in [25], with application to filtering 
magnetic resonance imaging (MRI) data. 

In a few cases researchers have been directly interested in applying the LMS algorithm to 
image compression. An early example occurs in [2], where the application is fixed rate, lossy, 
predictive compression of (2-D) images. Reference [4] contains an example of the application of 
the LMS algorithm to lossless predictive image compression. Reference [12] describes the use 
of a three-dimensional (3-D) LMS algorithm for restoration of and prediction in hyperspectral 
images (but provides few details). 

There has been a fair amount of work on lossless predictive compression of hyperspectral 
images that does not involve the LMS algorithm or its relatives. The most recent and relevant 
of these include [I ,  14,16,18]. In particular, the methods used by Rizzo et al. [18] have low 
complexity and yield the compression effectiveness similar to  that of our methods. The best 
compression effectiveness results reported in the literature may be from [I],  but those results are 
obtained with methods of moderately high complexity. 

2 Algorithm Description 

The essence of our hyperspectral compression algorithm is adaptive linear predictive compression 
using the sign algorithm for filter adaptation, with local mean estimation and subtraction. 

We start with a brief description of the LMS algorithm and the sign algorithm. For both of 
these algorithms a desired signal dk is to be estimated from an input (column) vector u k .  Here k 
is an index which increases sequentially. The estimate & is a linear function of uk; specifically, 

= wFuk,  where wk is the filter weight vector a t  index k. 
After an estimate c& is made, the crror between the estimate and the desired signal is com- 

puted. Specifically, ek = cjk - dk. This error value is used to update the filter weights. For the 
LMS algorithm, 

Wk+l = W k  P u k e k .  

For the sign algorithm, 
Wk+l = W k  - PUk sgn(ek). 

In each case p is a positive, scalar parameter (the step size parameter) that controls the trade-off 
between convergence speed and average steady-state error. A small p results in better steady- 
state performance but slower convergence. In some variants of these algorithms the value of p 
changes over time. 

The sign algorithm has the property that under certain general assumptions the weight 
vectors it produces become clustered around the optimum weight vector in terms of minimizing 
the mean absolute estimation error. For a sufficiently small adaptation step size parameter, the 
asymptotic mean absolute estimation error can be made to be as close as desired to the minimum 
possible [6]. 



A straightforward method of applying the sign algorithm or the LMS algorithm to the pre- 
diction step in image compression is to identify dk with an image sample to  be estimated, and 
u k  with a causal neighborhood of the image sample. For example, in a hyperspectral image 
let s(x, y, z )  be the sample value a t  spatial location (x, y) in spectral band z .  To estimate a 
sample from the three previously encoded samples that are adjacent in the three dimensions, 
we could apply the LMS or sign algorithm in such a way that d k  = s(x, y, z )  corresponds to 
u k  = [S(X - 1, y, z ) ,  S(X,  y - I ,  z), S(X, y, z - 1)IT. Unfortunately, this method does not work well, 
yielding poor combinations of convergence speed and steady-state performance. We had some 
success combating this problem by normalizing filter weights to  sum to  unity (after scaling by 
spectral band signal levels), a technique that is closely related to  a technique suggested in [9]. 
However we eventually settled on a local mean subtraction method motivated by [13]. 

In our local mean subtraction method, for each sample we compute a preliminary estimate 
using a fixed, causal, linear predictor involving only samples from the same band. Denote the 
preliminary estimate of sample s (x ,  y,  z )  by S(x, y, z) .  The desired signal in the LMS or sign 
algorithm is now defined as dk = s(x, y, 2 )  - 5(x, y, 2). For our example of an estimate from the 
three adjacent samples, we use 

as the corresponding input vector. The general rule is to adjust each sample in the prediction 
neighborhood by the preliminary estimate in the same band as the sample but a t  the spatial 
location of the sample being predicted. Since this is done as part of a predictive compression 
algorithm, the difference & - dk is encoded in the compressed bitstream. The decompressor 
decodes this difference from the bitstream, and can compute dk and S(x, y, z )  from previously 
decoded samples, and therefore can reconstruct the value s(x, y, z) .  

We note that our local mean subtraction step is reminiscent of the transform step in the 
transform domain LMS algorithm [3,17]. This connection may warrant further exploration. 

2.1 Algorithm Specifics 

Implementation of the above predictive compression framework involves many choices. Here we 
describe the specifics of the algorithm that we used to generate our test results. Many other 
combinations of choices are possible. 

Conceptually, an image is partitioned spatially into conveniently-sized fixed regions and 
within each region the spectral bands are compressed sequentially, with each spectral band 
compressed in its entirety before moving on to the next band. The predictor statistics are reset 
with each new band. In practice, the data can be compressed in the order it is acquired, main- 
taining separate statistics for each band and switching among them as necessary. In either case, 
within a band, samples are processed in raster scan order. In our tests the regions are slices 
of a fixed height, namely 32, and each region is compressed independently. The independent 
compression is done both to  provide a means of limiting the effects of data loss in an onboard 
implementation (error containment) and as a convenience allowing the entire region to  reside in 
memory during compression and decompression in our tests. 

We use a six sample prediction neighborhood with three samples from the same band as the 
sample to be predicted, and one sample each from the three preceding bands. Specifically, the 
prediction neighborhood consists of the samples at coordinates (-1,0, O), (-1, -1, O ) ,  (0, -1, O), 



(0,0, I ) ,  (0,0, -2), and (0,0, -3) relative to the sample to be predicted, so that 

We have not yet carried out any significant amount of experimentation with alternate predic- 
tion neighborhoods. For the first spectral band the last three elements of the neighborhood 
are dropped so that offsets do not refer to negative band indices. Similarly, the prediction 
neighborhood is appropriately reduced for the second and third spectral bands. Within a band, 
for prediction neighborhood offsets that are outside the image bounds, the nearest valid causal 
sample is used. The first sample of each band of each region is simply included directly in the 
compressed bitstream. Within each band comprcssion proceeds in raster scan order. 

The prediction weights are initialized to be uniform among the neighborhood, summing to 
1. For the first line p is set to 0.00008. After each of the first 10 lines, p is multiplied by 0.75. 
We chose this sequence of p values because it seemed to produce good results; however, there is 
some robustness in that moderate variations to this schedule still produce good results. 

Our preliminary sample estimates are produced by averaging the four nearest causal samples 
from the same band, namely, those at offsets (-1, O), (-1, -I) ,  (0, -I), and (1, - 1 ) .  

The difference dk - dk is encoded by applying a mapping that produces a nonnegative integer, 
and encoding this integer using Golornb codes [5,7] with parameters that are powers of 2 (also 
known as Golomb-Rice codes). This overall difference encoding procedure is very similar to that 
used by LOCO-I/JPEG-LS, described in [20]. 

In more detail, the encoding is as follows. In general, ik is not an integer.* The possible 
values of dk are labeled with nonnegative integers based on how close they are to dk: the nearest 
is labeled 0, the next nearest is labeled 1, and so on. The label corresponding to the actual value 
of dk is encoded using a Golomb code. Equivalently, let round(dk) be the nearest integer to dk, 
let ilk = d k  - round(&), and define a function f from the integers to the nonnegative integers 
bv 

Then the value to be encoded using a Golomb code is f (Ak) or f (-A,+), depending on whether 
dk is less than or greater than round(&). 

The Golomb code parameter is determined by a running estimate of the average magnitude 
of the Ak.  Specifically, if a running tally includes n samples with a total Ak magnitude sum 
of s ,  then the Golomb code parameter is chosen to be 2", where m is the smallest nonnegative 
integer for which n.  2m > s. This is essentially the same as the Golomb code parameter selection 
mechanism of LOCO-I/JPEG-LS, as described in [20]. 

3 Results 

We have tested our compressor on several datasets from the Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS). These datasets include five 1997 calibrated radiance datasets available 
from the AVIRIS web site,' a 2001 calibrated radiance dataset with imagery from Arizaro, 
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Argentina (flight M10207t01, run p02r06,ll scenes), a 2001 uncalibrated (raw) dataset with im- 
agery from the Big Island of Hawaii, HI (flight f011020t01, run p03r05), and a 2003 uncalibrated 
dataset with imagery from Maine (flight f030828t01, run p00r05). 

The uncalibrated datasets each contain many scan lines at the beginning and end of the run 
that do not seem to contain meaningful image data. Our compression tests use consecutive 512 
line scenes from the middle of the datasets; these were chosen to include the good data but are 
otherwise somewhat arbitrary. For the 2001 Hawaii dataset we discard 436 lines from the top and 
415 lines from the bottom, leaving six 512-line scenes. For the 2003 Maine dataset we discard 362 
lines from the top and 1944 lines from the bottom, leaving thirteen 512-line scenes. Note that we 
have not obtained the corresponding calibrated datasets so the scenes as we have defined them 
do not necessarily match up with the scenes in the corresponding calibrated datasets. There may 
be some value to a comparison of results in uncalibrated and corresponding calibrated scenes. 

All scenes from all datasets contain 512 lines and 224 bands. The 2003 Maine dataset scenes 
contain 680 samples/line and all others contain 614 samples/line. 

Table 1 contains results for the 1997 datasets. Our algorithm is labeled "fast lossless." 
The "ICER-3D" column contains lossless compression results for ICER-3D, a 3-D-wavelet-based 
compressor described in [lo, 111; ICER-3D can be used for lossy or lossless compression. The 
other results for comparison are JPEG-LS [20] applied to the spectral bands independently;2 
the Rice compressor used in the Universal Source Encoder for Space (USES) chip3 using the 
multispectral predictor option4 mentioned in [19]; JPEG-LS applied to the differences between 
the successive spectral bands; and two versions of Spectral-oriented Least SQuares (SLSQ) [18]. 
SLSQ and SLSQ-OPT are relatively simple predictive compression algorithms that are based 
on different principles than our compressor and that use arithmetic coding; their complexity is 
roughly similar to that of our fast lossless compressor. The differential JPEG-LS, SLSQ, and 
SLSQ-OPT results were obtained from the authors of [18] and correspond to  aggregate results 
presented in that publication. 

In Table 2 we compare our fast lossless algorithm to three different compressors of moderate 
complexity. The 3-D CALIC compressor [24] is a nontrivial extension of the basic (2-D) Context- 
based, Adaptive, Lossless Image Codec (CALIC) [23] algorithm to multispectral imagery; in these 
results, in the compression of a given band, the preceding band is used as the reference band. The 
M-CALIC (multiband CALIC) compressor [14] is another extension of CALIC to multispectral 
imagery, tailored toward exploiting the high interband correlations of hyperspectral datasets. 
The last column contains results for a compressor described in [I];  it is called Adaptive Selection 
of Adaptive Predictors (ASAP) in [14] and is more computationally intensive than any of the 
other compressors mentioned in this article. Table 2 contains results for four of the 1997 datasets, 
in each case for only the first 256 lines of the first scene because that portion of the data is used 
in the results given in [14]. 

Table 3 contains results for the Arizaro dataset and Table 4 contains results for the two 
uncalibrated datasets. 

Although we do not have any direct comparisons, it appears from Tables 1-4 that the uncali- 
brated datasets compress much better than the calibrated datasets. This may seem surprising a t  

*ln particular, we used version 1.1 of the  JPEG-LS implementation produced by Ismail R. Ismail and Faouzi 
Kossentini of the  Department of Electrical and Computer Engineering, University of British Columbia. Bands 
containing negative samples had their values translated by a constant sufficient t o  make all the values positive, 
prior to compression. 

3 ~ h e  Rice/USES results were obtained with block length J = 16; this choice gives the  best results, but the 
fact that the scene widths are not a multiple of 16 seems to  cost about 0.05 bits/sample for the  datasets of our 
tests. 

4 ~ h e  multispectral option uses a fixed, internally computed, 2-D predictor using the  spectral dimension and 
one spatial dimension. However, we note tha t  the  USES chip allows arbitrary predictors provided they are 
computed externally. 



Table 1: Bit rates achieved for compression of scenes from the calibrated 1997 AVIRIS datasets. 
Results are given in bits/sample. 

scene 
Cuprite 1 
Cuprite 2 
Cuprite 3 
Cuprite 4 

Jasper Ridge 1 
Jasper Ridge 2 
Jasper Ridge 3 
Jasper Ridge 4 
Jasper Ridge 5 
Low Altitude 1 
Low Altitude 2 
Low Altitude 3 
Low Altitude 4 
Low Altitude 5 
Low Altitude 6 
Low Altitude 7 
Lunar Lake 1 
Lunar Lake 2 

MoffettFieldl 
Moffett Field 2 
Moffett Field 3 

aver age 

first, since the inherent information content of the calibrated datasets should not be appreciably 
higher (if at all higher) than that of the uncalibrated datasets because the calibrated datasets are 
derived from the uncalibrated datasets. However, calibration introduces redundancy of a type 
that does not occur in natural images and would require specialized techniques to  exploit. In 
particular, when calibration increases the dynamic range of a spectral band, the least significant 
bits of the samples typically contain redundancy that is not exploited. Since our compressor 
is intended for eventual use on uncalibrated data, we have not attempted to  exploit the redun- 
dancy introduced by calibration (and we believe the same applies to  the other compressors in 
the tables). 

4 Potential Improvements 

fast 
lossless 

4.89 
5.02 
4.92 
4.98 
5.04 
5.02 
5.07 
5.07 
5.02 
5.37 
5.42 
5.30 
5.32 
5.37 
5.29 
5.29 
4.99 
4.94 
5.12 
5.11 
4.98 
5.12 

As we mentioned earlier, the algorithm described in this article seems to  represent a particularly 
effective way of using adaptive filtering for predictive compression of hyperspectral images, but 
the current state merely represents a convenient point to stop and document the results. We 
now mention a few potential avenues for further development and improvement. 

A fairly obvious step would be to investigate the effect of modifying the prediction neigh- 
borhood. For example, a larger neighborhood might give more accurate estimates, but would 
increase complexity and could reduce adaptation speed. Another direction to pursue would be 
to incorporate some form of context modeling: different sets of statistics could be used depend- 

ICER-3D 
5.14 
5.34 
5.16 
5.21 
5.41 
5.37 
5.47 
5.47 
5.39 
5.70 
5.76 
5.58 
5.58 
5.63 
5.56 
5.60 
5.19 
5.14 
5.48 
5.40 
5.12 
5.41 

JPEG-LS 
(2-D) 
7.13 
7.50 
7.16 
7.16 
7.72 
7.67 
7.90 
7.87 
7.75 
7.81 
7.95 
7.57 
7.53 
7.60 
7.52 
7.64 
6.98 
6.96 
7.78 
7.57 
7.03 
7.51 

Rice/USES 
multispectral 

6.00 
6.13 
6.00 
6.05 
6.17 
6.12 
6.19 
6.22 
6.14 
6.53 
6.58 
6.42 
6.42 
6.47 
6.42 
6.43 
6.02 
5.97 - 
6.24 
6.20 
5.96 
6.22 

differential 
JPEG-LS 

5.44 
5.58 
5.45 
5.51 
5.62 
5.59 
5.67 
5.67 
5.60 
5.97 
6.02 
5.88 
5.89 
5.91 
5.85 
5.88 
5.49 
5.44 
5.70 
5.60 
5.41 
5.68 

SLSQ 
5.03 
5.09 
5.06 
5.10 
5.06 
5.05 
5.10 
5.11 
5.06 
5.38 
5.40 
5.33 
5.37 
5.40 
5.34 
5.34 
5.12 
5.07 
5.15 
5.08 
4.96 
5.17 

SLSQ-OPT 
4.90 
4.97 
4.92 
4.96 
4.95 
4.94 
4.99 
5.00 
4.94 
5.30 
5.33 
5.23 
5.26 
5.30 
5.24 
5.24 
4.99 
4.93 
5.03 
4.98 
4.86 
5.06 



Table 2: Bit rates achieved for compression of the first half-scenes (256 lines) from four of the 
calibrated 1997 AVIRIS datasets. Results are given in bits/sample. 

dataset 
Cuprite 

Jasper Ridge 
Lunar Lake 

Moffett Field 
average 

Table 3: Bit rates achieved for compression of scenes from the calibrated 2001 Arizaro dataset. 
Results are given in bits/sample. 

fast 
lossless 

4.86 
5.02 
5.02 
5.06 
4.99 

ing on the behavior of samples in a local causal neighborhood. These statistics could include 
prediction weight vectors and/or the mean absolute error values used for choosing the Golomb 
code parameters. 

The prediction accuracy might be improved by tweaking the sign algorithm parameters or by 
changing the adaptive filtering technique more extensively. Changing the adaptation step size 
parameter schedule is a possible minor parameter change. Examples of larger changes include 
using either another variation of the sign algorithm, or an altogether different algorithm from the 
LMS family. In addition, there may be better mappings from the hyperspectral image data to the 
input of the sign algorithm, compared to our method that uses preliminary estimates. Changing 
the way prediction weights are initialized could easily results in worthwhile improvements in 
compression effectiveness. A simple initialization that is different from what is currently used 
might accomplish this. In some scenarios it may be reasonable to  initialize the prediction weights 
to  carefully chosen values that depend on the spectral band. A somewhat related point is that 
changing the amount of data per independently coded region also has an effect on compression 
effectiveness. 

Finally, the efficiency of the entropy coding of the prediction errors could be improved. 
Judging from redundancy plots presented in [15], we estimate our results would improve by 
roughly 0.05 bits/sample if we were to use arithmetic coding; however, the cost of this would be 
some increase in complexity. 

scene 
2001 Arizaro 1 
2001 Arizaro 2 
2001 Arizaro 3 
2001 Arizaro 4 
2001 Arizaro 5 
2001 Arizaro 6 
2001 Arizaro 7 
2001 Arizaro 8 
2001 Arizaro 9 
2001 Arizaro 10 
2001 Arizaro 11 

average 

3D-CALIC 
5.23 
5.20 
5.17 
4.92 
5.13 

JPEG-LS 
(2-D) 
5.76 
5.71 
5.65 
5.71 
5.88 
6.12 
5.91 
6.01 
6.67 
6.11 
5.98 
5.95 

Rice/USES 
multispectral 

5.55 
5.51 
5.48 
5.52 
5.51 
5.52 
5.60 
5.65 
5.78 
5.59 
5.55 
5.57 

fast 
lossless 

4.54 
4.51 
4.49 
4.50 
4.52 
4.54 
4.61 
4.67 
4.82 
4.61 
4.56 
4.58 

M-CALIC 
4.97 
5.05 
4.88 
4.73 
4.91 

ICER-3D 
4.54 
4.49 
4.46 
4.49 
4.57 
4.64 
4.62 
4.68 
4.97 
4.70 
4.60 
4.62 

ASAP 
4.87 
4.83 
4.76 
4.60 
4.76 



Table 4: Bit rates achieved for compression of scenes from the uncalibrated 2001 Hawaii and 
2003 Maine AVIMS datasets. Results are given in bits/sample. 

scene 
2003 Maine 1 
2003 Maine 2 
2003 Maine 3 
2003 Maine 4 
2003 Maine 5 
2003 Maine 6 
2003 Maine 7 
2003 Maine 8 
2003 Maine 9 

2003 Maine 10 
2003 Maine 11 
2003 Maine 12 
2003 Maine 13 
2001 Hawaii 1 
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2001 Hawaii 4 
2001 Hawaii 5 4.44 3.79 

2.72 3.79 3.39 
average 2.81 3.23 4.73 3.89 

fast 
lossless 

2.92 
2.89 
2.98 
2.93 
2.86 
2.81 
2.79 
2.77 
2.84 
2.82 
2.77 
2.73 
2.80 
2.75 
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