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Abstract 
State machines are commonly used to control sequential logic in FPGAs and 
ASKS.  An errant stute machine can cause considerable damage bo the 
device it is controIZdngg For example in space uppEicatiuns, the FPGA might 
be conhoNing m o s ,  which when $red at the wrong time will cause a 
mission failure. Even a well designed state machine can be subject to 
random errors us a result of SEUsfi.om the radiation environment in space. 
There are v~triozis ways to eneode the states of a state machine, and the type 
of encoding makes a large dzference in the susceptibility of the state 
machine to radiation. In this paper we compare 4 methods o f  state machine 
encoding and find which method gives the best fault tolerance, as weN as 
determining the resources needed for each method. 

I Introduction 
State machines are a useful way to represent logic which is contrulting 

a sequence of events in a digital circuit. State machines are susceptible to 
faults resulting fiom radiation. Such faults can alter the state sequence, 
causing harm to whatever equipment the state machine is controlling. For 
applications such as spacecraft contro1, a highly reliable state machine needs 
to be implemented. Various methods have been proposed to generate such a 
fault-tolerant state machine. The addition of fault tolerance does come with a 
price. They will require more resources and will operate slower than regular 
state machines. In this paper we examine 4 different methods of state 
machine encoding, comparing the size, performance, and fault tolerance of 
these methods. 
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2 State machine encodkg 

A state machine is a sequential circuit with feedback, used to control the 
sequence of digital logic. It consists of a state register which is updated on a 
clock. The outputs of the state register, together with inputs, are used in the 
next state logic to determine the next state, which will be loaded into the 
state register on the next clock. 
Additional logic takes the state register value and optionally the inputs 
(depending on type of state machine) and determines a set of outputs. This 
bgic is the 'output logic'. 
The state register transitions through a sequence of defined states. Each state 
has a symbolic representation, for example, SO or S1. The number of states 
is determined by the number of unique states needed by the circuit. The size 
of the state machine register depends on the number of states and the state 
machine encoding. The state machine encoding is the way in which the 
symbolic states are actually represented in the state register. As an 
illustration, four different state machine encodings are shown in Table 1. 

Table 1 1: State machine encodings 

The simplest state machine encoding is binary. This is a binary count of the 
state number in sequence. Table 1 shows the binary encoding for an &state 
state machine. 

An alternative method of encoding states is 'one-hot'. In one-hot encoding 
the state encoding is such that only one bit of the state register is set for any 
state. One-hot is widely used in FGPGAs since it is efficient. Very little 
logic is needed to determine the next state. Although the state register is 
larger this is not usually critical in FPGAs, which are considered 'register 
rich' technologies. However this efficiency relies on an optimization, which 
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is not appropriate for high reliable logic. For high reliable circuits every state 
needed to be defined. Because of the large number of flip-flops the total 
number of states (state space) is very large, and so the resources used for a 
high reliable one-hot encoded state machine is large. 

An alternative encoding is Hamming 2 (HZ). In H2-encoding the state 
machine cycles thraugh states that are guaranteed to be different by 2 bits, 
that is a hamming distance of 2. This means that a 'single event upset' 
(SEU) due to radiation can only force the state register to a don't care state. 
The don't care siate can be defined to always bring the state machine to an 
idle or 'SO' state. Since no incorrect state has been entered, no incorrect 
outputs have been generated, although the state rnachine did not complete 
correctly. Note that this encoding is easily generated by adding a parity bit to 
the binary encoding. Thus, a 4000-state state machine will require only 13 
bits. 

To ensure the state rnachine completes correctly even in the case of a SEU, 
W3 encoding can be used. fn N3 encoding there is a hamming distance of 3 
between all states. This means that 3 bits need to change in any state before 
it will change to another legal state. 
In the case of an SEU, the change in state will be to a state which is adjacent 
and unique to the original state. An SEU in any other legal state will not 
cause the state register to take on this value. Because of this property, it is 
possible to generate a state machine which is d u n e  to an SEU change of 
state. Each legitimate state is defined as a set of values. Tlxe set of values 
contains of the state encoding (see table 1) and every value which has a 
hamming distance of 1 (adjacent) from the state encoding. For the 8-states 
in the example io table 1, each set actually consists of 9 values. An SEU 
will bring the state machine to an adjacent state. From this point the state 
machine proceeds to finish its sequence normally, and the SEU has no 
effect. 
Generating the H3 encoding is not as easy as generating the H2 encoding, 
but we have devised an algorithm for generating H3 encoding, 

There are many other encoding methods such as grey code. In this code only 
l-bit changes for each transition. It is similar in performance to binary, and 
so is not considered in this paper. It is possible to create codes with greater 
hamming distance with more fault tolerance. These might be useful if 
multiple bit errors are expected, but are not considered in this paper. 



3 Size and performance of the state machines 

The implementation size of each method is significant when resources are 
limited, and will effect the choice of state machine. Additionally, the 
maximum speed of each method will be determined by the number of logic 
levels needed to encode the next state. This may be significant of very high 
speed is needed. To determine size and performance, the four different state 
machines were coded in Verilog, and then synthesized in a consistent way to 
a common target. The results are summarize in tables 2 and 3.The target 
FPGA used is a Xilinx Spartan 2, with a speed grade of 6.  
The advantages of each method does depend on the number of states, so the 
synthesis was carried out for various numbers of state from 4 to 32. 
To ensure consistent results, state machine optimization was turned off, and 
the state machine flip-flops were not replicated for fanout purposes. 

requen 

Table 2: Size and performance of binary and one-hot state machines 
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u e n c y  
Hz) 

Table 3: Size and performance of H2 and H3 state machines 

The resources used were summarized by the number of flip-flops used and 
the number of look-up-tables (LUTs)used. 
At the low number of states the resources used by all methods are very 
similar. As the number of states increases, it is clear that binary encoding 
gives the smallest implementation both in number of of flip-flops and 
number of LUTs. Of the other three encodings, one-hot requires consistently 
more flip-flops, H3 requires consistently more LUTs. For 32 states one-hot 
gets anomalously worse than the other methods. 
Binary encoding gives the best performance. Although it might be expected 
that one-hot would be the fastest, this would only be true in the optimized 
one-hot. Of the remaining 3 encodings, one-hot is fastest followed by H2 
and H3. At the 32 state level one-hot is anomalously slower, consistent with 
its larger use of LUTs requiring more stages of logic. 

4 Fault Generator 

To test these various encodings for fault tolerance a circuit was devised 
which could both generate faults, and examine the effect of these faults. This 
circuit was designed to run on an application board containing a Xilinx 
Spartan 2 FPGA, with controlling switches and output LEDS. In this way a 
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large number of faults can be generated very quickly, and it is possible to 
generate asynchronous faults. 
An application circuit was devised, which recognizes a 16-bit key in a serial 
data stream by stepping through a 16-state state machine. Five state 
machines are instantiated; one of each type and a reference state machine 
(binary) which has no faults injected. 
A serial input stream will exercise the. target state machines. This is 
implemented using by a pattem generator circuit. The pattern generator 
circuit generates a sequence of nearly identical 16-bit pattern, with 1 in 16 
pattern being the actual key pattern. Between pattern are a number of null 
states to ensure all state machines are synchronized. 
To test for fault tolerance , fault injection is used. This serves as a 
replacement for a radiation source., and is implemented using a fault 
generator circuit. The fault generator circuit uses a pseudorandom number 
generator based on an LFSR circuit. It generates a 16 bit random number 
( f '  number) in 1 out of 16 encoding. The fafault nnumbr is applied to all the 
targeted state machines at an interval determined by a rate counter. This rate 
is determined experimentally, but is chosen to be out of synchronization 
with the pattern generator. 
In the targeted state machine the fault number is used in 3 different ways: 

1 : Synchronous &uIt 
It is wed to change the value of the equivalent bit in i ts state 
register for one cycle. 

2: Asynchronous fault 
The fault number is driven by another clock, and starts randomly 
through the state machines clock cycle. The hult injection is into 
the next state logic. 

3: Asynchronous pulse 
The fault number is initiated at a 'random' time and is constrained 
to be a short pulse a few nanoseconds long. The fault injection is 
into the next state logic. 

Synchronaus fault injection method is the easiest to setup and perform, but 
is the least realistic. It emulates the case that the 1 bit in the state register 
has an incorrect value. In practice, it is unlikely that an fault due to an SEU 
will be synchronized to the state machines clock. Nevertheless, it does 
provide a reasonable comparison between state machines. Asynchronous 
fault injection is more realistic, since it occurs at any time during the cycle. 
This represents the case that an SEU has flipped a bit in the state register at a 
random time. 
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Asynchronous pulse fault injection emulates a radiation induced pulse 
occurring in the next state logic. This is rare, since such an event is 
absorbed by the circuit loading, or is ignored if it doesn't coincide with the 
clock at the input to a flip-flop. Practical considerations make the pulse 
generated in this test circuit much longer than the pulse generated by 
radiation. 
Although single event upsets are the mast interest, the fault injector is 
capable of generating 2 random fhults at a time in 2 out of 16 encoding. This 
is useful for evaluating circuits which have no or little response to single 
errors. 
To determine how many errors are generated by the fault injection, a 
monitoring circuit is  implemented. The monitoring circuit records errors in 2 
categories 

1: The reference state machine matches a pattern but the target state 
machine does not. This is the false negative case. 
2: The reference state machine does not match the pattern but the 
target state machine erroneously indicates a match. This is the 'false 
positive' case. 

5 Fault in-jection results 

The test circuit was downloaded to the application board and run with 
various options. The emr totals were noted. In each case the experiment 
was stopped when the number of errors on any state machine reached 255. 

5.1 Synchronous Fault Injection 

The chart Fig 1 shows the error rate for the four encoding methods. Not 
shown is the reference state machine which has no fault injection and thus 
no errors. For each state machine the four bars represent the error rate of the 
single fault false-negative, single fault fdse positive, double fault false 
negative and double fault fake positive results, respectively. 
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Fig 1 : Synchronous Fault injection results 

As might be expected the one-hot encodii is most susceptible to faults as it 
has the most flip-flops. It has about 2X the fault rate of binary encoding. 
Only the b i i  emding is susceptible to single fault false positive errors. 
The reason is clear: b i i  encoding has no redundant states. A fault in the 
state register will force the state machine to an incorrect state, which may 
indicate that the key pattern is matched. 
Asfarassinglefalseem>rsareconcemed,H3hasnoerr0rsatall.Thisis 
expected, since any single error will not effect the state machine. Other than 
H3, the H2 method has the least errors. 
For double errors H3 remaius the least effected. For double errors all 
methods give false positive errors, which is to be expected. 

5.2 Asvnchro nous F ault iniection 

The asynchronous fault injection results (Fig 2) are very similar to the 
synchronous fault injection results. The absolute error rates are lower, since 
the injector is less likely to produce a fault at a critical time. The H3 method 
has relatively higher error rates for double faults, (compared with the last 
chart). It might be expected that the asynchronous injection of single faults 
will result in double faults effecting the H3 encoding but in fact the H3 
encoded state machine continues to have zero errors. 
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Fig 2: Asynchronous Fault injection results 
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Fig 3: Asynchronous Pulse Fault injection results 

The absolute values of the errors (fig 3) are less as the pulsed fault is less 
likely to be active at a critical time. The one-hot method performs relatively 
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poorly, with over 3X as many errors as binary. There are zero errors in the 
W3 encoded state machine for single faults, despite the asynchronous nature 
of the pulsed fault. 

6 Conclusions 

Despite the unrealistic nature of synchronous fault injection, it does give a 
relative measure of the susceptibility of various state machines to random 
faults. The Hamming-3 (W3) encoding gives by far the best fault tolerance, 
recording 0 errors in single fault injection tests. However it requires the most 
resources, and is the sfowest of the encoding methods. 
Hamming-2 (W2) encoding has less errors than binary encoding, and has 
zero 'false positive' errors. 
One-hot has the most errors, due to its large number of target flip-flops. 
One-hot has also poor use of resources, and slow speed, although it is better 
than binary for false-positive errors. 
For fault tolerant designs H2 is the best compromise in terms of size, speed 
and fault-tolerance. H3 is preferred when ultimate fault tolerance is required. 
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