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Abstract. We are concerned here with improving long range stereo by filtering 
image sequences. Traditionally, measurement errors from stereo camera systems 
have been approximated as 3-D Gaussiam, where the mean is derived by triangu- 
lation and the covariance by linearized error propagation. However, there are two 
problems that arise when filtering such 3-D measurements. First, stereo trian- 
gulation suffers from a range dependent statistical bias; when filtering this leads 
to over-estimating the true range. Second, filtering 3-D measurements derived 
via linearized error propagation leads to  apparent filter divergence; the estima- 
tor is biased to under-estimate range. To address the first issue, we examine the 
statistical behavior of stereo triangulation and show how to remove the bias by 
series expansion. The solution to the second problem is to filter with image coor- 
dinates as measurements instead of triangulated 3-D coordinates. Compared to 
the traditional approxh, we show that bim is reduced by more than an order of 
magnitude, and that the variance of the estimator approaches the Crarner-Rao 
lower bound. 

1 Introduction 

This paper details our efforts to enhance long range depth estima- 
tion in stereo systems by filtering feature measurements from image 
sequences. We would like to accurately estimate the depth of distant 
objects from disparities on the order of 1 pixel. Improving depth 
estimation in stereo systems is an important pursuit. For instance, 
better stereo range resolution will enhance a robot's ability to per- 
form tasks such as navigation, long range path planning, obstacle 
avoidance, mapping and localization and high-speed driving. Unbi- 
ased sensing is a prerequisite for these algori.thms to perform well. 

In the balance of this paper we will encounter two problems with 
traditional stereo error modeling and in turn describe their solutions. 
First, because of the non-linearity in stereo triangulation, we will see 
that range estimates produced by standard triangulation methods 



are statistically biased. While bias in stereo is a known phenomenon, 
previous research focused on how range bias is induced from uncer- 
tain camera positions[3, 15, 191, or dismissed it as insignificant [12]. 
Second, filtering sequences of 3-D measurements from stereo leads 
to biased range estimates when the uncertainty of each 3-D measure- 
ment is modeled by standard linearized error propagation techniques; 
this stems from the fact that the uncertainty model is biased. 

For the former issue, analyzing the statistical behavior of stereo 
triangulation leads us to new triangulation equations based on series 
expansion; this new bias-corrected formulation is shown to be an im- 
provement over traditional stereo triangulation by more than order 
of magnitude. For the latter biased filter problem, we find that for- 
mulating the filter with image coordinates as measurements leads to 
efficient and unbiased estimation of range. Lastly, using the Fisher in- 
formation inequality we show that the combination of bias-corrected 
stereo and a Gauss-Newton recursive filter yield estimates that closely 
approach the minimum variance Cramer-Rao lower bound. 

2 Statistical Bias in Stereo 

Consider some general stereo triangulation function s : H IK3 

where the current observation, z is the vector of pixel coordinates 
[ul, v l ,  ~ 2 ,  vaIT, and the pixels [ul, vlIT and [uz, vzIT are projections 
of x into the two camera image planes. Let xz be the range component 
of x - i.e, x2 is aligned with the optical axis of the cameras. 

We are interested in how a particular model of pixel measurement 
uncertainty will translate into range uncertainty. Before we address 
the issue of bias in more detail we first need to establish an appro- 
priate observation probability density function. 

2.1. Measurement Distribution 

A common approximation is that many measurements of a stationary 
feature point, such corner features [6, 81, follow a normal distribution 
[lo, 12, 13, 141. To establish how features are actually distributed 
we have performed the following experiment: we took a sequence of 
images from a stationary camera of a stationary checker board and 
tracked the corners over time with sub-pixel accuracy [Ill; we then 
re-centered each feature track about zero by subtracting its mean. 
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Figure 1: Feature measurement, histogram 
of 10,360 measurements. 

b 
Figure 2: Standard model of linear per- 
spective projection for stereo triangulation 
with axis aligned cameras. 

For each pixel dimension a histogram of all the measurements is then 
plotted. This histogram approximates the true distribution we should 
expect in measurements. Qualitatively, the histogram in Fig. 1 indi- 
cates that the distribution is close to Gaussian. 

2.2 Derived Range Distribution 

Recall the fronto-parallel configuration, whose geometry is shown in 
Fig. 2. We will derive the range p.d.f. using this simple geometry, 
though the methods and results used here apply to other camera 
models as well. Using Fig. 2, the stereo equations are 

where the last element of x is the range component, and d  = (ul - 
uz) is the disparity. Monte-Carlo simulation using these equations 
indicates that if image feature positions, and hence disparity, are 
normally distributed, then the expected range will be biased toward 
over estimating the true value1. The bias is empirically visible in 
Fig. 3. Analytically, the bias can be seen by deriving the range 
p.d.f., f,,(xz), from the disparity p.d.f., f d (d )  14, 9, 121. From (2) 
we have 1 ~ 2  = s 2 ( d )  = k / d ,  where k = b f .  Since sz and ST' are 
continuously differentiable, then 

' ~ h r o u ~ h o u t  this paper we use linear camera models with a resolution of 
512x384 pixels, a horizontal POV of  68.12 degrees and vertical FOV 51.3662 of 
degrees 
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Figure 3: Range vs. Bias at  8 different Figure 4: Range p.d.f. for ad = 0.3 pixels. 
ranges averaged over 10,000 trials. Cleariy, True range is 51.08m = 1 pixel disparity. 
bias is a strong function of range. Pixel Note that because of the tail, the mean is 
standard deviation is 0.3 pixels in each at 55.63m, which is a bias of almost 10%. 
pixel dimension, with no covariance. 

where I . I denotes absolute value of the Jacobian determinant and 
ST' = d = klz2.  Thus, since f d (d )  is modeled as Gaussian 

where pd and Q are the disparity mean and variance. The mean of 
(3) is 

which unfortunately does not appear to have an analytical solution, 
so we resort to numerical integration. Plots of f,,(x2) are shown in 
Fig. 4; clearly, for distant features the p.d.f. is non-Gaussian, non- 
symmetric and exhibits a long tail. The tail shifts the mean away 
from the true range and hence we see the source of bias in stereo. 

2.3 Bias Reduction 

Naturally, we would like an unbiased method for calculating range. 
Recall that the distribution on d is approximately Gaussian, the mean 
of which we take to approximate some true underlying state, d. If 
the true value of d was known, then the true unbiased range could be 
calculated with 2 2  = sx(d) ,  but due to the variation in d, s2(& is, as 
we have seen, slightly biased. However, if the variation of d around 
d is small, then a Taylor series expansion of s2 may provide a better 
estimate [2], 



Taking the expectation, noting that ~ [ i  - dl = 0, that ~ [ ( d  - d)2] 
is the definition of variance, and replacing d with d^ we get 

which is the new range equation 
that we use to correct for bias. 
Note that this formulation re- 
quires accurate knowledge of the 
measurement variance; which is 
reasonable. Looking at Fig. 5 
the improvement is immediately 
visible for small disparities; in 
fact, for the ranges shown, bias 
is reduced by more than an or- 
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der of magnitude. Note that Figure 5: Bias-corrected stereo compared to 
traditional stereo. higher order series approxima 

tion, which should theoretically provide a better estimate, will depend 
on higher order moments, ~ [ (d -d )n] ,  n > 2. But if the input distribu- 
tion has negligible higher order moments, then the second term in (4) 
makes use of all the available information. By considering the vari- 
ance and how it impacts the range distribution, this bias-correction 
method largely removes the bias from long range stereo. 

3 3-D Estimation 
In this section we uncover another type of bias that results from 
filtering a sequence of 3-D estimates produced by triangulation and 
linearized error propagation. To alleviate this we develop a non-linear 
Gauss-Newton iterative measurement update using image space mea- 
surements instead of 3-D measurements. Finally, the statistical effi- 
ciency of the 3-D measurement update and the Gauss-Newton update 
are compared to the Cramer-Rao lower bound. 

3.1 3-D Measurement Update 

Let x E B3, jt E It3, z 3 ~  E R3 denote the current state, cur- 
rent state estimate and the current 3-D observation, respectively. 
For the case at hand, the current observation, zso, is the vector 
found via bias-corrected stereo. The state estimate and observation 
are independent realizations of multivariate Gaussian distributions: 
Z ~ I )  N ( s ( z ) , R ~ ~ )  and jl N N ( x ,  P) where RgD and P are the 
measurement and state error covariance matrices, respectively. The 
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Figure 6: Kalman Filter of a sequence of Figure 7: Gauss-Newton filter of a se- 
40 3-D stereo measurements averaged over quence of 40 image measurements averaged 
10,000 trials. over lO,OOO trials. 

error covariance matrix RQD is found via error propagation of image 

where s is the bias corrected stereo equation and El and X, are 2x2 
error covariance matrices from the left and right images, respectively. 

In this scenario the sensor model hsD : R3 H IR3 is the vector 
function that returns a predicted measurement .for z3D given x. If 
x,, is the global position of the stereo head with orientation matrix 
R,, then the generative sensor model is, hsD(a) = R Z , ~  - R$,x,,. 
Note that while we focus here on the stationary case and solving 
issues of bias and filter convergence, this forumlation extends to the 
moible sensor case (an issue we are actively working on that is beyond 
the scope of this paper). The Kalman FiIter update equations for this 
system are 

4 + K ( z ~ D  - h 3 ~  (9;)) 
P;+-,, = (I - K H ~ ) P ~  ( 6 )  

K = ~ ) L H : ( H ~ ~ ; H ~  - R3D)-1 

where Hk is the Jacobian of hsD. Filtering with this setup leads to 
the situation depicted in Fig. 6, which clearly shows what is called 
apparent divergence - i.e, convergence to the wrong result[7]. This 
can be explained by the fact that linearized error propagation in ( 5 )  
gives quadratically larger range variance for more distant features. 
This means that the weighted average in (6) will always place more 
confidence in closer measurements and 9+ will be biased toward the 
short measurements. In essence, linearized error propagation leads 
to over confidence for shorter measurements, which in turn leads to 
serious filter bias. 



3.2 Gauss-Newton Measurement Update 

Instead of using the triangulated point z s ~  as the observation, let the 
observation again be the vector of pixel coordinates z  = [UI, vl, ua, vzIT- 
Thus our sensor model h : R3 H IR4 is the vector function that 
projects x into the left and the right images, 

where hl : IR3 H R2 and h, : IR3 I+ R2 are the left and right camera 
projection functions. Depending on the camera models in use, hl 
and h, can be formulated in a variety of ways [17, 181. We only 
require that these functions and their first derivatives are available, 
and otherwise leave them unspecified. 

For convenience we choose to formulate the measurement update 
as an iterative Gauss-Newton method, which is equivalent to an it- 
erated Extended Kalman Filter [I]. To integrate prior information 
about 2 we write the current state estimate and and current obser- 
vation as a single measurement vector 

For the first measurement, the filter is initialized with 2 = Z ~ D  and 
P = RSD which are calculated by bias-corrected triangulation and 
linearized error propagation in as in section 3.1. Since the current 
observation and state estimate are realizations of independent normal 
distributions we have Z .- N(g(x), C) where C = [::I. Given the 
measurement Z, we can write the likelihood function 

where 1 ( is the determinant. The maximum likelihood estimate for 
this expression is P+ = argmax, L(x) ,  whose solution is equivalent 
the solution minimizing the negative log-likelihood, argmin, f(x), 



where k is a constant.If we let STS = C-I and 

then (9) is a non-linear least squares problem to minimize r(~)~r(x). 
The Gauss-Newton method to solve non-linear problems of this form 
is the sequence of iterates [5] 

where J is the Jacobian of (10). Noting that J = -SGi where Gi is 
the Jacobian of g(xi), (11) becomes 

which is the familiar normal equation solution. Once iterated to 
convergence the covariance P+ can then be approximated using P+ = 
(GTC-'C4)-l. AS noted in [I], this is equivalent to the iterated 
Extended Kalman Filter measurement update. 

Filtering with this setup leads to the situation depicted in Fig 
7. Typically, the measurement update converges after 3 to 4 itera- 
tions. Compared to the 3D measurement update, the fact that the 
Gauss-Newton (IEKF) method converges without bias is not surpris- 
ing considering that we avoid the intermediate stereo triangulation 
and linearized error propagation for calculating the 3-D error covari- 
ance matrix. 

3.3 Estimator Efficiency 

Having derived a bias-corrected estimator it is important to address 
its efficiency, that is, how well it approximates a minimal variance 
estimate of the parameters. The information inequality, cov, ( x )  > 
Z,(x)-l, defines such a bound, which is called Cramer-Rao lower 
bound[4]. Here the Fisher information matrix Z,(x) is given by the 
symmetric matrix whose i j th  element is the covariance between first 
partial derivatives of the measurement log-likelihood function, 

at, aa, Z(X),~,~ = COVx (- -) 
axi ' axj 

The measurement log-likelihood function is L, (x) = $ (2-h(x))~-'(z- 
h(x)) + k .  For a multivariate normal distribution (12) reduces to[16, 

191 



For n i.i.d. measurements the 
Fisher information is simply nZ. 
An estimator that achieves the 
CRLB is said to be efficient. Fig. 
8 shows range variance conver- 
gence for the Gauss-Newton es- o 1 2 9 4 5 6 7 8 9 1 0  

N (measurement number) - 
timator; this demonstrates that Fiyre 8: Gauss-Newton and 3-D EKF 

estimator efficiency compared against the 
the Gauss-Newton stereo esti- cramer-R~O lower bound over a sequence 
rnator is efficient. 

4 Conclusion 

of 10 measurements of a feature 25m away. 
At each step estimator variance is found via 
Monte-Carlo simulation over 10,000 trials. 

In our efforts to improve long range stereo by filtering image sequences 
we have come across two problems: the first is that stereo triangu- 
lated range estimates are statistically biased. To address this we have 
re-expressed the stereo triangulation equations using a second order 
series expansion. This new formulation reduces bias in stereo trian- 
gulation by more than an order of magnitude. The second problem 
is that temporal filtering of 3D stereo measurements also leads to 
biased estimates. The solution to this problem is to filter with image 
coordinates as measurements instead of triangulated 3D coordinates. 
Finally, using the Fisher information inequality we show that the 
bias-corrected Gauss-Newton stereo estimator approaches the min- 
imum variance Cramer-Rao lower bound. WhiIe the scope of this 
paper is constrained to address stereo bias and estimator efficiency, 
our ultimate goal is to filter feature points from a moving platform. 
This is a task that requires a solid solution to the simultaneous lo- 
calization and mapping problem, which we are actively exploring. 
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