
Model Checking Artificial Intelligence Based Planners:
Even the best laid plans must be verified

Margaret H. Smith
Jet Propulsion Lab

4800 Oak Grove Drive
MIS 198-326

Pasadena, CA 9 1 109
(818) 393-7521

margaret@jpl.nasa.gov

Gerard J. Holzmann
Jet Propulsion Lab

4800 Oak Grove Drive
MIS 126-110

Pasadena, CA 9 1 109
(818) 393-5937

Gerard. J.Kolzmann@jpl.nasa.gov

Gordon C. Cucullu, 111
Jet Propulsion Lab

4800 Oak Grove Drive
MIS 156-142

Pasadena, CA 9 1 109
(8 18) 393-3842

Gordon.C.Cucullu-III@jpl.nasa.gov

Benjamin D. Smith
Jet Propulsion Lab

4800 Oak Grove Drive
WS 126-301

Pasadena, CA 9 11 09
(818) 393-5371

I3enjamin.D. Smith@jpl.nasa.gov

Abstract- Automated planning systems (APS) are gaining Expressing the Property of Interest 6
acceptance for use on NASA missions as evidenced by APS VEMFICATION RESULTS ... 8
flown On missions such as Orbiter and Deep 'pace C~NCLUSIONS ... 9
both of which were commanded by onboard planning ... systems. The planning system takes h g h level goals and ACKNOWLEDGEMENTS 9
exDan& them onboard into a detailed of action fiat the REFERENCES-... ... 9

... spicecraft executes. The system mustbe verified to ensure BIOGRAPHY 10
that the automatically generated plans achieve the goals as
expected and do not generate actions that would harm the
spacecraft or mission. These systems are typically tested
using empirical methods. Formal methods, such as model 1. INTRODUCTION
checking, offer exhaustive or measurable test coverage
which leads to much greater confidence in correctness.

This paper describes a formal method based on the SPIN
model checker. This method guarantees that possible plans
meet certain desirable properties. We express the input
model in Promela, the language of SPIN [I] [2] and express
the properties of desirable plans formally. The Promela
model is then checked by SPIN to see if it contains violations
of the properties, which are reported as errors. We have
applied this approach to an APS and found a defect.

1. INTRODUCTION ... 1
2. CONTRASTING EMPIRICAL mSTING WITH VERIFICA-

TION ... 2
3. MODEL CHECKING CASE STUDY 3

CASPER Overview..3
SPIN Overview..3

........................ Example Planner Domain Model 3
... Planner Domain Model Expressed in Promela 4

Model Tructab ility .. .6

Automated Planning Systems (APS) have commanded .two
NASA technology validation missions: DS1 and E01.
Unlike traditional flight software, which executes a fixed
sequence, an automated planning system takes as input a few
high level goals and automatically generates a sequence
(plan) that achieves them. The plan can be modified onboard
in response to faults, new situations, and unexpected
execution outcomes. This added flexibility allows the system
to respond to unexpected situations and opportunities that a
fixed sequence cannot. However, this same flexibility also
makes a planner far more difficult to verify. The plan must
be shown to generate the correct plan for a vast number of
situations. Empirical test cases can cover only a handfUl of
the most likely or critical situations. Formal methods can
prove that every plan meets certain properties.

APS systems of a planner domain models, the planning
engine, or planner, and the executor that carries out the plan.
Each of these components is a potential test target.
Verification of the planner domain models is our focus in t h ~ s
work. We want .to answer the question: how do we know that
an APS will produce only desirable plans when it is flown?
The cost of a bad plan can potentially be very high, ranging
from loss of science return to loss of an entire multi-million

dollar mission. Once a planner generates a plan, we can
prove that the plan is consistent with the planner domain
model provided to the planner, but there is currentIy no
method to check that the planner domain model will allow
only desirable plans.

Many safety considerations and flight rules can be captured
directly as constraints in the planner domain model.
However, certain properties, such as what constitutes an
acceptable overall plan, can not be enforced directly in the
planner domain model. For example, in a system consisting
of a camera, solid state recorder and a radio, we would want
to ensure that for all plans, if an image is taken and stored, it
is eventually uplinked. There is no way to express this type
of desirable property directly in the planner domain model
and so in this work we have developed a technique to verify
AI input model compliance with desirabIe plan properties.

In other work, the real-time model checker UPPAAL was
used to check for violations of mutual exclusion properties
and to check for the existence of a plan meeting a set of goals
[3]. In contrast, the work reported in this paper shows that
for verification of a set of properties of interest, it is not
necessary to reason about time. SPIN has also been used to
verify plan execution engines [4] [5]. A comparison of three
popular model checkers, SPIN, SMV and Murphi showed
that these model checkers can be used to check for the
existence of a plan meeting a set of goals and to check that
from any state in an A1 input model it is possible to reach a
desired goal state 161. While this last work demonstrates
existence of a single desirable plan or the possibility of
reaching a goal state from any model state, it does did not
seek to check models for the presence of undesirable plans in
an A1 input model.

CONTRASTING EMPIRICAL STING WITH
VERIFICATION

As shown in Figure 1, the empirical method for testing A1
Models is test plan generation that includes these steps:
inspect the A1 model, request a finite number of sample
plans from the APS, and manually inspect the plans to
determine if they are good or bad. The number of sample
plans requested will correspond to the amount of time
available for manual analysis of the plans. A typical number
of plans requested may be in the order of 100 plans [7].
When a undesirable plan is discovered in the sample set, the
constraints portion of the input model is adjusted to prevent
that particular undesirable plan and the sampling and manual
analysis is repeated until the sample set produced by the APS
contains no undesirable plans.

In contrast, our approach, shown in Figure 2, uses the SPIN
model checker to determine that the space defined by the A1
input model either contains only desirable plans, or if
undesirable plans exist, to expose the them explicitly as
errors. If an exhaustive check is not tractable we use an
approximation technique. In either case, our technique
examines millions of plans, as opposed to the sampling
method of the traditional testing process where only 100 or
so plans are analyzed.

f construct input modeh
j from requirements J

f~anual ly inspect plans to?
kdentify undesirable p l a n d

I

undesirable A all desirable

exclude undesirable

testin

Figure 1 - Empirical Test Plan Generation

model from properties of

properties +
(error trace)

\,
exclude /end\ , testig A

\

Figure 2 - Test process using the SPIN model checker

The A1 Model is expressed first as a Promela model, the
language of the SPIN model checker. We develop properties
of desirable plans from mission requirements. The property
is not an example desirable plan but a more abstract
representation of the characteristics of a desirable plan. The
properties are expressed formally using the Timeline Editor
[8]. The A1 input model is then checked exhaustively by
SPIN to determine if it contains undesirable plans. If a
undesirable plan is found, SPIN reports it as an error in the
form of a sequence diagram. Human analysis of the
undesirable plan will reveal that the input model is under or
over constrained and an adjustment, such as the relaxation or
addition of a constraint is made and the process is repeated
until SPIN reports that there are no undesirable plans.

In this section we show how SPIN verifies whether all plans
generated by a planning system will meet certain properties.
For purposes of this example, we chose a domain model for
the CASPER continuous planning system. The model
generates plans for a sample acquisition and analysis
scenario of a possible comet landing mission. We chose this
particular model because it is easily understood and has been
documented in the literature [9]. The model generates plans
for the sample acquisition phase which consists of
collecting, 'bakmg' and evaluating terrain samples in a gas
chromatograph/mass spectrometer and taking images of the
comet surface.

CASPER Overview

CASPER is a Continuous Activity Scheduling Execution
and Re-planning (CASPER) system build around a modular
and reconfigurable application fi-amework known as the
Automated Scheduling and Planning Environment (ASPEN)
[lo]. ASPEN is a modular and reconfigurable application
framework capable of supporting a wide variety of planning
and scheduling applications that includes these components:

an modeling language for defining the domain

a resource management system
a temporal reasoning system, and

a graphical interface for visualizing plans
.The Continuous Activity
Scheduling Planning Execution
and Re-planning (CASPER)
system supports continuous
modification and u ~ d a t i n ~ of a
current working plaA in liguht of a I state activities 1 changing operating context.
~ ~ ~ G c a 6 o n s bf C A ~ P E R have
included autonomous macecraft

plans

Figure 3 - ASPEN
modeling language

such as ~ & h Orbiter \ and 3
Comer Satellite, Rover Sequence
Generation, Distributed Rovers,
and Closed Loop Execution and
Recovery

An planner domain model to the
CASPER system is expressed in
the CASPER modeling language
that includes the constructs
shown in Figure 3. Goals are the
high level science and

engineering activities performed by a spacecraft. An
example goal is performance of a science experiment.
Activities are actions and are the means by which goals are
satisfied. A drilling activity might be one of the activities by
which a science experiment goal is satisfied. Activities
contain temporal conseaints and resource reservations that
must be satisfied for the activity to be scheduled. States,
represented by state variables, are the means by which
resource reservations are made and tracked. For instance,
before drilling can occur the drill must be at the desired
location. A state would be the means by which the drill
location is tracked. State changes are performed by
activities. For instance, the sample activity would change the
drill location to hole1 if no other activity has a reservation on
the drill location state variable. Resources, are those items
that are necessary to, or used up in the course of, carrying out
an activity. Drilling, for instance, will use battery power.
Resources are updated by activities. For instance, when the
sample activity begins drilling, it decrements the power
resource and when drilling ends the power resource is
incremented.

SPIN Overview

SPIN is a logic model checker that is used to formally verify
distributed software systems. Development of the tool began
in 1980 in the original Unix group of the Computing
Sciences Research Center at Bell Labs. The software has
been freely available since 1991, and continues to evolve to
keep pace with new developments in the field.

SPIN is the most widely used logic model checker with over
10,000 users. In April 2002 SPIN was the recipient of the
prestigious System Software Award for 2001 by the
Association for Computing Machnery (ACM). SPIN
verifies software, not hardware and has a high level language
for describing systems, called PROMELA (a PROcess MEta
LAnguage). Spin has been used to trace logical design errors
in distributed systems designs, such as operating systems,
data communications protocols, switching systems,
concurrent algorithms, railway signaling protocols, etc. The
tool checks the logical consistency of a specification. It
reports on deadlocks, unspecified receptions, flags
incompleteness, race conditions, and unwarranted
assumptions about the relative speeds of processes.

Example Planner Domain Model
The sample acquisition phase of model consists of taking
three terrain samples and two images. Each sampling
activity should contain a set of serial sub activities of:
drilling, mining for a sample, moving the drill to the oven,
depositing the sample in the oven and baking the sample and
taking measurements. Other activities that were not part of
the goals were data compression, used to partially free up
memory in the data buffer, and data uplinking to the orbiter.

For the portion of the landed phase that we analyzed, the
resources included:

2 ovens

1 camera
I robotic arm with drill

power (renewable)

battery power (non-renewable)
- memory (renewable)

State variables included these: oven 1 and oven 2, camera,
telecom and h l l location. The legal states and state

transitions for state variables are shown in Figure 4. Default
states are shaded. All transitions are allowed for the drill
location, camera and telecom state variables. For the ovens,

oven I 12 telecom

camera

f---l

drill location

hole2

oven1

Key:
all transitions allowed,
including self loops

Figure 4 - example CASPER planner domain model state
variables and state transitions

all transitions are allowed except for transitions out of the
failed state. Once an oven enters the failed state it will stay in
the failed state.

A small portion of the planner domain model is shown in
Figure 5. The goals shown are two pictures, takel, and take2.
An initial start time for this activity is seven hours after the
beginning of the plan. The CASPER planner may move the
activity start time but can not delete the activity as indicated
by the nogermissions variable.

The resources shown in Figure 5 are the camera, the telecom
device and the data buffer. The camera and telecom are
atomic devices, meaning that only one activity can utilize the
resource at a time. The data buffer is a shared resource that
can be depleted, and has a capacity and a minimum value.

The takegicture activity may start between 10 minutes after
the start of the plan and Mmity and its duration may be
between 1 and 10 minutes. Reservations that are needed in
order for the takeqicture activity to be scheduled are:

exclusive access to the telecom device (comm)

exclusive access to the camera (civa)
use of 5 Mb of the data buffer

and the camera (civa) must be "on" for the duration of
the activity.

Planner Domain Model Expressed in Promela

To express the planner domain model in Promela we first
observed that each activity in the CASPER model shouId

take-picture takel {
start-time = 7h;
file = "IMAGEI";
no-permissions =
("delete");

1;

take-picture take2 {
start-time = 18h;
file = "IMAGEZ;
no-permissions =
("delete"):

resource civa {ticamera
type = atomic;

1;

resource comm {
type = atomic;

1;

resource data-buffer {
type = depletable;
capacity = 30;
min-value = 0;

correspond to an instance of a Promela proctype. A Promela
procqpe is a process type that defines the behavior of a
process instance. The take picture activity, for instance,
would be defined in Promela as a proctype, takegicture. In
an initialization step, two instances of takegicture would be
created to correspond to the two images desired in the
model's goals. In the model checking step, SPIN explores all
possible interleavings of the takegicture activities with all
other activities.

activity take-picture {
start-time = [lo, infinity];
duration = Im,lOm];
reservations =

comm,
civa,
data-buffer use 5,
civa-sv must-be "on";
J;

The behavior we desired for each activity is that after the
activity is created the activity may schedule itself as soon as
its constraints are satisfied. This semantics coincides
precisely with Prornela semantics where each Promela
statement is either executable or blocked. As soon as a
Promela statement is executable it may be passed and if it is
not executable, the process containing the statement blocks
until the statement evaluates to true.

state-variable civa-sv {
states = ("on", "off",
"ailed);
default-state = "off;

1;

The takeqicture activity proctype is defined on lines 11
through 29 of Figure 6. The guard, or block, on the
executability of the takegicture activity is on lines 1 2
through 14. The guard stipulates that either state variable
civa-on must be set to on (line 12), or there should be no
other reservation for the civa-sv state variable (line 13). Also,
the camera should be on (line 14) and there should be
available space in data-buffer (line is) to record the picture.

Figure 5 - CASPEWASPEN model for taking a picture

1 unsigned d a t ~ b u f f e r : 3 = 4 ;
2 mtype 7 {on, o f f , f a i l ed , p ic ture>;
3 boo1 c iva = 1; /* atomic resource:
4 1 i s avai lable,
5 0 i s i n use */
6 unsigned count : 3 ; /* # o f memory using
7 a c t i v i t i e s scheduled */
8 unsigned power : 6 = 32 ; /" non-depletable
resource w i th capaci~y=35000/1094= 32and
m i n-val ue=0
9 ** power values scaled t o f i t i n an
unsigned w i th 6 b i t s . . i . e . 32 */

10 mtype civa-sy = o f f ;
11 chan mutex-c~va = [2] o f {p id } ;
1 2 chan p lan = [0] of {mtype};
1 3

proctype take-pi c t u r e 0 {
atomic { (((c i v a s v == on) I I \

empty (mutex-ci va)) && \
c i v a && \
((d a t ~ b u f f e r - 1) >= 0)) ->

i f
: : (f iva-sv != on) ->

civa-sv = on;
power = power - 9;

: : e l se
f i ;
mutex-civa!_pid;
data-buffer-- ;
c i v a = 0; /* camera i n use */
p lan !p i c tu re ; /* take p i c t u r e */
count++;
1

proctype c i v ~ o f f () {
unsigned i : 2;

s t a r t :
d 0
: : atomic {

((civa-sv == on) &i& \
(empty (mutex-ci va))) ->

civa-sv = o f f ;
power = power + 9;
3

48 0d
49 1
50
5 1 proctype s e r v e r 0 {
52 /* p r i n t s scheduled a c t i v i t y on MSC, pre-
serv ing order */
53 mtype x;
54 do
5 5 : : atomic {
56 plan7x ->
57 p r i n t f ("wsc: %e\n", x) ;
58 1
59 od;
60 1
61
62 i n i t {
63 atomic f
64
65
66 run take-picture() ;
67 run take -p i c tu re0 ;
68 run c iva-o f f () ;
69 run server() ;
70 p r i n t f ("MSC: %d\n" , -nr-pr) ;
7 1 1
72 1

Figure 6 - Promela model fragment for taking a picture

At the beginning of the model several variables are declared
and initialized. On line 1, the data-buffer is declared to store
a 3 bit value and is initialized to 4. The mtype declaration on
line 2 causes integer values to be assigned to represent some
state names. On line 3, the civa camera is declared as a
boolean to capture whether the civa, an atomic resource, is
available or in use. On line 6, count is declared to store a 3
bit value and is initialized to 0. The count variable will be
used by our property as will be described later. On line 8,
power, measured in watts is a renewable resource and is
declared to hold an 6 bit integer with a default value of 32.
On line 10, civa-sv, that tracks the state of the camera, is
declared to store an mtype and is initialized to 'off' to

correspond to the default state of the camera. On line 11,
rnutex-civa is declared as a channel, or queue, with a
capacity of 2 messages of size pid, which corresponds to a
byte. rnutex-civa is used to track reservations of state values,
place by activities, for civa-sv variable. On line1 2 another
channel, plan, is used to make activity scheduling explicit
and easy to see on XSPIN's sequence chart output. The plan
channel is a special rendezvous channel that has a capacity
of 0.

The take-picture proctype is defined on lines 14 through 36.
take-picture is a meta type. Two copies of lake-picture are
created in the initialization step on lines 66 and 67. The first
few statements on lines I 5 through 1 8 form the guard for the
activity. The guard ensures that activity won't get scheduled
until the reservations and resources are available. In the case
of the camera, for example, the state variable civa-sv tracks
the state of the camera, which can be either 'on' or 'off'. The
take-picture activities' reservation requirement (line 15) on
civasv is that civa-sv 'must be' on, which means that the
camera must be 'on' at the onset of and during the entire
take-picture activity. If the camera is not already on, the
take-picture activity needs to turn the camera on. It can only
do so if no other activity has a reservation on the state of the
camera (line I 6). The civa variable must be 1 indicating that
the camera is available and not being used by another
activity. Finally, before a picture is taken we need to ensure
that there is enough room in the data buffer to store the
results. T h s check is made on line 1 8.

On lines 19 through 27 state variables and resources are
modified. The civa-sv variable is set to 'on' and power is
decremented to reflect the power draw of the camera. A
reservation on the value of civa-sv is created on line 25. The
general method for handling reservations will be explained
presently. The available capacity of the data buffer is
decremented on line 26. The lock on the camera is modified
to show that the camera is in use on line 27. On line 28 a
message is sent to the rendezvous channel containing the
mtype 'picture.' This model artifact appears only to improve
our ability to interpret the error traces that XSPIN displays as
sequence charts. Each scheduled activity appears as a
distinct message with ordering preserved.

To track reservations on state variables we use Promela
channels, which are similar to message queues. Each state
variable has a correspondmg channel that can hold several
messages. For instance the state variable civa-sv has an
associated channel mutex-civa for tracking reservations on
its value. When an activity wants to control the value of a
state variable it may only do so if it can pass this guard: (1)
the value of the state variable is already the value desired by
the activity, or (2) there are no reservations on the state
variable. The guard for the take-picture activity appears on
lines 1 5 through 18. If the value of the state variable is
already the value desired by the activity, the activity sends its
process id (pid) to the state variable's reservation channel.
The check of the guard and the message send must be
performed in an atomic step to ensure that no other activity
obtains a reservation between the guard check and the
message send. The take-picture activity, for instance, sends
mutex-civa its pid on line 2 5 after passing the guard
expression. The take-picture activity now has a reservation
on the value of civa-sv and no other activity can change the
value of civa-sv until the take-picture activity, and all other
activities that have reservations on the value of civa-sv, have
removed their reservations. A reservation is removed after
the activity has completed. For instance, take-picture

transitions for state variables are shown in Figure 4. Default
states are shaded. All transitions are allowed for the drill
location, camera and telecom state variables. For the ovens,

oven 1 1 2 telecom
A A

camera drill location >*
oven 1

Key:
all transitions allowed,
including self loops

Figure 4 - example CASPER planner domain model state
variables and state transitions

all transitions are allowed except for transitions out of the
faiIed state. Once an oven enters the failed state it will stay in
the failed state.

A small portion of the planner domain model is shown in
Figure 5. The goals shown are two pictures, takel, and take2.
An initial start time for this activity is seven hours after the
beginning of the plan. The CASPER planner may move the
activity start time but can not delete the activity as indicated
by the noqermissions variable.

The resources shown in Figure 5 are the camera, the telecom
device and the data buffer. The camera and telecom are
atomic devices, meaning that only one activity can utilize the
resource at a time. The data buffer is a shared resource that
can be depleted, and has a capacity and a minimum value.

The takejicture activity may start between 10 minutes after
the start of the plan and infinity and its duration may be
between 1 and 10 minutes. Reservations that are needed in
order for the takegicture activity to be scheduled are:

exclusive access to the telecom device (comrn)

exclusive access to the camera (civa)

use of 5 Mb of the data buffer
and the camera (civa) must be "on" for the duration of
the activity.

Planner Domain Model Expressed in Promela

To express the planner domain model in Promela we first
observed that each activity in the CASPER model should

take-picture takel {
start-time = 7h;
file = "IMAGEI";
no-permissions =
meletem);

1;

take-picture take2 {
start-time = 18h;
file = "lMAGE2";
no-permissions =
("delete");

resource civa {//camera
type = atomic;

1;

resource comrn {
type = atomic;

1;

resource data-buffer {
type = depletable;
capacity = 30;
min-value = 0;

correspond to an instance of a Promela proctype. A Promela
proctype is a process type that defines the behavior of a
process instance. The take picture activity, for instance,
would be defined in Promela as a proctype, takejicture. In
an initialization step, two instances of takegicture would be
created to correspond to the two images desired in the
model's goals. In the model checking step, SPIN explores all
possible interleavings of the takegicture activities with all
other activities.

activity take-picture {
start-time = [lo , infinity];
duration = I m,lOm];
reservations =

comm,
civa,
data-buffer use 5,
civa-sv must-be "on";
1:

The behavior we desired for each activity is that after the
activity is created the activity may schedule itself as soon as
its constraints are satisfied. This semantics coincides
precisely with Promela semantics where each Promela
statement is either executable or blocked. As soon as a
Promela statement is executable it may be passed and if it is
not executable, the process containing the statement blocks
until the statement evaluates to true.

state-variable civa-sv {
states = ("on", "off",
"failed");
default-state = "off;

1;

The takeqicfure activity proctype is defined on lines 11
through 27 of Figure 6. The guard, or block, on the
executability of the takegicture activity is on lines 13
through 16. The guard stipuIates that either state variable
civa-sv must be set to on (line 13), or there should be no other
reservation for the civa-sv state variable (line 14). Also, the
camera should be on (line 1s) and there should be available
space in data-buffer (line 16) to record the picture.

Figure 5 - CASPERfASPEN model for taking a picture

1 unsigned d a t a b u f f e r : 3 = 4 ;
2 mty7e : {on, off, fa i l ed , p ic ture} ;
3 boo c ~ v a = 1; /* atomic resource:
4 1 i s ava i lab le ,
5 0 -is i n use */
6 unsigned count : 3; /* # o f memory using
7 a c t i v i t i e s scheduled */
8 mtype c i v h s v = o f f ; - .

9 10 chin mutex-civa = C21 o f {p id) ;
11 12 proctype take-p ic ture0 {

1 3 atomic ((((c i va-sv == on) I I \
14 empty(mutex-civa)) && \
1 5 c i v a && \
16 ((data-buffer-1) >= 0)) ->
17 i f

: : (c i v a s v != on) ->
civa-sv = on;

: : e l se
f i ;
mutex-civa!-pid;
d a t ~ b u f f e r - - ;
c i v a = 0; /* camera i n use */
p l a n ! p i c t u r e ; /* t a k e p i c t u r e "/

YOunt+*;

i n i t {
atomic { . . .
r u n take-picture() ;
run take-picture() ; ...

Figure 6 - Promela model fragment for taking a picture

At the beginning of the model several variables are declared
and initialized. On line 1, the data-buffer is declared to store
a 3 bit value and is initialized to 4. The mtype declaration on
line 2 causes integer values to be assigned to represent some
state names. On line 3, the civa camera is declared as a
boolean to capture whether the civa, an atomic resource, is
available or in use. On line 6, count is declared to store a 3
bit value and is initialized to 0. The count variable will be
used by our property as wiIl be described later. On line 8,
civa-sv, that tracks the state of the camera, is declared to
store an mtype and is initialized to 'off' to correspond to the
default state of the camera. On line lo, rnutex-civa is declared
as a channel, or queue, with a capacity of 2 messages of size
pid, which corresponds to a byte. mutex-civa is used to track
reservations of state values, place by activities, for clva-sv
variable.

The take-picture proctype is defined on lines 12 through 33.
take-picture is a meta type. Two copies of take-picture are
created in the initialization step on lines 38 and 39. The first
few statements on lines 13 through 16 fosm the guard for the
activity. The guard ensures that activity won't get scheduled
until the reservations and resources are available. In the case
of the camera, for example, the state variable civa-sv tracks
the state of the camera, which can be either 'on' or 'o f f . The
take-picture activities' reservation requirement (line 13) on
civa-sv is that civa-sv 'must be' on, which means that the
camera must be 'on' at the onset of and during the entire
take-picture activity. Lf the camera is not already on, the
take-picture activity needs to turn the camera on. It can only
do so if no other activity has a reservation on the state of the
camera (line 14). The civa variable must be I (line 15)
indicating that the camera is available and not being used by
another activity. FinaIly, before a picture is taken we need to
ensu~e that there is enough room in the data buffer to store
the results. This check is made on line 16.

On lines 17 through 24, state variables and resources are
modified. The civa-sv variable is set to 'on'. A reservation on
the value of civa-sv is created on line 22. The general method
for handling reservations will be explained presently. The

available capacity of the data buffer is decremented on line
23. The lock on the camera is modified to show that the
camera is in use on line 24. On line 25 a message is sent to the
rendezvous channel containing the mtype 'picture.' This
model artifact appears only to improve our ability to
interpret the error traces that XSPIN displays as sequence
charts. Each scheduled activity appears as a distinct message
wit11 orde~ing preserved.

To track reservations on state variables we use Promela
channels, which are similar to message queues. Each state
variable has a corresponding channel that can hold several
messages. For instance the state variable civa-sv has an
associated channel rnutex-civa for tracking reservations on
its value. When an activity wants to control the value of a
state variable it may only do so if it can pass this guard: (1)
the value of the state variable is already the value desired by
the activity, or (2) there are no reservations on the state
variable. The guard for the take-picture activity appears on
lines 13 through 16. If the value of the state variable is
already the value desired by the activity, the activity sends its
process id (pid) to the state variable's reservation channel.
The check of the guard and the message send must be
performed in an atomic step to ensure that no other activity
obtains a reservation between the guard check and the
message send. The take-picture activity, for instance, sends
mutex-civa its pid on line 22 after passing the guard
expression. The take-p~cture activity now has a reservation
on the value of ova-sv and no other activity can change the
value of civa-sv until the take-picture activity, and all other
activities that have reservations on the value of civa-sv, have
removed their reservations. A reservation is removed after
the activity has completed. For instance, take-picture
removes its reservation of the value of civa-sv by removing
its pid from the mutex-civa channel on line 31.

The count variable that is incremented on line 26 is used in
the correctness property and will be described in more detail
later. The guard and the steps that follow it are placed in an
atomic statement to ensure that no other activity coopts the
resources and reservations between the step when
reservations are made and when they are claimed.

Lines 29 to 32 are the termination of the activity and return
and release of reservations and xesouxces.

The civa-off proctype is used to model the turning off of the
camera when it has no reservation on its state. The server
proctype handles the rendezvous receive of the messages
activity send when the activity is scheduled. The init is a
special type of process that is scheduled as the first step(s)
and in our model is used to create instances of the proctypes.

Model Tractability
For our model checking task to be tractable, that is; possible
within the constraints of desktop computing power and
reasonable response time, we employed several modeling
and abstraction techniques. We abstracted the timeline to the
minimum number of timepoints needed to check the
property of interest. As a result, the check we performed was
more robust, in a sense, because it checked all plans, not just
those that fit on particular timeline. But the increase in
robustness comes with a potential penalty; reports of false
positives. The false positives would be plans, flagged as
errors, that would not fit on thc actual timeline. We did not
experience any false positives. but if we had. they could have
been eliminated with a simple post-processing check

removes its reservation of the value of civa-sv by removing other processes. Use of these sequences reduces the number
itspid from the rnutex-civa channel on line 34. of states that SPIN needs to explore.

The count variable that is incremented on line 29 is used in
the correctness property and will be described in more detail
later. The guard and the steps that follow it are placed in an
atomic statement to ensure that no other activity coopts the
resources and reservations between the step when
reservations are made and when they are claimed.

Lines 32 to 35 are the termination of the activity and return
and release of reservations and resources.

The civa-off proctype is used to model the turning off of the
camera when it has no reservation on its state. The server
proctype handles the rendezvous receive of the messages
activity send when the activity is scheduled. The init is a
special type of process that is scheduIed as the f ~ s t step(s)
and in our mode1 is used to create instances of the proctypes.

Model Tractability
For our model checkmg task to be tractable, that is; possible
within the constraints of desktop computing power and
reasonable response time, we employed several modeling
and abstraction techniques. We abstracted the timeline to the
minimum number of timepoints needed to check the
property of interest. As a result, the check we performed was
more robust, in a sense, because it checked all plans, not just
those that fit on particular timeline. But the increase in
robustness comes with a potential penalty; reports of false
positives. The false positives would be plans, flagged as
errors, that would not fit on the actual timeline. We did not
experience any false positives, but if we had, they could have
been eliminated with a simple post-processing check

Another method we used to avoid the state space explosion
problem was to scale integer variables to fit in a byte or
several bits. We used h s technique for resources such as
power and memory. We also used atomic sequences as much
as possible. Atomic sequences are sequences of execution
steps that can not be interleaved with execution steps from

Expressing the Property of hterest
The test concern for the example planner domain model was
the question of whether it might permit the APS to select
undesirable plans. There are two types of undesirable plans:
plans that imperil the safety of the mission, and plans that
waste resources resulting in a reduction in science return.
Although this technique can be applied to check for both
types of undesirable plans, we used it to check the latter type.
The concern we addressed was that the A1 input model
would permit the APS to select plans that would waste
resources and therefore not meet the mission's science goals.

It is much easier to specify how a system should work rather
than all the ways in which a system can break. Similarly, we
wanted to specify the characteristics of a desirable plan
rather than try to enumerate all the undesirable plans since
the AI input model is so complex that we would inevitably
miss some undesirable plans. Fortunately, the model
checking paradigm explicitly supports specifying the desired
properties of a system and letting the model checker do all
the work to find exceptions to the desired properties.

For the example planner domain model, a desirable plan was
one that achieved all the goals: 2 images and 3 samples. An
example of one such desirable plan that was produced by
SPIN in a random simulation run is shown in Figure 7. Time
progresses to the right. The occurrences of the activities,
sample and image, that satis@ the goals are shown in green.
Uplink and compress data are permitted activities that do not
directly satisfy the goals. Uplink transmits data to the orbiter
part of the mission and compress data is used to free up
memory so that additional data products can be stored. The
state variables ovenl, oven2, camera and drill location and
their values over time are shown beneath the goals. The
values of resources power use and memory use are shown at
the bottom of the timeline. This mesentation of a ~ l a n
closely resembles the visual output *for plans generated by
CASPER.

sample

aven l on off-warm

~ $ & ~ ~ ~ /@%@x&gl
Image /]@&$@&I ITmmI
compress data 1 compfess

cven2 or1 off-warm

uplink

camera

1 ,uptlnkn I

drill location O V B ~ Z oven? I

power use A
memory use L s i

Figure 7 - Example desirable plan for the example planner domain model

Although the simulated desirable plan shows that at least one
desirable plan exists in the A1 input model, we need to show
that all possible plans are good. To do this we first defined
the desired property formally using the Timeline Editor [8].
The Timeline Editor is a visual tool for expressing properties
and automatically converting properties to SPIN never
claims. A never claim is simply somethmg that should never
happen. The desirable plan property, expressed as a timeline,
is shown on the top-left of Figure 8. Time progresses from
left to right. The vertical bars labelled '0', 'l', and '2' are

marks or locations where interesting events can be placed.
The '0' mark indicates the beginning of an execution. In
between two marks zero or more execution steps may occur.
To specify what should happen between marks we may use
constraints, which would appear as horizontal lines between
marks. We do not need to use constraints to express this
particular property.

The first event on the timeline is both ovens in default state.

k ,lolxJ

(qj true A
all memory

both ovens in using activities
default state completed

PI all memory uslng act~vit~es campleted

p2 both ovens in default state

L i
Sep Tent Dismiss

/
...

#define p l [count == 51 1" all memory using activities completed "/
#define p2 I/ [[ovenl-sv == off-cool] && (oven2-sv == off-cool]] I" balh ovens in default state "

never {
SO: da

:: p2 .> goto accepts1
:: true
ad;

accepts1 :
do
:: pl -> got0 S2
:: !p l
od;

52: D I'tuil compliance if reached"!

Figure 8 - 'desirable plan' Property for the example planner domain model expressed using the Timeline Editor

This event is an t3 event, denoting a regular event that is
neither required or an error. By including the e event on the
timeline we have specified that we are interested in
executions where sometime after the beginning of the
execution both ovens are in their default state. The second
event, all memoly using activities completed, is an r event,
meaning that it is required. If the first event occurs but the
second event never occurs this is an error. The two events
shown are expressed informally and formally. The informal
representation is the English prose that appears as an event
label. The formal defiition of the event expresses the event
label in terms of the values of variables in the model. For
instance, the formal definition of both ovens in default state

The formal definition of all memory using activities
completed is:

(count == 5)

The count variable is not part of the input model but a global
variable that we added to enable the check. As shown in the
takegicture Promela proctype in Figure 6, the count
variable is incremented when the takegicture activity
occurs. An increment to count is also made when experiment
occurs. Experiment is a sub activity within the sample
activity. When count is equal to 5 the property is satisfied. If
SPIN can fmd an execution where count does not eventually
reach 5 it will report it as an error.

is: The graphical automaton version of the property on the
((oven1 -sv == off-cool) && (oven2-sv == off-cool)) right-top of Figure 8 shows the property in a form similar to

a ?mite-state machine. Symbols p l and p2 are assigned to
where oven 1 -sv and oven2-sv are both state variables in the represent the two events of interest, when execution begins
model, and off-cool is the oven state variable's default value. ,, i, he start state. SO. each execution in the

model we must take a trksition. The true self loop o i SO can

always be taken. When p2 becomes true, corresponding to undesirable plan the second imaging activity could not be
both ovens in default state, we can transition to S l or remain scheduled because all the activities that clear out memory
in SO by taking the true self loop. Thus we check both the were scheduled at the beginning of the plan when no
f is t occurrence of p2 and all subsequent occurrences of p2. memory had yet been used. Both imaging and sampling
S1 is a special state, called an accepting state and is denoted activities use memory and there is only enough memory to
by the double circIe. If we can return to accepting state S1 store the results of four instances of these activity types.
infinitely often in an execution, that execution is an error. Sometime after the first memory activity but before the
Hence, if for the remainder of the execution, we can return to fourth memory using activity, either data compression or
S l by taking the p2 transition corresponding to all memoly uplinking should take place to make room in memory to
using activities not completed, then SPIN will report that store the results of the f& memory using activity.
execution as an error. If p l occurs, corresponding to all
memory using activzties completed, we take transition pl to To fix the model we observed that the undesirable plan
52 and the execution under consideration is not an error. occurred because data compression and u p l u g were
The SPIN never claim version of the property that is allowed to occur when memory was empty. The fix we chose
generated by the Timeline Editor is shown at the bottom of was to add a guard to prevent data compression from
Figure 8. The never claim can be appended to the model or occuning when memory is empty. In Figure 9, this guard,
saved to a file and included by reference from XSPIN omitted from the original model containing the undesirable
(SPIN'S graphical user interface). plan, is shown in bold on line 4. This guard has been added

to the Promela version of the compress-data proctype so that
the process will block until the memory (data-buffer) is non-
empty. In this case data-buffer, that tracks unused capacity, is
4 when memory is empty and is 0 when memory is full.

VERIFICATION RESULTS
1 proctype compress-data0 {
2 atomic

We used two of SPIN'S numerous strategies for verification 3 C
of large models; partial order reduction to reduce the (data-buffer < 4) ->

data-buffer = d a t ~ b u f f e r + 1;
number of system states that must be searched, and collapse 6 plan! compress ;
compression to reduce the amount of memory needed to 7 I
store each state [2]. In the verification run with SPIN, an 8 I
error (undesirable plan) was reported within 1 second after
checking only 43 states. The undesirable plan, which was Figure 9 - compress-data activity specification in Promela
reported as a sequence diagram by SPIN, is depicted in the
output form used by CASPER. The undesirable plan found .
by SPIN omits the third sample activity and therefore
contains only four of the required five goal activities. In the

sample

image

compress data I compress

uplink u~1lnk I

camera

drill location OVSIII

power use

memory use

Figure 10 - The undesirable plan found by SPIN shown in CASPER-like output format

Search for Find 1

c t j = o
comm = 1
count = 1
data-buffer = 3
dLsv = ovenl
drill = D
ovenl-sv = on
oven-s~de = ovenl
power = 253
$[Dl = 0
s[l] = 0
s[2] = 0
up = 0
queue 2 [(muten-dl]]

151
queue 3 [[mute#-ovenl]]

Figure 11 - The bad plan found by SPIN shown as an XSPIN Message Sequence Chart
and example Data Values during second Sample activity

We repeated the model checking step on the repaired model input models of the Earth Observer 1 mission that employs
and SPIN did an exhaustive search, checking 670 million the CASPER planner and has been in autonomous operation
states and reported no errors. Hence, we can conclude that since May 2004. We will also explore possible tool support
the input model with the added constraint would not allow needed to incorporate SPIN verification of A1 input models
the APS to select a undesirable plan. into the existing process of developing A1 input models.

Using an example planner domain model we demonstrated
the ability of the SPIN model checker to verify planner
domain models. Specifically, we converted the planner
domain model to Promela, the language of the SPIN model
checker, formulated a correctness property for desirable
plans, and asked SPIN to fmd and report undesirable plans.
SPIN quickly found and reported a undesirable plan that
arose due to a missing constraint in the A1 input model. We
analyzed the error report then added a constraint and
repeated the check. In an exhaustive search of the model,
SPIN found no additional undesirable plans in the planner
domain model.

This work was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, and was sponsored by the
National Aeronautics and Space Administration (NASA)
Office of Safety and Mission Assurance (OSMA) Software
Assurance Research Program (SARP). We are grateful to
Kenneth McGill, Martha Wetherholt, and Timothy Menzies
of the NASA Independent Validation and Verification center
for their insightfd feedback and guidance.

Testing A1 input models using SPIN can dramatically
increase the confidence that A1 input models are safe to fly. Il l Gerard HO1zmann, Checker IEEE
In this case in our verification using SPIN we were able to Transactions on Software Engineering, Vol. 23, No. 5,
check millions of plans, replacing a sampling based test May 1997, pp. 279-295.
technique that checks in the order of 100 plans. In the next
phase of our work we plan to use t h~s technique to check A1

[2] Gerard Holzmann, "The Spin Model Checker: Primer
and Reference Manual," 2003, Addison-Wesley, ISBN O-
321-22852-6,608 pgs.

[3] L. Khatib, N. Muscettola, K. Havelund "Verification of
Plan Models using UPPAAL," First Goddard Workshop
on Formal Approaches to Agent-Based Systems.
NASA's Goddard Space Center, Maryland. March 2000.

[4] K. Havelund, M. Lowry, 5. Penix, "Formal Analysis of a
Space Craft Controller using SPIN," IEEE Transactions
on Software Engineering, Vol. 27, No. 8, August, 2001.
Originally appeared in proceedings of the 4th SPIN
workshop, Paris, France. November 1999.

[5] K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W.
Visser, J. L. White, "Formal Analysis of the Remote
Agent - Before and After Flight," The Fifth NASA Lan-
gley Formal Methods Workshop, Virginia. June 2000.

[6] J. Penix, C. Pecheur, K. Havelund, "Using Model Check-
ing to Validate A1 Planner Domain Models," 23 Annual
NASA Goddard Software Engineering Workshop, God-
dard, Maryland, Dec 1998.

[7] B. Cichy, S. Chien, S. Schaffer, D. Tran, G Rabideau, R.
Shenvood, "Validating the Autonomous EO- 1 Science
Agent," International Workshop on Planning and Sched-
uling for Space (IWPSS 2004). Darmstadt, Germany.
June 2004.

[8] M. Smith, G. Holzmann and K. Ettessami, "Events and
Constraints: a graphical editor for capturing logic proper-
ties of programs," 5th International Symposium on
Requirements Engineering, pp 14-22, Toronto, Canada.
August 2001.

[9] S. Chen, R. Knight, A. Stechert, R. Shenvood, G.
Rabideau, "Using Iterative Repair to Improve Respon-
siveness of Planning and Scheduling," International Con-
ference on Artificial Intelligence Planning Systems
(AIPS 2000). Breckemidge, CO. April 2000.

OIAlex Fukunaga, Gregg Rabideau, Steve Chien,
"ASPEN: An Application Framework for Automated
Planning and Scheduling of Spacecraft Control and
Operations," Proceedings of International Symposium on
Artificial Intelligence, Robotics and Automation in
Space (i-SAIRAS97), Tokyo, Japan, 1997, pp. 18 1-187.

[12]B. Smith, R. Shenvood, A. Govindjee, D. Yan, G.
Rabideau, S. Chien, A. Fukunaga, "Representing Space-
craft mission planning knowledge in Aspen," AIPS-98
Workshop on Knowledge Engineering and Acquisition

for Planning, June 1998. Workshop notes published as
AAI Technical Report WS-98-03.

Margaret H. Smith is a Senior
engineer at JPL in the Systems
Engineering and Technology Infu-
sion group. Before joining JPL
Margaret spentfive years at Bell
Labs Research applying model
checking tools to commercial soft-
wareproducts, such as Lucent Tech-
nologies' Pathstar Access Sewer:
She has developed, with Gerard

Holzmann, several software analysis tools for Lucent Tech-
nologies, as well as a visual tool for capturing formal cor-
rectness properties for use in model checking. Margaret has
over ten years experience as a systems engineer at AT&T
Bell Labs where she led requirements teams and applications
of new requirements tools. Margaret holds fourpatents. She
received a BSE and MSE from Universiv ofMichigan,
School ofEngineering in Ann Arbof; Michigan.

Gerard J. Holzmann is a Principal
researcher at JPL, and theprimay
developer of the SPIN model
checker: He has participated in the
development of several success~l
requirements capture and analysis
tools. Jointly with Margaret Smith,
Holzmann developed the verijication
technology that was used to exhaus-
tively yen& the call processing so$-

ware for the Pathstar Access Server product at Lucent
Technologies with a specially developed extended version of
the SPIN model checker: In 2001 Dr: Holzmann was the
recipient of both the prestigious ACM System Software
Award and the SIGSOFT Outstanding Researcher Award, for
the development of the SPIN system. He holds six patents,
and has written four books. Dr: Holzmann received his PhD
Pom Delft University, the Netherlands.

Benjamin Smith is a senior member
of the Exploration Systems Autonomy
section at JPL. His research interests
are in the development and verzFca-
tion o f autonomous systems. He was
the deputy project element lead for
the Remote Agent Experiment, which
autonomously operated the NASA
Deep Space I spacecraft, and he led
the development and verification of

the autonomous mission planning system for the NASA Mod-

$en Antarctic Mapping Mission. He received his Ph.D. in
1995fi-om the University of Southern California.

Gordon Cucullu, 111 is a Senior
engineer at JPL in the Systems
Engineering and Technology Infu-
sion group. Since 1995, he has
worked at JPL as ajlight system
engineer on variousf2ightprojects:
the Autonomous Rendezvous Exper-
iment, the Mars 2001 Lander instru-
ments, the EOS Microwave Limb
Sounder, and as a mechanical inte-

gration engineer on Cassini. He has a MS in aerospace engi-
neeringfrom the University of Southern California, and a
BSME from the Universig of New Orleans (Tau Beta Pi, Pi
Tau Sigma).

