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Abstract- Automated planning systems (APS) are gaining Expressing the Property of Interest .................... 6 
acceptance for use on NASA missions as evidenced by APS VEMFICATION RESULTS ........................................... 8 
flown On missions such as Orbiter and Deep 'pace C~NCLUSIONS ........................................................... 9 
both of which were commanded by onboard planning ............................................. systems. The planning system takes h g h  level goals and ACKNOWLEDGEMENTS 9 
exDan& them onboard into a detailed of action fiat the REFERENCES ..........-... ............................................... 9 

............................................................. spicecraft executes. The system mustbe verified to ensure BIOGRAPHY 10 
that the automatically generated plans achieve the goals as 
expected and do not generate actions that would harm the 
spacecraft or mission. These systems are typically tested 
using empirical methods. Formal methods, such as model 1. INTRODUCTION 
checking, offer exhaustive or measurable test coverage 
which leads to much greater confidence in correctness. 

This paper describes a formal method based on the SPIN 
model checker. This method guarantees that possible plans 
meet certain desirable properties. We express the input 
model in Promela, the language of SPIN [I] [2] and express 
the properties of desirable plans formally. The Promela 
model is then checked by SPIN to see if it contains violations 
of the properties, which are reported as errors. We have 
applied this approach to an APS and found a defect. 
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Automated Planning Systems (APS) have commanded .two 
NASA technology validation missions: DS1 and E01. 
Unlike traditional flight software, which executes a fixed 
sequence, an automated planning system takes as input a few 
high level goals and automatically generates a sequence 
(plan) that achieves them. The plan can be modified onboard 
in response to faults, new situations, and unexpected 
execution outcomes. This added flexibility allows the system 
to respond to unexpected situations and opportunities that a 
fixed sequence cannot. However, this same flexibility also 
makes a planner far more difficult to verify. The plan must 
be shown to generate the correct plan for a vast number of 
situations. Empirical test cases can cover only a handfUl of 
the most likely or critical situations. Formal methods can 
prove that every plan meets certain properties. 

APS systems of a planner domain models, the planning 
engine, or planner, and the executor that carries out the plan. 
Each of these components is a potential test target. 
Verification of the planner domain models is our focus in t h ~ s  
work. We want .to answer the question: how do we know that 
an APS will produce only desirable plans when it is flown? 
The cost of a bad plan can potentially be very high, ranging 
from loss of science return to loss of an entire multi-million 



dollar mission. Once a planner generates a plan, we can 
prove that the plan is consistent with the planner domain 
model provided to the planner, but there is currentIy no 
method to check that the planner domain model will allow 
only desirable plans. 

Many safety considerations and flight rules can be captured 
directly as constraints in the planner domain model. 
However, certain properties, such as what constitutes an 
acceptable overall plan, can not be enforced directly in the 
planner domain model. For example, in a system consisting 
of a camera, solid state recorder and a radio, we would want 
to ensure that for all plans, if an image is taken and stored, it 
is eventually uplinked. There is no way to express this type 
of desirable property directly in the planner domain model 
and so in this work we have developed a technique to verify 
AI input model compliance with desirabIe plan properties. 

In other work, the real-time model checker UPPAAL was 
used to check for violations of mutual exclusion properties 
and to check for the existence of a plan meeting a set of goals 
[3]. In contrast, the work reported in this paper shows that 
for verification of a set of properties of interest, it is not 
necessary to reason about time. SPIN has also been used to 
verify plan execution engines [4] [5]. A comparison of three 
popular model checkers, SPIN, SMV and Murphi showed 
that these model checkers can be used to check for the 
existence of a plan meeting a set of goals and to check that 
from any state in an A1 input model it is possible to reach a 
desired goal state 161. While this last work demonstrates 
existence of a single desirable plan or the possibility of 
reaching a goal state from any model state, it does did not 
seek to check models for the presence of undesirable plans in 
an A1 input model. 

CONTRASTING EMPIRICAL  STING WITH 
VERIFICATION 

As shown in Figure 1, the empirical method for testing A1 
Models is test plan generation that includes these steps: 
inspect the A1 model, request a finite number of sample 
plans from the APS, and manually inspect the plans to 
determine if they are good or bad. The number of sample 
plans requested will correspond to the amount of time 
available for manual analysis of the plans. A typical number 
of plans requested may be in the order of 100 plans [7]. 
When a undesirable plan is discovered in the sample set, the 
constraints portion of the input model is adjusted to prevent 
that particular undesirable plan and the sampling and manual 
analysis is repeated until the sample set produced by the APS 
contains no undesirable plans. 

In contrast, our approach, shown in Figure 2, uses the SPIN 
model checker to determine that the space defined by the A1 
input model either contains only desirable plans, or if 
undesirable plans exist, to expose the them explicitly as 
errors. If an exhaustive check is not tractable we use an 
approximation technique. In either case, our technique 
examines millions of plans, as opposed to the sampling 
method of the traditional testing process where only 100 or 
so plans are analyzed. 

f construct input modeh  
j from requirements J 

f~anual ly inspect plans to? 
kdentify undesirable p l a n d  

I 

undesirable A all desirable 

exclude undesirable 

testin 

Figure 1 - Empirical Test Plan Generation 

model from properties of 

properties + 
(error trace) 

\, 
exclude /end\ , testig A 

\ 

Figure 2 - Test process using the SPIN model checker 



The A1 Model is expressed first as a Promela model, the 
language of the SPIN model checker. We develop properties 
of desirable plans from mission requirements. The property 
is not an example desirable plan but a more abstract 
representation of the characteristics of a desirable plan. The 
properties are expressed formally using the Timeline Editor 
[8]. The A1 input model is then checked exhaustively by 
SPIN to determine if it contains undesirable plans. If a 
undesirable plan is found, SPIN reports it as an error in the 
form of a sequence diagram. Human analysis of the 
undesirable plan will reveal that the input model is under or 
over constrained and an adjustment, such as the relaxation or 
addition of a constraint is made and the process is repeated 
until SPIN reports that there are no undesirable plans. 

In this section we show how SPIN verifies whether all plans 
generated by a planning system will meet certain properties. 
For purposes of this example, we chose a domain model for 
the CASPER continuous planning system. The model 
generates plans for a sample acquisition and analysis 
scenario of a possible comet landing mission. We chose this 
particular model because it is easily understood and has been 
documented in the literature [9]. The model generates plans 
for the sample acquisition phase which consists of 
collecting, 'bakmg' and evaluating terrain samples in a gas 
chromatograph/mass spectrometer and taking images of the 
comet surface. 

CASPER Overview 

CASPER is a Continuous Activity Scheduling Execution 
and Re-planning (CASPER) system build around a modular 
and reconfigurable application fi-amework known as the 
Automated Scheduling and Planning Environment (ASPEN) 
[lo]. ASPEN is a modular and reconfigurable application 
framework capable of supporting a wide variety of planning 
and scheduling applications that includes these components: 

an modeling language for defining the domain 

a resource management system 
a temporal reasoning system, and 

a graphical interface for visualizing plans 
.The Continuous Activity 
Scheduling Planning Execution 
and Re-planning (CASPER) 
system supports continuous 
modification and u ~ d a t i n ~  of a 
current working plaA in liguht of a I state activities 1 changing operating context. 
~ ~ ~ G c a 6 o n s  bf  C A ~ P E R  have 
included autonomous macecraft 

plans 

Figure 3 - ASPEN 
modeling language 

such as ~ & h  Orbiter \ and 3 
Comer Satellite, Rover Sequence 
Generation, Distributed Rovers, 
and Closed Loop Execution and 
Recovery 

An planner domain model to the 
CASPER system is expressed in 
the CASPER modeling language 
that includes the constructs 
shown in Figure 3. Goals are the 
high level science and 

engineering activities performed by a spacecraft. An 
example goal is performance of a science experiment. 
Activities are actions and are the means by which goals are 
satisfied. A drilling activity might be one of the activities by 
which a science experiment goal is satisfied. Activities 
contain temporal conseaints and resource reservations that 
must be satisfied for the activity to be scheduled. States, 
represented by state variables, are the means by which 
resource reservations are made and tracked. For instance, 
before drilling can occur the drill must be at the desired 
location. A state would be the means by which the drill 
location is tracked. State changes are performed by 
activities. For instance, the sample activity would change the 
drill location to hole1 if no other activity has a reservation on 
the drill location state variable. Resources, are those items 
that are necessary to, or used up in the course of, carrying out 
an activity. Drilling, for instance, will use battery power. 
Resources are updated by activities. For instance, when the 
sample activity begins drilling, it decrements the power 
resource and when drilling ends the power resource is 
incremented. 

SPIN Overview 

SPIN is a logic model checker that is used to formally verify 
distributed software systems. Development of the tool began 
in 1980 in the original Unix group of the Computing 
Sciences Research Center at Bell Labs. The software has 
been freely available since 1991, and continues to evolve to 
keep pace with new developments in the field. 

SPIN is the most widely used logic model checker with over 
10,000 users. In April 2002 SPIN was the recipient of the 
prestigious System Software Award for 2001 by the 
Association for Computing Machnery (ACM). SPIN 
verifies software, not hardware and has a high level language 
for describing systems, called PROMELA (a PROcess MEta 
LAnguage). Spin has been used to trace logical design errors 
in distributed systems designs, such as operating systems, 
data communications protocols, switching systems, 
concurrent algorithms, railway signaling protocols, etc. The 
tool checks the logical consistency of a specification. It 
reports on deadlocks, unspecified receptions, flags 
incompleteness, race conditions, and unwarranted 
assumptions about the relative speeds of processes. 

Example Planner Domain Model 
The sample acquisition phase of model consists of taking 
three terrain samples and two images. Each sampling 
activity should contain a set of serial sub activities of: 
drilling, mining for a sample, moving the drill to the oven, 
depositing the sample in the oven and baking the sample and 
taking measurements. Other activities that were not part of 
the goals were data compression, used to partially free up 
memory in the data buffer, and data uplinking to the orbiter. 

For the portion of the landed phase that we analyzed, the 
resources included: 

2 ovens 

1 camera 
I robotic arm with drill 

power (renewable) 

battery power (non-renewable) 
- memory (renewable) 

State variables included these: oven 1 and oven 2, camera, 
telecom and h l l  location. The legal states and state 



transitions for state variables are shown in Figure 4. Default 
states are shaded. All transitions are allowed for the drill 
location, camera and telecom state variables. For the ovens, 

oven I 12 telecom 

camera 

f---l 

drill location 

hole2 

oven1 

Key: 
all transitions allowed, 
including self loops 

Figure 4 - example CASPER planner domain model state 
variables and state transitions 

all transitions are allowed except for transitions out of the 
failed state. Once an oven enters the failed state it will stay in 
the failed state. 

A small portion of the planner domain model is shown in 
Figure 5. The goals shown are two pictures, takel, and take2. 
An initial start time for this activity is seven hours after the 
beginning of the plan. The CASPER planner may move the 
activity start time but can not delete the activity as indicated 
by the nogermissions variable. 

The resources shown in Figure 5 are the camera, the telecom 
device and the data buffer. The camera and telecom are 
atomic devices, meaning that only one activity can utilize the 
resource at a time. The data buffer is a shared resource that 
can be depleted, and has a capacity and a minimum value. 

The takegicture activity may start between 10 minutes after 
the start of the plan and Mmity and its duration may be 
between 1 and 10 minutes. Reservations that are needed in 
order for the takeqicture activity to be scheduled are: 

exclusive access to the telecom device (comm) 

exclusive access to the camera (civa) 
use of 5 Mb of the data buffer 

and the camera (civa) must be "on" for the duration of 
the activity. 

Planner Domain Model Expressed in Promela 

To express the planner domain model in Promela we first 
observed that each activity in the CASPER model shouId 

take-picture takel { 
start-time = 7h; 
file = "IMAGEI"; 
no-permissions = 
("delete"); 

1; 

take-picture take2 { 
start-time = 18h; 
file = "IMAGEZ; 
no-permissions = 
("delete"): 

resource civa {ticamera 
type = atomic; 

1; 

resource comm { 
type = atomic; 

1; 

resource data-buffer { 
type = depletable; 
capacity = 30; 
min-value = 0; 

correspond to an instance of a Promela proctype. A Promela 
procqpe is a process type that defines the behavior of a 
process instance. The take picture activity, for instance, 
would be defined in Promela as a proctype, takegicture. In 
an initialization step, two instances of takegicture would be 
created to correspond to the two images desired in the 
model's goals. In the model checking step, SPIN explores all 
possible interleavings of the takegicture activities with all 
other activities. 

activity take-picture { 
start-time = [ lo,  infinity]; 
duration = Im,lOm]; 
reservations = 

comm, 
civa, 
data-buffer use 5, 
civa-sv must-be "on"; 
J; 

The behavior we desired for each activity is that after the 
activity is created the activity may schedule itself as soon as 
its constraints are satisfied. This semantics coincides 
precisely with Prornela semantics where each Promela 
statement is either executable or blocked. As soon as a 
Promela statement is executable it may be passed and if it is 
not executable, the process containing the statement blocks 
until the statement evaluates to true. 

state-variable civa-sv { 
states = ("on", "off", 
"ailed); 
default-state = "off; 

1; 

The takeqicture activity proctype is defined on lines 11 
through 29 of Figure 6. The guard, or block, on the 
executability of the takegicture activity is on lines 1 2  
through 14. The guard stipulates that either state variable 
civa-on must be set to on (line 12), or there should be no 
other reservation for the civa-sv state variable (line 13). Also, 
the camera should be on (line 14) and there should be 
available space in data-buffer (line is) to record the picture. 

Figure 5 - CASPEWASPEN model for taking a picture 

1 unsigned d a t ~ b u f f e r  : 3 = 4 ;  
2 mtype 7 {on, o f f ,  f a i l ed ,  p ic ture>;  
3 boo1 c iva  = 1; /* atomic resource: 
4 1 i s  avai lable,  
5 0 i s  i n  use */ 
6 unsigned count : 3 ;  /* # o f  memory using 
7 a c t i v i t i e s  scheduled */ 
8 unsigned power : 6 = 32 ;  /" non-depletable 
resource w i th  capaci~y=35000/1094= 32and 
m i  n-val ue=0 
9 ** power values scaled t o  f i t  i n  an 
unsigned w i th  6 b i t s  . . i . e .  32 */ 



10 mtype civa-sy = o f f ;  
11 chan mutex-c~va = [2] o f  {p id } ;  
1 2  chan p lan  = [0] of {mtype}; 
1 3  

proctype take-pi c t u r e 0  { 
atomic { ( ( ( c i v a s v  == on) I I \ 

empty (mutex-ci va)) && \ 
c i v a  && \ 
( ( d a t ~ b u f f e r - 1 )  >= 0)) -> 

i f  
: : (f iva-sv != on) -> 

civa-sv = on; 
power = power - 9; 

: :  e l se  
f i  ; 
mutex-civa!_pid; 
data-buffer-- ; 
c i v a  = 0; /* camera i n use */ 
p lan !p i c tu re ;  /* take p i c t u r e  */ 
count++; 
1 

proctype c i v ~ o f f  () { 
unsigned i : 2;  

s t a r t :  
d 0 
: : atomic { 

((civa-sv == on) &i& \ 
(empty (mutex-ci va) )) -> 

civa-sv = o f f ;  
power = power + 9; 
3 

48 0d 
49 1 
50 
5 1  proctype s e r v e r 0  { 
52 /* p r i n t s  scheduled a c t i v i t y  on MSC, pre-  
serv ing  order */ 
53 mtype x; 
54 do 
5 5  : : atomic { 
56 plan7x -> 
57 p r i  n t f  ("wsc: %e\n", x) ; 
58  1 
59 od; 
60 1 
61 
62 i n i t  { 
63 atomic f 
64 
65 
66 run take-picture()  ; 
67 run take -p i c tu re0  ; 
68 run c iva-o f f  () ; 
69 run server() ; 
70 p r i  n t f  ("MSC: %d\n" , -nr-pr) ; 
7 1  1 
72 1 

Figure 6 - Promela model fragment for taking a picture 

At the beginning of the model several variables are declared 
and initialized. On line 1, the data-buffer is declared to store 
a 3 bit value and is initialized to 4. The mtype declaration on 
line 2 causes integer values to be assigned to represent some 
state names. On line 3, the civa camera is declared as a 
boolean to capture whether the civa, an atomic resource, is 
available or in use. On line 6, count is declared to store a 3 
bit value and is initialized to 0. The count variable will be 
used by our property as will be described later. On line 8, 
power, measured in watts is a renewable resource and is 
declared to hold an 6 bit integer with a default value of 32. 
On line 10, civa-sv, that tracks the state of the camera, is 
declared to store an mtype and is initialized to 'off' to 

correspond to the default state of the camera. On line 11, 
rnutex-civa is declared as a channel, or queue, with a 
capacity of 2 messages of size pid, which corresponds to a 
byte. rnutex-civa is used to track reservations of state values, 
place by activities, for civa-sv variable. On line1 2 another 
channel, plan, is used to make activity scheduling explicit 
and easy to see on XSPIN's sequence chart output. The plan 
channel is a special rendezvous channel that has a capacity 
of 0. 

The take-picture proctype is defined on lines 14 through 36. 
take-picture is a meta type. Two copies of lake-picture are 
created in the initialization step on lines 66 and 67. The first 
few statements on lines I 5 through 1 8 form the guard for the 
activity. The guard ensures that activity won't get scheduled 
until the reservations and resources are available. In the case 
of the camera, for example, the state variable civa-sv tracks 
the state of the camera, which can be either 'on' or 'off'. The 
take-picture activities' reservation requirement (line 15) on 
civasv is that civa-sv 'must be' on, which means that the 
camera must be 'on' at the onset of and during the entire 
take-picture activity. If the camera is not already on, the 
take-picture activity needs to turn the camera on. It can only 
do so if no other activity has a reservation on the state of the 
camera (line I 6). The civa variable must be 1 indicating that 
the camera is available and not being used by another 
activity. Finally, before a picture is taken we need to ensure 
that there is enough room in the data buffer to store the 
results. T h s  check is made on line 1 8. 

On lines 19 through 27 state variables and resources are 
modified. The civa-sv variable is set to 'on' and power is 
decremented to reflect the power draw of the camera. A 
reservation on the value of civa-sv is created on line 25. The 
general method for handling reservations will be explained 
presently. The available capacity of the data buffer is 
decremented on line 26. The lock on the camera is modified 
to show that the camera is in use on line 27. On line 28 a 
message is sent to the rendezvous channel containing the 
mtype 'picture.' This model artifact appears only to improve 
our ability to interpret the error traces that XSPIN displays as 
sequence charts. Each scheduled activity appears as a 
distinct message with ordering preserved. 

To track reservations on state variables we use Promela 
channels, which are similar to message queues. Each state 
variable has a correspondmg channel that can hold several 
messages. For instance the state variable civa-sv has an 
associated channel mutex-civa for tracking reservations on 
its value. When an activity wants to control the value of a 
state variable it may only do so if it can pass this guard: (1) 
the value of the state variable is already the value desired by 
the activity, or (2) there are no reservations on the state 
variable. The guard for the take-picture activity appears on 
lines 1 5  through 18. If the value of the state variable is 
already the value desired by the activity, the activity sends its 
process id (pid) to the state variable's reservation channel. 
The check of the guard and the message send must be 
performed in an atomic step to ensure that no other activity 
obtains a reservation between the guard check and the 
message send. The take-picture activity, for instance, sends 
mutex-civa its pid on line 2 5  after passing the guard 
expression. The take-picture activity now has a reservation 
on the value of civa-sv and no other activity can change the 
value of civa-sv until the take-picture activity, and all other 
activities that have reservations on the value of civa-sv, have 
removed their reservations. A reservation is removed after 
the activity has completed. For instance, take-picture 



transitions for state variables are shown in Figure 4. Default 
states are shaded. All transitions are allowed for the drill 
location, camera and telecom state variables. For the ovens, 

oven 1 1 2  telecom 
A A 

camera drill location >* 
oven 1 

Key: 
all transitions allowed, 
including self loops 

Figure 4 - example CASPER planner domain model state 
variables and state transitions 

all transitions are allowed except for transitions out of the 
faiIed state. Once an oven enters the failed state it will stay in 
the failed state. 

A small portion of the planner domain model is shown in 
Figure 5. The goals shown are two pictures, takel, and take2. 
An initial start time for this activity is seven hours after the 
beginning of the plan. The CASPER planner may move the 
activity start time but can not delete the activity as indicated 
by the noqermissions variable. 

The resources shown in Figure 5 are the camera, the telecom 
device and the data buffer. The camera and telecom are 
atomic devices, meaning that only one activity can utilize the 
resource at a time. The data buffer is a shared resource that 
can be depleted, and has a capacity and a minimum value. 

The takejicture activity may start between 10 minutes after 
the start of the plan and infinity and its duration may be 
between 1 and 10 minutes. Reservations that are needed in 
order for the takegicture activity to be scheduled are: 

exclusive access to the telecom device (comrn) 

exclusive access to the camera (civa) 

use of 5 Mb of the data buffer 
and the camera (civa) must be "on" for the duration of 
the activity. 

Planner Domain Model Expressed in Promela 

To express the planner domain model in Promela we first 
observed that each activity in the CASPER model should 

take-picture takel { 
start-time = 7h; 
file = "IMAGEI"; 
no-permissions = 
meletem); 

1; 

take-picture take2 { 
start-time = 18h; 
file = "lMAGE2"; 
no-permissions = 
("delete"); 

resource civa {//camera 
type = atomic; 

1; 

resource comrn { 
type = atomic; 

1; 

resource data-buffer { 
type = depletable; 
capacity = 30; 
min-value = 0; 

correspond to an instance of a Promela proctype. A Promela 
proctype is a process type that defines the behavior of a 
process instance. The take picture activity, for instance, 
would be defined in Promela as a proctype, takejicture.  In 
an initialization step, two instances of takegicture would be 
created to correspond to the two images desired in the 
model's goals. In the model checking step, SPIN explores all 
possible interleavings of the takegicture activities with all 
other activities. 

activity take-picture { 
start-time = [ lo ,  infinity]; 
duration = I m,lOm]; 
reservations = 

comm, 
civa, 
data-buffer use 5, 
civa-sv must-be "on"; 
1: 

The behavior we desired for each activity is that after the 
activity is created the activity may schedule itself as soon as 
its constraints are satisfied. This semantics coincides 
precisely with Promela semantics where each Promela 
statement is either executable or blocked. As soon as a 
Promela statement is executable it may be passed and if it is 
not executable, the process containing the statement blocks 
until the statement evaluates to true. 

state-variable civa-sv { 
states = ("on", "off", 
"failed"); 
default-state = "off; 

1; 

The takeqicfure activity proctype is defined on lines 11 
through 27  of Figure 6. The guard, or block, on the 
executability of the takegicture activity is on lines 13 
through 16. The guard stipuIates that either state variable 
civa-sv must be set to on (line 13), or there should be no other 
reservation for the civa-sv state variable (line 14). Also, the 
camera should be on (line 1s) and there should be available 
space in data-buffer (line 16) to record the picture. 

Figure 5 - CASPERfASPEN model for taking a picture 

1 unsigned d a t a b u f f e r  : 3 = 4 ;  
2 mty7e : {on, off, fa i l ed ,  p ic ture} ;  
3 boo c ~ v a  = 1; /* atomic resource: 
4 1 i s  ava i lab le ,  
5 0 -is i n  use */ 
6 unsigned count : 3; /* # o f  memory using 
7 a c t i v i t i e s  scheduled */ 
8 mtype c i v h s v  = o f f ;  - .  

9 10 chin mutex-civa = C21 o f  {p id) ;  
11 12 proctype take-p ic ture0 { 



1 3  atomic ( ( ( (c i  va-sv == on) I I \ 
14 empty(mutex-civa)) && \ 
1 5  c i v a  && \ 
16 ((data-buffer-1) >= 0)) -> 
17 i f  

: : ( c i v a s v  != on) -> 
civa-sv = on; 

: : e l se  
f i  ; 
mutex-civa!-pid; 
d a t ~ b u f f e r - - ;  
c i v a  = 0; /* camera i n  use */ 
p l a n ! p i c t u r e ;  /* t a k e  p i c t u r e  "/ 

YOunt+*; 

i n i t  { 
atomic { . . . 
r u n  take-picture() ; 
run take-picture() ;  ... 

Figure 6 - Promela model fragment for taking a picture 

At the beginning of the model several variables are declared 
and initialized. On line 1, the data-buffer is declared to store 
a 3 bit value and is initialized to 4. The mtype declaration on 
line 2 causes integer values to be assigned to represent some 
state names. On line 3, the civa camera is declared as a 
boolean to capture whether the civa, an atomic resource, is 
available or in use. On line 6, count is declared to store a 3 
bit value and is initialized to 0. The count variable will be 
used by our property as wiIl be described later. On line 8, 
civa-sv, that tracks the state of the camera, is declared to 
store an mtype and is initialized to 'off' to correspond to the 
default state of the camera. On line lo, rnutex-civa is declared 
as a channel, or queue, with a capacity of 2 messages of size 
pid, which corresponds to a byte. mutex-civa is used to track 
reservations of state values, place by activities, for clva-sv 
variable. 

The take-picture proctype is defined on lines 12 through 33. 
take-picture is a meta type. Two copies of take-picture are 
created in the initialization step on lines 38 and 39. The first 
few statements on lines 13 through 16 fosm the guard for the 
activity. The guard ensures that activity won't get scheduled 
until the reservations and resources are available. In the case 
of the camera, for example, the state variable civa-sv tracks 
the state of the camera, which can be either 'on' or 'o f f .  The 
take-picture activities' reservation requirement (line 13) on 
civa-sv is that civa-sv 'must be' on, which means that the 
camera must be 'on' at the onset of and during the entire 
take-picture activity. Lf the camera is not already on, the 
take-picture activity needs to turn the camera on. It can only 
do so if no other activity has a reservation on the state of the 
camera (line 14). The civa variable must be I (line 15) 
indicating that the camera is available and not being used by 
another activity. FinaIly, before a picture is taken we need to 
ensu~e that there is enough room in the data buffer to store 
the results. This check is made on line 16. 

On lines 17 through 24, state variables and resources are 
modified. The civa-sv variable is set to 'on'. A reservation on 
the value of civa-sv is created on line 22. The general method 
for handling reservations will be explained presently. The 

available capacity of the data buffer is decremented on line 
23. The lock on the camera is modified to show that the 
camera is in use on line 24. On line 25 a message is sent to the 
rendezvous channel containing the mtype 'picture.' This 
model artifact appears only to improve our ability to 
interpret the error traces that XSPIN displays as sequence 
charts. Each scheduled activity appears as a distinct message 
wit11 orde~ing preserved. 

To track reservations on state variables we use Promela 
channels, which are similar to message queues. Each state 
variable has a corresponding channel that can hold several 
messages. For instance the state variable civa-sv has an 
associated channel rnutex-civa for tracking reservations on 
its value. When an activity wants to control the value of a 
state variable it may only do so if it can pass this guard: (1) 
the value of the state variable is already the value desired by 
the activity, or (2) there are no reservations on the state 
variable. The guard for the take-picture activity appears on 
lines 13 through 16. If the value of the state variable is 
already the value desired by the activity, the activity sends its 
process id (pid) to the state variable's reservation channel. 
The check of the guard and the message send must be 
performed in an atomic step to ensure that no other activity 
obtains a reservation between the guard check and the 
message send. The take-picture activity, for instance, sends 
mutex-civa its pid on line 22 after passing the guard 
expression. The take-p~cture activity now has a reservation 
on the value of ova-sv and no other activity can change the 
value of civa-sv until the take-picture activity, and all other 
activities that have reservations on the value of civa-sv, have 
removed their reservations. A reservation is removed after 
the activity has completed. For instance, take-picture 
removes its reservation of the value of civa-sv by removing 
its pid from the mutex-civa channel on line 31. 

The count variable that is incremented on line 26 is used in 
the correctness property and will be described in more detail 
later. The guard and the steps that follow it are placed in an 
atomic statement to ensure that no other activity coopts the 
resources and reservations between the step when 
reservations are made and when they are claimed. 

Lines 29 to 32 are the termination of the activity and return 
and release of reservations and xesouxces. 

The civa-off proctype is used to model the turning off of the 
camera when it has no reservation on its state. The server 
proctype handles the rendezvous receive of the messages 
activity send when the activity is scheduled. The init is a 
special type of process that is scheduled as the first step(s) 
and in our model is used to create instances of the proctypes. 

Model Tractability 
For our model checking task to be tractable, that is; possible 
within the constraints of desktop computing power and 
reasonable response time, we employed several modeling 
and abstraction techniques. We abstracted the timeline to the 
minimum number of timepoints needed to check the 
property of interest. As a result, the check we performed was 
more robust, in a sense, because it checked all plans, not just 
those that fit on particular timeline. But the increase in 
robustness comes with a potential penalty; reports of false 
positives. The false positives would be plans, flagged as 
errors, that would not fit on thc actual timeline. We did not 
experience any false positives. but if we had. they could have 
been eliminated with a simple post-processing check 



removes its reservation of the value of civa-sv by removing other processes. Use of these sequences reduces the number 
itspid from the rnutex-civa channel on line 34. of states that SPIN needs to explore. 

The count variable that is incremented on line 29 is used in 
the correctness property and will be described in more detail 
later. The guard and the steps that follow it are placed in an 
atomic statement to ensure that no other activity coopts the 
resources and reservations between the step when 
reservations are made and when they are claimed. 

Lines 32 to 35 are the termination of the activity and return 
and release of reservations and resources. 

The civa-off proctype is used to model the turning off of the 
camera when it has no reservation on its state. The server 
proctype handles the rendezvous receive of the messages 
activity send when the activity is scheduled. The init is a 
special type of process that is scheduIed as the f ~ s t  step(s) 
and in our mode1 is used to create instances of the proctypes. 

Model Tractability 
For our model checkmg task to be tractable, that is; possible 
within the constraints of desktop computing power and 
reasonable response time, we employed several modeling 
and abstraction techniques. We abstracted the timeline to the 
minimum number of timepoints needed to check the 
property of interest. As a result, the check we performed was 
more robust, in a sense, because it checked all plans, not just 
those that fit on particular timeline. But the increase in 
robustness comes with a potential penalty; reports of false 
positives. The false positives would be plans, flagged as 
errors, that would not fit on the actual timeline. We did not 
experience any false positives, but if we had, they could have 
been eliminated with a simple post-processing check 

Another method we used to avoid the state space explosion 
problem was to scale integer variables to fit in a byte or 
several bits. We used h s  technique for resources such as 
power and memory. We also used atomic sequences as much 
as possible. Atomic sequences are sequences of execution 
steps that can not be interleaved with execution steps from 

Expressing the Property of hterest 
The test concern for the example planner domain model was 
the question of whether it might permit the APS to select 
undesirable plans. There are two types of undesirable plans: 
plans that imperil the safety of the mission, and plans that 
waste resources resulting in a reduction in science return. 
Although this technique can be applied to check for both 
types of undesirable plans, we used it to check the latter type. 
The concern we addressed was that the A1 input model 
would permit the APS to select plans that would waste 
resources and therefore not meet the mission's science goals. 

It is much easier to specify how a system should work rather 
than all the ways in which a system can break. Similarly, we 
wanted to specify the characteristics of a desirable plan 
rather than try to enumerate all the undesirable plans since 
the AI input model is so complex that we would inevitably 
miss some undesirable plans. Fortunately, the model 
checking paradigm explicitly supports specifying the desired 
properties of a system and letting the model checker do all 
the work to find exceptions to the desired properties. 

For the example planner domain model, a desirable plan was 
one that achieved all the goals: 2 images and 3 samples. An 
example of one such desirable plan that was produced by 
SPIN in a random simulation run is shown in Figure 7. Time 
progresses to the right. The occurrences of the activities, 
sample and image, that satis@ the goals are shown in green. 
Uplink and compress data are permitted activities that do not 
directly satisfy the goals. Uplink transmits data to the orbiter 
part of the mission and compress data is used to free up 
memory so that additional data products can be stored. The 
state variables ovenl, oven2, camera and drill location and 
their values over time are shown beneath the goals. The 
values of resources power use and memory use are shown at 
the bottom of the timeline. This mesentation of a ~ l a n  
closely resembles the visual output *for plans generated by 
CASPER. 

sample 

aven l  on off-warm 

~ $ & ~ ~ ~  /@%@x&gl 
Image / ]@&$@&I ITmmI 
compress data 1 compfess 

cven2 or1 off-warm 

uplink 

camera 

1 ,uptlnkn I 

drill location O V B ~ Z  oven? I 

power use A 
memory use L s  i 

Figure 7 - Example desirable plan for the example planner domain model 



Although the simulated desirable plan shows that at least one 
desirable plan exists in the A1 input model, we need to show 
that all possible plans are good. To do this we first defined 
the desired property formally using the Timeline Editor [8]. 
The Timeline Editor is a visual tool for expressing properties 
and automatically converting properties to SPIN never 
claims. A never claim is simply somethmg that should never 
happen. The desirable plan property, expressed as a timeline, 
is shown on the top-left of Figure 8. Time progresses from 
left to right. The vertical bars labelled '0', 'l', and '2' are 

marks or locations where interesting events can be placed. 
The '0' mark indicates the beginning of an execution. In 
between two marks zero or more execution steps may occur. 
To specify what should happen between marks we may use 
constraints, which would appear as horizontal lines between 
marks. We do not need to use constraints to express this 
particular property. 

The first event on the timeline is both ovens in default state. 

k ,lolxJ 

(qj true A 
all memory 

both ovens in using activities 
default state completed 

PI all memory uslng act~vit~es campleted 

p2 both ovens in default state 

L i  
Sep Tent Dismiss 

/ 
... 

#define p l  [count == 51 1" all memory using activities completed "/ 
#define p2 I/ [[ovenl-sv == off-cool] && (oven2-sv == off-cool]] I" balh ovens in default state " 

never { 
SO: da 

:: p2 .> goto accepts1 
:: true 
ad; 

accepts1 : 
do 
:: pl -> got0 S2 
:: !p l  
od; 

52: D I'tuil compliance if reached"! 

Figure 8 - 'desirable plan' Property for the example planner domain model expressed using the Timeline Editor 

This event is an t3 event, denoting a regular event that is 
neither required or an error. By including the e event on the 
timeline we have specified that we are interested in 
executions where sometime after the beginning of the 
execution both ovens are in their default state. The second 
event, all memoly using activities completed, is an r event, 
meaning that it is required. If the first event occurs but the 
second event never occurs this is an error. The two events 
shown are expressed informally and formally. The informal 
representation is the English prose that appears as an event 
label. The formal defiition of the event expresses the event 
label in terms of the values of variables in the model. For 
instance, the formal definition of both ovens in default state 

The formal definition of all memory using activities 
completed is: 

(count == 5) 

The count variable is not part of the input model but a global 
variable that we added to enable the check. As shown in the 
takegicture Promela proctype in Figure 6, the count 
variable is incremented when the takegicture activity 
occurs. An increment to count is also made when experiment 
occurs. Experiment is a sub activity within the sample 
activity. When count is equal to 5 the property is satisfied. If 
SPIN can fmd an execution where count does not eventually 
reach 5 it will report it as an error. 

is: The graphical automaton version of the property on the 
((oven1 -sv == off-cool) && (oven2-sv == off-cool)) right-top of Figure 8 shows the property in a form similar to 

a ?mite-state machine. Symbols p l  and p2 are assigned to 
where oven 1 -sv and oven2-sv are both state variables in the represent the two events of interest, when execution begins 
model, and off-cool is the oven state variable's default value. ,, i, he start state. SO. each execution in the 

model we must take a trksition. The true self loop o i  SO can 



always be taken. When p2 becomes true, corresponding to undesirable plan the second imaging activity could not be 
both ovens in default state, we can transition to S l  or remain scheduled because all the activities that clear out memory 
in SO by taking the true self loop. Thus we check both the were scheduled at the beginning of the plan when no 
f is t  occurrence of p2 and all subsequent occurrences of p2. memory had yet been used. Both imaging and sampling 
S1 is a special state, called an accepting state and is denoted activities use memory and there is only enough memory to 
by the double circIe. If we can return to accepting state S1 store the results of four instances of these activity types. 
infinitely often in an execution, that execution is an error. Sometime after the first memory activity but before the 
Hence, if for the remainder of the execution, we can return to fourth memory using activity, either data compression or 
S l  by taking the p2 transition corresponding to all memoly uplinking should take place to make room in memory to 
using activities not completed, then SPIN will report that store the results of the f& memory using activity. 
execution as an error. If p l  occurs, corresponding to all 
memory using activzties completed, we take transition pl to To fix the model we observed that the undesirable plan 
52 and the execution under consideration is not an error. occurred because data compression and u p l u g  were 
The SPIN never claim version of the property that is allowed to occur when memory was empty. The fix we chose 
generated by the Timeline Editor is shown at the bottom of was to add a guard to prevent data compression from 
Figure 8. The never claim can be appended to the model or occuning when memory is empty. In Figure 9, this guard, 
saved to a file and included by reference from XSPIN omitted from the original model containing the undesirable 
(SPIN'S graphical user interface). plan, is shown in bold on line 4. This guard has been added 

to the Promela version of the compress-data proctype so that 
the process will block until the memory (data-buffer) is non- 
empty. In this case data-buffer, that tracks unused capacity, is 
4 when memory is empty and is 0 when memory is full. 

VERIFICATION RESULTS 
1 proctype compress-data0 { 
2 atomic 

We used two of SPIN'S numerous strategies for verification 3 C 
of large models; partial order reduction to reduce the (data-buffer < 4) -> 

data-buffer = d a t ~ b u f f e r  + 1; 
number of system states that must be searched, and collapse 6 plan! compress ; 
compression to reduce the amount of memory needed to 7 I 
store each state [2]. In the verification run with SPIN, an 8 I 
error (undesirable plan) was reported within 1 second after 
checking only 43 states. The undesirable plan, which was Figure 9 - compress-data activity specification in Promela 
reported as a sequence diagram by SPIN, is depicted in the 
output form used by CASPER. The undesirable plan found . 
by SPIN omits the third sample activity and therefore 
contains only four of the required five goal activities. In the 

sample 

image 

compress data I compress 

uplink u~1lnk I 

camera 

drill location OVSIII 

power use 

memory use 

Figure 10 - The undesirable plan found by SPIN shown in CASPER-like output format 



Search for Find 1 

c t j  = o 
comm = 1 
count = 1 
data-buffer = 3 
dLsv = ovenl 
drill = D 
ovenl-sv = on 
oven-s~de = ovenl 
power = 253 
$[Dl = 0 
s[l] = 0 
s[2] = 0 
up = 0 
queue 2 [(muten-dl]] 

151 
queue 3 [[mute#-ovenl]] 

Figure 11 - The bad plan found by SPIN shown as an XSPIN Message Sequence Chart 
and example Data Values during second Sample activity 

We repeated the model checking step on the repaired model input models of the Earth Observer 1 mission that employs 
and SPIN did an exhaustive search, checking 670 million the CASPER planner and has been in autonomous operation 
states and reported no errors. Hence, we can conclude that since May 2004. We will also explore possible tool support 
the input model with the added constraint would not allow needed to incorporate SPIN verification of A1 input models 
the APS to select a undesirable plan. into the existing process of developing A1 input models. 

Using an example planner domain model we demonstrated 
the ability of the SPIN model checker to verify planner 
domain models. Specifically, we converted the planner 
domain model to Promela, the language of the SPIN model 
checker, formulated a correctness property for desirable 
plans, and asked SPIN to fmd and report undesirable plans. 
SPIN quickly found and reported a undesirable plan that 
arose due to a missing constraint in the A1 input model. We 
analyzed the error report then added a constraint and 
repeated the check. In an exhaustive search of the model, 
SPIN found no additional undesirable plans in the planner 
domain model. 
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California Institute of Technology, and was sponsored by the 
National Aeronautics and Space Administration (NASA) 
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