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Abstract 

Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (milli- 

hertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-travel- 

times will necessarily be unequal, time-varying, and (due to aberration) have different time delays 

on up- and down-links. By using knowledge of the inter-spacecraft light-travel-times and their 

time evolution it is possible to cancel in post-processing the otherwise dominant laser phase noise 

and obtain a variety of interferometric data combinations sensitive to gravitational radiation. This 

technique, which has been named Time-Delay Interferometry (TDI), can be implemen.ted with 

constellations of three or more formation-flying spacecraft that coherently track each other. As an 

example application we consider the Laser Interferometer Space Antenna (LISA) mission and show 

that TDI combinations can be synthesized by properly time-shifting and linearly combining the 

phase measurements performed on board the three spacecraft. Since TDI exactly suppresses the 

laser noises when the delays coincide with the light-travel-times, we then show that TDI can also 

be used for estimating the time-delays needed for its implementation. This is done by performing 

a post-processing non-linear minimization procedure, which provides an effective, powerful, and 

simple way for making measurements of the inter-spacecraft light-travel-times. This processing 

technique, named Time-Delay Interferometric Ranging (TDIR), is highly accurate in estimating 

the time-delays and allows TDI to be successfully implemented without the need of a dedicated 

ranging subsystem. 
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I. INTRODUCTION 

Interferometric detectors of gravitational radiation (with frequency content 0 < f < f,) 

use a coherent train of electromagnetic waves (of nominal frequency uo >> f,) folded into 

several beams, and at one or more points where these intersect, monitor relative fluctuations 

of frequency or phase (homodyne detection). The observed low frequency fluctuations are 

due to several causes: (a) frequency variations of the source of the electromagnetic signal 

about vo, (b) relative motions of the electromagnetic source and the mirrors (or amplifying 

transponders) that do the folding, (c) temporal variations of the index of refraction along 

the beams, and, id) according to general relativity, to any time-variable gravitational fields 

present, such as the transverse-traceless metric curvature of a passing plane gravitational 

wave (GW). To observe gravitational waves in this way, it is thus necessary to control, 

or monitor, the other sources of relative frequency fluctuations, and, in the data analysis, 

to use optimal algorithms based on the different characteristic interferometer responses to 

gravitational waves (the signal) and to the other sources (the noise) [I]. By comparing phases 

of electromagnetic beams referenced to the same frequency generator and propagated along 

non-parallel equal-length arms, frequency fluctuations of the frequency reference can be 

removed and gravitational wave signals a t  levels many orders of magnitude Iower can be 

detected. 

In the present single-spacecraft Doppler tracking observations, for instance, many of the 

noise sources can be either reduced or calibrated by implementing appropriate microwave 

frequency links and by using specialized electronics [2], so the fundamental limitation is 

imposed by the frequency (time-keeping) fluctuations inherent to the reference clock that 

controls the microwave system. Hydrogen maser clocks, currently used in Doppler tracking 

experiments, achieve their best performance at about 1000 seconds integration time, with 

a fractional frequency stability of a few parts in 10@16. This is the reason why these one- 

arm interferometers in space (which have one Doppler readout and a "3-pulse" response to 

gravitational waves [3]) are most sensitive to millihertz gravitational waves. This integration 

time is also comparable to the microwave propagation (or "storage") time 2L/c to spacecraft 

en route to the outer solar system (for example L 2i 5 - 8 AU for the Cassini spacecraft) [2]. 

Next-generation low-frequency interferometric gravitational wave detectors in solar orbits, 

such as the Laser Interferometer Space Antenna (LISA) mission [4] and the Astrodynamical 



Space Test of Relativity using Optical Devices (ASTROD) mission [ 5 ] ,  have been proposed 

to achieve greater sensitivity to millihertz gravitational waves. Since the armlengths of these 

space-based interferometers can differ by a few percent (for LISA) to tens of percents (for 

ASTROD), the direct recombination of the two beams at a photo detector will not effectively 

remove the laser frequency noise. This is because the frequency fluctuations of the laser will 

be delayed by different amounts within the two unequal length arms. In order to cancel the 

laser frequency noise, the time-varying Doppler data must be recorded and post-processed to 

allow for arm-length differences [6]. The data streams will have temporal structure, which 

can be described as due to many-pulse responses to &function excitations, depending on 

time-of-flight delays in the response functions of the instrumental Doppler noises and in the 

response to incident plane-parallel, transverse, and traceless gravitational waves. 

In what follows we will give an account of TDI as it will be implemented by LISA. Each 

of its three spacecraft orbiting the sun will be equipped with two lasers sending beams to the 

other two ( ~ 0 . 0 3  AU away) while siizzulta.neously measuring the beat frequencies between 

the local laser and the laser beams received from the other spacecraft. The description 

of TDI that will be presented in this article will assume a successful prior removal of any 

first-order Doppler beat notes due to spacecraft relative motions [7], giving six residual inter- 

spacecraft Doppler time series as the raw data of a stationarg time delay space interferometer. 

Following [8], 191, [lo], we will regard LISA not as constituting one or more conventional 

Michelson interferometers, but rather, in a symmetrical way, a closed array of six one-arm 

delay lines between the test masses. This point of view is very powerful since it allows 

one to synthesize new data combinations that cancel laser frequency noises, and estimate 

achievable sensitivities of these combinations in terms of the separate and relatively simple 

single arm-responses both to gravitational wave and instrumental noise. 

In contrast to Earth-based interferometers, which operate in the long-wavelength limit 

(LWL) (arm lengths << gravitational wavelength wc/fO, where fo is a characteristic fre- 

quency of the GW), LISA will not operate in the LWL over much of its frequency band. 

When the physical scale of a free mass optical interferometer intended to detect gravitational 

waves is comparable to or larger than the GW wavelength, time delays in the response of the 

instrument to the waves, and travel times along beams in the instrument, cannot be ignored 

and must be allowed for in computing the detector response used for data interpretation. 

This article is organized as follows. In Section I1 we summarize the one-arm Doppler 



transfer functions of an optical beam between two carefully shielded test masses inside each 

spacecraft resulting from (i) frequency fluctuations of the lasers used in transmission and 

reception, (ii) fluctuations due to non-inertial motions of the spacecraft, (iii) beam-pointing 

fluctuations and shot noise [ l l ] .  Among these, the dominant noise is from the frequency 

fluctuations of the lasers and is several orders (perhaps 7 or 8) above the other noises. This 

noise must be very precisely removed from the data in order to achieve the GW sensitivity 

at the level set by the remaining Doppler noise sources, which are at a much lower level and 

constitute the noise floor after the laser frequency noise is suppressed. We show that this 

can be accomplished by shifting and linearly combining the twelve one-way Doppler data 

LISA will measure. The actual procedure can easily be understood in terms of properly 

defined time-delay operators that act on the one-way Doppler measurements. 

As an example application, we then derive the unequal-arm Michelson interferometric 

combination in the simple case in which the light-travel-times are constant in time and 

independent from being up- or down-links. The expressions for the Sagnac interferometric 

combinations, (a ,  P ,  y, C) as well as all those combinations that rely only on four of the 

possible six inter-spacecraft Doppler measurements (denoted P, E and U )  are not derived 

in this article, and the reader is referred to [12, 131 for details on their derivations. 

In Section I11 we then consider the formulation of TDI when spacecraft-to-spacecraft 

light-travel-times are not constant in time, and dependent from being up- or down-links. 

Reduction of data from moving interferometric laser arrays in solar orbit will in fact en- 

counter non-symmetric up- and downlink light time differences that are significant, and need 

to be accounted for in order to exactly cancel the laser frequency fluctuations [12, 14, 151. 

In Section IV we show that, by introducing a set of non-commuting tirne-delay operators, 

there exists a quite general procedure for deriving generalized TDI combinations that ac- 

count for the effects of time-dependence of the arms. Using this approach it is possible to 

derive "flex-free" expression for the unequal-arm Michelson combinations XI, and obtain 

the generalized expressions for all the TDI observables [13]. 

Since TDI relies on the accurate knowledge of the time-delays that have to be applied to 

the phase measurements, in Section IV we show that it is possible to estimate the delays by 

implementing a non-linear least-squares minimization procedure in which a TDI combination 

is used for estimating the time-delays. This procedure, which has been called Time-Delay 

Interferometric Ranging (TDIR) [16], relies on the fact that TDI nulls all the laser noises 



when the time delays are chosen to match the travel times experienced by the laser beams 

as they propagate along the sides of the array. TDIR allows the implementation of TDI 

without a separate inter-spacecraft ranging subsystem, significantly simplifying the design 

of the LISA instrument. At the very least, TDIR can supplement such a subsystem, allowing 

the synthesis of TDI combinations during ranging dropouts or glitches. 

11. TIME-DELAY INTERFEROMETRY (TDI) 

A. Statement of the Problem 

Equal-arm interferometer detectors of gravitational waves can observe gravitational ra- 

diation by canceling the laser frequency fluctuations affecting the light injected into their 

arms. This is done by comparing phases of split beams propagated along the equal (but 

non-parallel) arms of the detector. The laser frequency fluctuations affecting the two beams 

experience the same delay within the two equal-length arms and cancel out at the pho- 

todetector where relative phases are measured. This way gravitational wave signals of di- 

mensionless amplitude less than lop2' can be observed when using lasers whose frequency 

stability can be as large as roughly a few parts in 10-13. 

If the arms of the interferometer have different lengths, however, the exact cancellation 

of the laser frequency fluctuations, say C( t ) ,  will no longer take place at the photodetector. 

In fact, the larger the difference between the two arms, the larger will be the magnitude of 

the laser frequency fluctuations affecting the detector response. If L1 and La are the lengths 

of the two arms, it is easy to see that the amount of laser relative frequency fluctuations 

remaining in the response is equal to (units in which the speed of light c = 1) 

In the case of LISA, whose lasers are expected to display relative frequency fluctuations equal 

to about 10~"/m in the millihertz band, and whose arms will differ by a few percent [4], 

equation (1) implies the following expression for the amplitude of the Fourier components 

of the uncanceled laser frequency fluctuations (an over imposed tilde denotes the operation 

of Fourier transform) 

l E ( f ) i  lE(f)l 4nf l(L1 - L z ) l  . ( 2 )  



At f = 10W3 Hz, for instance, and assuming I L1 - La 1 T" 0.5 sec, the uncanceled fluctuations 

from the laser are equal to 6.3 x Since the LISA sensitivity goal is about 

10-~'/2/EIz in this part of the frequency band, it is clear that an alternative experimental 

approach for canceling the laser frequency fluctuations is needed. 

The solution to this problem can be understood through Figure 1. In this idealized model 

the two beams exiting the two arms are not made to interfere at a common photodetector. 

Rather, each is made to interfere with the incoming light from the laser at  a photodetector, 

decoupling in this way the phase fluctuations experienced by the two beams in the two arms. 

Now two Doppler measurements are available in digital form, and the problem becomes one 

of identifying an algorithm for digitally canceling the laser frequency fluctuations from a 

resulting new data combination. 

The algorithm that performs the cancellation of the laser noise from the two Doppler 

measurements from the two arms, say yl(t) and y2(t), works as follows. Let us denote with 

hl(t), hz(t) the gravitational wave signals entering into the Doppler data yl, yz respectively, 

and with n ~ ,  n2 any other remaining noise affecting yl and yz respectively. The resulting 

expressions for the Doppler observables yl, yz can be written in the following form 

From Eqs. (3, 4) it is important to note the characteristic time signature of the random 

process C(t )  in the Doppler responses yl , yz. The time signature of the noise C(t) in yl(t), 

for instance, can be understood by observing that the frequency of the signal received at 

time t contains laser frequency fluctuations transmitted 2L1 seconds earlier. By subtracting 

from the frequency of the received signal the frequency of the signal transmitted at time t ,  

we also subtract the freq~~ency fluctuations C(t) with the net result shown in Eq. (3). 

From Eqs.(3,4) we may notice that, by taking the difference of the two Doppler data yl(t), 

yz(t), the frequency fluctuations of the laser enter into this new data set in the following 

way 

yl (t) - yz(t) = C(t  - 2L1) - C(t  - 2Lz) + hl (t) - h2(t) + nl (t) - na (t) . (5) 

If we now compare how the laser frequency fluctuations enter into Eq. ( 5 )  against how they 

appear in Eqs. (3, 4) we can further make the following observation. If we time-shift the 

data yl(t) by the round trip light time in arm 2, yl(t - 2Lz) ,  and subtract from it the data 



FIG. 1: Light from a laser is split into two beams, each injected into an arm formed by pairs of 

free-falling mirrors. Since the length of the two arms, L1 and Lz, are different, the light beams 

from the two arms are not recombined at  one photo detector. Instead each is separately made to  

interfere with the light that is injected into the arms. Two distinct photo detectors are used, and 

phase (or frequency) fluctuations are then monitored and recorded there. 

y z ( t )  after it has been time-shifted by the round trip light time in. arm 1, y2(t - 2 L 1 ) ,  we 

obtain the following data set 

In other words, the laser frequency fluctuations enter into y l ( t )  - y;?( t ) ,  and yl(t - 2La)  - 

yz( t  -2L1) with the same time structure. This implies that, by subtracting Eq. (6) from Eq. 



(5) we can generate a new data set that does not contain the laser frequency fluctuations 

C(t> 

x 5 [ ~ l  ( t)  - yz (91 - IYl (t  - 2Lz) - 3 2  (t - ~ L I ) ]  . (7) 

The expression above of the X combination shows that it is possible to cancel the laser 

frequency noise in the time domain by properly time-shifting and linearly combining Doppler 

measurements recorded by different Doppler readouts. This in essence is what TDI amounts 

to. In what follows we will further elaborate and generalize TDI to the realistic LISA 

configuration. 

B. TDI 

The description of TDI for LISA is greatly simplified if we adopt the notation shown 

in Figure 2 , where the overall geometry of the LISA detector is defined. There are three 

spacecraft, six optical benches, six lasers, six proof-masses and twelve photodetectors. There 

are also six phase difference data going clock-wise and counter-clockwise around the LISA 

triangle. For the moment we will make the simplifying assumption that the array is station- 

ary, i.e. the back and forth optical paths between pairs of spacecraft are simply equal to 

their relative distances [12-151. 

The spacecraft are labeled 1, 2, 3 and. their separating distances are denoted L1, Lz, L3, 

with Li being opposite spacecraft i. We orient the vertices 1 , 2 , 3  clockwise in figure 2. Unit 

vectors between spacecraft are fii, oriented as indicated in figure 2. We index the phase 

difference data to be analyzed as follows: the beam arriving at spacecraft i ,  transmitted by 

spacecraft j gives rise to the phase measurement sj;  (along L k )  Similarly, sij is the phase 

difference series derived from reception at spacecraft j with transmission from spacecraft 

i. The other four one-way phase difference time series from signals exchanged between 

the spacecraft are obtained by cyclic permutation of the indices: 1 -+ 2 + 3 + 1. We 

also adopt a notation for delayed data streams, which will be convenient later for algebraic 

manipulations. We define the three time-delay operators Di, i = 1,2,3 where for any data 

stream x(t) ,  

Dix(L) x(t - Li) , (8) 

where L;, i = 1,2 ,3  are the light travel times along the three arms of the LISA trian- 

gle (the speed of light c is assumed to be unity in this article). Thus, for example, 



FIG. 2: Schematic LISA configuration. The spacecraft are labeled 1, 2, and 3. The optical paths 

are denoted by Li, where the index i corresponds to the opposite spacecraft. The unit vectors ni 

point between pairs of spacecraft, with the orientation Indicated. 

Dzs13(t) = s13(t - Lz), V2V3s13(t) = sI3( t  - L2 - L3) = D3Dzs13(t), etc. Note that the 

operators commute here. This is because the arm-lengths have been assumed to be constant 

in time. If the Li are functions of time then the operators no longer commute [12, 13, 151, 

as will be described later. 

Six more phase difference series result from laser beams exchanged between adjacent 

optical benches within each spacecraft; these are similarly indexed as r%j, i, j = 1 ,  2,3,2 # 
j .  The proof-mass-plus-optical-bench assemblies for LISA spacecraft number 1 are shown 

schematically in figure 3. The photo receivers that generate the data s g l ,  s31, 721, and 731 

at spacecraft 1 are shown. The phase fluctuations from the six lasers, which need to be 

canceled, can be represented by six random processes pi,p;, where pi,pr are the phases 

of the lasers in spacecraft i on the left and right optical benches respectively as shown in 

the figure. We extend the cyclic terminology so that at vertex i (i = 1 , 2 , 3 )  the random 

displacement vectors of the two proof masses are respectively denoted by 6 (t) , @ ( t ) ,  and 

the random displacements (perhaps several orders of magnitude greater) of their optical 

benches are correspondingly denoted by &(t ) ,  &(t)  where a " added to a quantity means 

that it is located on the right optical bench. As pointed out in [Ill, the analysis does 



to sic 2 to SIC 3 

FIG. 3: Schematic diagram of proof-masses-plus-optical-benches for a LISA spacecraft. The left- 

hand bench reads out the phase signals sal and 721. The right hand bench analogously reads out ssl 

and r31. The random displacements of the two proof masses and two optical benches are indicated 

(lower case &, @ for the proof masses, upper case &,A: for the optical benches). 

assume that pairs of optical benches are rigidly connected, i.e. Xi # A:, in general. The 

present LISA design shows optical fibers transmitting signals both ways between adjacent 

benches. We ignore time-delay effects for these signals and will simply denote by pi@) the 

phase fluctuations upon transmission through the fibers of the laser beams with frequencies 

vi, and vz. The pi(t) phase shifts within a given spacecraft might not be the same for 

large frequency differences vi - vr. For the envisioned frequency differences (a few hundred 

megahertz), however, the remaining fluctuations due to the optical fiber can be neglected 

[Ill. It is also assumed that the phase noise added by the fibers is independent of the 

direction of light propagation through them. For ease of presentation, in what follows we 

will assume the center frequencies of the lasers to be the same, and denote this frequency 

by yo. 

The laser phase noise in ~ 2 3  is therefore equal to Dlpz(t)  - pg(t) .  Similarly, since ~ 3 2  

is the phase shift measured on arrival at spacecraft 2 along arm 1 of a signal transmitted 

from spacecraft 3, the laser phase noises enter into it with the following time signature: 



Dlp$(t) - p2(t). Figure 3 endeavors to make the detailed light paths for these observations 

clear. An outgoing light beam transmitted to a distant spacecraft is routed from the laser 

on the local optical bench using mirrors and beam splitters; this beam does not interact 

with the local proof mass. Conversely, an zncomzng light beam from a distant spacecraft is 

bounced off the local proof mass before being reflected onto the photo receiver where it is 

mixed with light from the laser on that same optical bench, The inter-spacecraft phase data 

are denoted szl and ssl in figure 3. 

Beams between adjacent optical benches within a single spacecraft are bounced off proof 

masses in the opposite way. Light to be transmztted from the laser on an optical bench is 

first bounced off the proof mass it encloses and then directed to the other optical bench. 

Upon reception it does no t  interact with the proof mass there, but is directly mixed with 

local laser light, and again down converted. These data are denoted 721 and 731 in figure 3. 

The expressions for the s,, and T,, phase measurements can now be developed from figures 

2 and 3, and they are for the particular LISA configuration in which all the lasers have the 

same nominal frequency vo, and the spacecraft are stationary with respect to each otrher. 

Consider the sS l ( t )  process (equation (11) below). The photo receiver on the right bench of 
+ 

spacecraft 1, which (in the spacecraft frame) experiences a time-varying displacement A;, 

measures the phase difference ,931 by first mixing the beam from the distant optical bench 

3 in direction fi2, and laser phase noise p3 and optical bench motion that have been 

delayed by propagation dong Lz, after one bounce off the proof mass (@), with the local 

laser light (with phase noise p:). Since for this simplified configuration no frequency offsets 

are present, there is of course no need for any heterodyne conversion [7]. 

In equation (10) the measurement results from light originating at the right-bench 

laser (p ; ,  A;), bounced once off the right proof mass (8): and directed through the fiber 

(incurring phase shift p l ( t ) ) ,  to the left bench, where it is mixed with laser light (pl). 

Similarly the right bench records the phase differences SSL and rsl.  The laser noises, the 

gravitational wave signals, the optical path noises, and proof-mass and bench noises, enter 

into the four data streams recorded at vertex 1 according to the following expressions [Ill: 



opt. path 
SZI = s g  + s21 + D3p; - p~ + uo [ -2h3 . XI + A3 . dl + A3 . D3&] , (9) 

+ -+ 

721 = p; - p l  - 2 vo f i 2 .  (6; -AT) + P I  . (lo) 
gw opt. path + 

$31 = 5'31 + 5 3 1  + D2p3 -pi + vo [2A2 $ - 6 2  . A; - ~fiz . %&] , (I1) 

Eight other relations, for the readouts at vertices 2 and 3,  are given by cyclic permutation 

of the indices in equations (9)-(12). 

The gravitational wave phase signal components, s:~~ in equations (9) and (11) are given 

by integrating with respect to time equations (I), and (2) of reference [9], which relate 

metric perturbations to optical frequency shifts. The optical path phase noise contributions, 
opt. path 
si j , which include shot noise from the low signal-to-noise ratio (SNR) in the links 

between the distant spacecraft, can be derived from the corresponding terms given in [Il l .  

The rij measurements will be made w ~ t h  high SNR so that for them the shot noise is 

negligible. 

In order to simplify the derivation of the expressions canceling the laser and optical bench 

noises, let us focus for the moment only on the laser and optical bench noises entering into 

the observables sij and ru. Note that by subtracting Eq.(12) from Eq. ( lo) ,  we can rewrite 

the resulting expression (and those obtained from it by permutation of the spacecraft indices) 

in the following form, 
1 

where 47, 41 are defined as, 

The importance in defining these combinations is that the expressions for the data streams 

sij simplify into the following form, 



If we now combine the sij, and xi in the following way, 

we have just reduced the problem of canceling of six laser and six optical bench noises to 

the equivalent problem of removing the three random processes, #q, 42, and $3, from the six 

linear combinations, qi, $, of the one-way measurements sij, and xi. 

C. The Unequal-arm Michelson Combination 

In order to show how the delay operators can be used for deriving interferometric mea- 

surements, we will consider the simple case of the unequal-arm Michelson Interferometer 

combination X. This TDI combination relies on the four measurements 71, ql*, q2*, and q3. 

Note that the two combinations 73 -!- D3v2,, 771% + D2q3, which represent the two synthesized 

two-way data measured onboard spacecraft 1, can be written in the following form 

where I is the identity operator. Note that in the stationary case any pairs of these operators 

commute since up- and down- delays are equal. This in general is no longer true when the 

delays are functions of time). 

From equations (19, 20) it is easy to derive the following expression for X, by requiring the 

elimination of 

x = [D2D2 - I ]  (771 f D3v2*) - [(D3D3 - I ) ]  (rl* + 2)2173) 

- [(%* + D2~3)  + D2D2(q~ + ~ 3 ~ 2 * ) ]  - [(rll f D3q2*) + 2)3D3(r131 + V2ql3)]  (21) 

After replacing equations (16, 17, 18) into equation (21), we obtain the final expression for 

X valid in the case of a static LISA array 



As pointed out in [I71 and [12], equation (21) shows that X is the difference of two sums of 

phase measurements, each corresponding to a specific light path from a Iaser onboard space- 

craft 1 having phase noise The first square-bracket term in equation (21) represents a 

synthesized light-beam transmitted from spacecraft 1 and made to bounce once at space- 

craft 3 and 2 respectively. The second square-bracket term instead corresponds to another 

beam also originating from the same laser, experiencing the same overall delay as the first 

beam, but bouncing off spacecraft 2 first and then spacecraft 3. When they are recombined 

they will cancel the laser phase fluctuations exactly, having both experienced the same total 

delays. 

111. TIME-DELAY INTERFEROMIETRY WITH MOVING SPACECRAFT 

The rotational motion of the LISA array results in a difference of the light travel times 

in the two directions around a Sagnac circuit [14],[15]. Two time delays along each arm 

must be used, say L: and Li for clockwise or counterclockwise propagation as they enter 

in any of the TDI combinations. Furthermore, since Li and L: not only differ from one 

another but can be time dependent (they "flex"), it was shown that the "first generation" 

TDI combinations do not completely cancel the laser phase noise (at least with present laser 

stability requirements), which can enter at  a level above the secondary noises. For LISA, 

and assuming Li E lOm/sec 1181, the estimated magnitude of the remaining frequency 

fluctuations from the laser can be about 30 times larger than the level set by the secondary 

noise sources in the center of the frequency band. In order to solve this potential problem. 

it has been shown that there exist new TDI combinations that are immune to first order 

shearing (flexing, or constant rate of change of delay times). These combinations can be 

derived by using the time-delay operators formalism irltroduced in the previous section, 

although one has to keep in mind that now these operators no longer commute [13]. 

In order to derive the new, "flex-free" TDI combinations we will start by taking specific 

combinations of the one-way data in such a way so as to retain only one of the three noises 

$i, i = 1,2,3 if possible. In this way we can then implement an iterative procedure based on 

the use of these basic combinations and of tirne-delay operators, to cancel the laser noises 

after dropping terms that are quadratic in L / C  or linear in the accelerations. This iterative 

time-delay method, to first order in the velocity, is illustrated abstractly as follows. Given a 



function of time Q = @(t) ,  time delay by Li is now denoted either with the standard comma 

notation [9] or by applying the delay operator Di introduced in the previous section 

Di@ = Q,Z -- Q(t - LJt))  . (23) 

We then impose a second time delay Lj ( t ) :  

DjDiQ = m;, = @(t - Lj( t )  - L,(t - Lj( t ) ) )  

Q(t - Lj ( t )  - Li(t) + Li(t) ~ j )  

e *,$j  + q i j ~ $ ~ j  . (24) 

A third time delay Lk(t)  gives: 

DkDjDi\x! = @ ; i j k  = *(t - Lk(t) - Lj (t - L k ( t ) )  - Li(t - Lk( t )  - Lj (t - L k ( t ) ) ) )  

CX @,ijk + * , i j k [ & ( ~ ~  f L k )  + ~ j ~ k ]  , P5) 
and so on, recursively; each delay generates a first-order correction proportional to its rate 

of change times the sum of all delays coming after it in the subscripts. Commas have now 

been replaced with semicolons [12], to remind us that we consider moving arrays. When the 

sum of these corrections to the terms of a data combination vanishes, the combination is 

called flex-free. 

Also, note that each delay operator, Di, has a unique inverse, D;', whose expression can 

be derived by requiring that ~ ~ ' 7 3 ~  = I, and neglecting quadratic and higher order velocity 

terms. Its action on a time series Q(t)  is 

Note that this is not like an advance operator one might expect, since it advances not by 

Li ( t )  but rather Li (t + Li). 

A. The Unequal-Arm Michelson 

The unequal-arm Michelson combination relies on the four measurements 171, TI., 172*, 

and 773. Note that the two combinations 171 + q2*,3, q~l* -t 773,~' represent the two synthesized 

two-way data measured onboard spacecraft 1, and can be written in the following form 

rll + 72* ,3  = (733% - I )  $1 , 

ql* f 73,2l = (D2lD2 - I )  41 , 



where I is the identity operator, and we have also used interchangeably the comma notation. 

Since in the stationary case any pairs of these operators commute, i.e. QVjl - DjlDi = 0 ,  

from equations (27, 28) it is easy to derive the following expression for the unequal-arm 

interferometric combination, X, which eliminates, 

= [D2/D2 - I ]  ( ~ 1  + ~ ~ 1 , ~ )  - [(D3D3{ - I ) ]  (vl* + 73,21). P9)  

If, on the other hand, the time-delays depend on time, the expression of the unequal-arm 

Michelson combination above no longer cancels $1. In order to derive the new expression 

for the unequal-arm interferometer that accounts for "flexing", let us first consider the 

following two combinations of the one-way measurements entering into the X observable 

given in equation (29): 

Using equations (30, 31) we can use the delay technique to finally derive the following 

expression for the new unequal-arm Michelson combination XI that accounts for the flexing 

effect, 

This expression is readily shown to be laser-noise-free to first order of spacecraft separation 

velocities L ~ :  it is "flex-free". As usual, X2 and X3 are obtained by cyclic permutation of 

the spacecraft indices. 

The reader is referred to [12], [13] for a derivation of all the other TDI combinations valid 

for the non-stationary LISA configuration. 

IV. TIME-DELAY INTERFEROMETRIC RANGING (TDIR) 

In the case of a stationary LISA spacecraft array, it was estimated [19] that the time 

delays need to be known with an accuracy of about 100 ns, if the various TDI combina- 

tions are to work effectively, suppressing the residual laser phase fluctuations to a level 

below the secondary noises (such as the proof-mass and optical-path noises). For an array 



of spacecraft in relative motion along realistic Solar orbits, the more complicated (second- 

generation) TDI combinations require an even more accurate knowledge of the time delays 

[20]. The most direct implementation of TDI consists in triggering the phase measurements 

at the correct delayed times (within the required accuracy), as suggested in Ref. [19]. This 

approach requires the real-time, onboard knowledge of the light-travel times between pairs 

of spacecraft, which determine the TDI time delays. Although the triggering approach is 

feasible in principle, it complicates the design of the optical phasemeter system, and it re- 

quires an independent onboard ranging capability. Recently, it was pointed out [21] that the 

phase measurements at the specific times needed by the TDI algorithm can be computed 

in post-processing with the required accuracy, by the fractional-delay interpolation (FDI) 

121, 221 of regularly sampled data (with a sampling rate of 10 Hz for a GW measurement 

band extending to 1 Hz). This implies that it is then possible to implement numerically a 

variational procedure to determine the TDI time delays from the phase-difference measure- 

ments themselves, eliminating the need for an independent onboard ranging capability. Since 

this variational procedure relies on the TDI combinations, it has been named Time-Delay 

Interferometric Ranging (TDIR). 

In conventional spacecraft ranging either one-way or two-way delay times are measured. 

In one-way ranging, for instance, two or more tones are coherently modulated onto the trans- 

mitted carrier and their phases are measured at the receiver. By then further differencing 

and dividing them by the spanned bandwidth one gets the group delay and hence the time 

delay (up to an ambiguity of c divided by the spanned bandwidth of the ranging tones). 

In two-way ranging instead a known ranging code is modulated on the transmitted carrier, 

transponded by a distant spacecraft back to the originator, and the received signal is then 

cross-correlated with the ranging code to determine the two-way time of flight. 

TDIR differs from these methods in that it uses the unmodulated laser noises in a three- 

element array, which are canceled in TDI combinations assembled with the correct inter- 

spacecraft light-travel times. This means that TDI can be used to estimate the light-travel 

times by minimizing the laser noise power in the TDI combinations as a function of the 

postulated light-travel times: this process defines TDIR. As an example of how TDIR works, 

we shall consider again the second-generation TDI combinations XI derived above. Note, 



however, that that expression should now be rewritten in the following form 

The time-delay indices that appear in Eq, (33) with a hat need to be provided by the 

data analyst (or, in the triggering approach, by the onboard ranging subsystem) with the 

accuracy required for effective laser noise cancellation. Thus, the XI-based implementation 

of TDIR works by minimizing the power in X I  with respect to t h e  hatted delays ik, Since the 

TDI combinations constructed with the actual delays cancel laser phase noise to a level lo8 

below the secondary noises [12], it follows that if we neglect all non-laser sources of phase 

noise affecting the XI combination, the minimum of the power integral 

will occur for Er, = Lk (with k = 1,2,3, l', 2/, 3'; here the superscript (O) denotes laser-noise- 

only quantities). The search for this minimum can be implemented in post processing, using 

FDI 1211 to generate the needed sij and ~ i j  samples at  the delayed times corresponding to 

any choice of the i,+. 
In reality, the presence of non-laser phase noises (possibly including GWs) will displace 

the location of the minimum from Lk. Writing XI = xi0) + x?) (with Xin) obtained by 

setting all &, 4; to zero), the power integral becomes 

or explicitly, 

Here we have written the non-laser phase noise x?) as independent of the delays i',+: this 

holds true for a search conducted sufficiently close to the true minimum, since the $i , $5 
are much larger than the secondary noises, and so are their variations. The minimum of 

I ( ~ ) ( L ~ ~ )  can be displaced from i,+ = LA because the third term of Eq. (35) [the cross- 

correlation integral of x?) and x?' (L,)] can be negative and offset a concurrent increase in 

I ( O ) ( i k ) .  The achievable time-delay accuracies will depend on the level of the residual laser 



noise, the levels of the secondary noises in XI, and the integration time T. We expect the 

arm-length errors to be determined by the interplay of the first and third terms in Eq. (36). 

By equating the variance from the imperfect cancellation of the laser with the estimation- 

error variance of the cross-term in Eq. (361, we can roughly estimate how well the time 

delays will be determined with TDIR: 6Lx - (axlnI/o2;oi) m, where o c, and o . (01 
XI XI 

are the root-mean-squares of the secondary noises and of the time derivative of the laser 

noise in XI, and p is the temporal width of the secondary-noise autocorrelation function. 

For nominal LISA noises and T E 10,000 s we thus expect 6Lk of 30 ns or better to be 

achievable. 

The TDIR concept described above was simulat,ed, for a realistic model of the LISA orbits 

and instruments, with the Synthetic LISA software package [23]. The simulation included 

the generation of a number of chunks of contiguous data for the sij and TW measurements, 

sampled at intervals of 0.25 s, and containing pseudo-random laser, proof-mass, and optical- 

path noises at the nominal level set by the LISA pre-phase A specification [4, 231. The data 

durations considered were 8,192, 16,384, and 32,768 s. 

The 18 noise processes (corresponding to the six lasers, proof masses, and optical paths) 

were assumed to be uncorrelated, Gaussian, and stationary, with (respectively) white, f-2, 

and f 2  PSDs, band-limited at 1 Hz. The frequency-fluctuation measurements contained 

also the responses due to GWs from two circular binaries with fGw II 1 and 3 mHz, located 

respectively at  the vernal equinox and at ecliptic latitude 45" and longitude 120". The 

strength of the two sources was adjusted to yield an optimal S/N of N 500 over a year (for 

X I ) ,  guaranteeing that there will be times of the year when each source will be clearly visible 

above the noise in an observation time -- 10,000 s. 

By putting the three LISA spacecraft on realistic trajectories, the resulting time and 

direction dependence [12] of the light travel times can be written in the following form 

~ 3 ,  241 1 

L k  ( t )  = L + I ( ~ L )  sin(3Ot - 3 6 )  
32 
15 - [- (eL)  f (RRL)] sin(Rt - Xk) , 
32 

where the plus (minus) refers to unprimed (primed) indices. In Eq. (37) L/c - 16.68 s is 

the average light travel time, and 



with Co an arbitrary constant (set to 0 in our simulations) giving the phase of the spacecraft 

motion around the guiding center of the LISA array. The starting times of the chunks were 

spread across a year to sample the time dependence of the Lk and the directionality of the 

GW responses. 

Separately for each chunk, we minimized ~ ( ~ ) [ & ( t ) ]  [Eq. (35)] starting from guesses for the 

L~ affected by errors 2 50 km/c, very much larger than typicaI accuracy of radio tracking 

from Earth [18]. The minimization was carried out using a Nelder-Mead sirnplex-based 

algorithm [25]. The effective cancellation of laser noise with TDI requires modeling the time 

dependence of the travel times within the chunks. In our simulations, we used two such 

models: 

- - 
1. An orbital-dynamics model (ODM) given by Eq. (37), with eL, QRL, and & taken 

as the independent search parameters with respect to which I ( ~ )  is minimized. We 

excluded L and R from the search because the dependence of the Lk( t )  on such an 

extended parameter set is degenerate on time-scales 10,000 s. 

2. A linear model (LM) given by ~ ,+( i )  = iE + 2k(t - to) jwith to set to the beginning of 

each chunk]. Because the expression for XI does not contain the travel times L1 and 

L1l, our independent search parameters are the constants L: and L; for k = 2,2', 3,3' 

(eight numbers altogether). 

Figures 4 and 5 show the results of our simulations. The average travel-time errors AL 

displayed in Fig. 4 are defined as A L = ( A L z  + ALzl + ALs + AL3,)/4, with 

Because the noises have different realizations in each chunk and because the local behavior 

of the Lk(t) [Eq. (37)] changes along the year, the average error AL of each chunk is a 

random variable. Its distribution is approximated by the histograms of Fig. 4, which refer 

to populations of respectively 512 (for T = 8,192 s), 256 (for T = 16,384 s), and 128 (for T 

= 32,768 s) chunks (hence the roughness of the curves). 

It turns out that the linear model is not quite sufficient to model the changes of the 

time-delays during the chunk lengths considered, since the minimum ALs [computed by 

least-squares fitting the parameters ,f$ and ii to the Lk(t)]  are in the range 0.25-2.60 rn 
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FIG. 4: Distribution of errors AL [see Eq. (39) and the main text above it] in the determination 

of light travel times, using XI-based TDIR with chunk durations of 8,192 s (for the LM and ODM 

models), and 16,384 and 32,768 s (for the ODM model only). As expected, the errors are lower for 

longer integration times T ;  for the LM model, the larger errors are due to the unmodeled curvature 

in the time dependence of the light-travel times. The distributions shown correspond to samples 

of 512, 256, and 128 chunks for T = 8,192, 16,384, and 32,768 s respectively, spread across a year. 

(for T = 8,192 s), 1-10 m (for T = 16,384 s), and 4-40 m (for T = 32,768 s). Thus, in Figs. 

4 and 5 we show results only for the linear model with T = 8,192 s. [The minimization of 

I(") over the LM parameters is delicate, because for XI the laser-noise residuals turn out 

to depend strongly on AL2, AL3/, and ALar - AL3, but only weakly on AL2/ + A L 3  In 

this case, the Nelder-Mead algorithm can be made to return accurate results by using the - 
search parameters i;, i$, Li, - L:, and L$ + Lg, plus the corresponding i: parameters.] 

Figure 5 shows the spectra of the .residual laser noise [i.e., of x?) at the minimum 

of i(")(Li)], as compared with spectra of GWs and secondary noises [i.e., of x?)]. The 

spectra are computed separately for each chunk using triangle-windowed periodograms, and 

then averaged over the chunk populations. The two GW sources stand clearly above the 

secondary noises at 1 and 3 mHz. We see that the TDI cancellation of laser noise with TDIR- 

determined time-delays is essentially complete, with the residual laser noise several orders 

of magnitude below the secondary noises. We conclude that for T - 10,000 s, with the 

nominal LISA noises, and even in the presence of very strong GW signals, TDIR can easily 

reach the time-delay accuracy required for second-generation TDI. For frequencies below 10 
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FIG. 5:  Spectra of frequency laser noise (bottom curves) and of GW plus secondary noises (top 

curve) at the end of TDIR minimization using chunk durations of 8,192 s (for the LM and ODM 

I o-26 

1 o-28 

models), and 16,384 and 32,768 s (for the ODM model only). We show averages of the spectra 

computed separately for each chunk using a triangle-windowed periodogram; the averages are taken 

over populations of 512, 256, and 128 chunks for T = 8,192, 16,384, and 32,768 s respectively, spread 

- 4 Spectra of laser noise residuals 

across a year. In all cases, laser noise is suppressed to Ievels several orders of magnitude below 

- 

the secondary noises: the cutout graph on the right shows that the typical laser-noise suppression 

factor with respect to secondary noise is N 5 x lo3 for the worst case considered (8,192-s LM); it 

improves by a factor -- 2 for 8,192-s ODM, and by factors of .v fi for each successive doubling of 

T.  The GWs from the two circular binaries stand clearly above the noise at 1 and 3 mHz. 

vs. secondary noises 

mHz, the residual laser-noise power decays as f 6 ,  while the secondary noises decrease only 

as f 2 .  We attribute the flattening near 0.1 mHz (which is insignificant with respect to the 

LISA performance) to a combination of leakage and aliasing in the numerical estimation of 

the spectra and of real effects due to the first non-constant terms in the travel time errors 

across the chunks. 

Finally, we estimated the power in the Fourier bins containing the simulated signals using 

two different time series: in the first XI was formed using perfectly known time delays, in 



the second using the TDIR-determined time delays. Analyzing the 32,768-s chunks at the 

times along the simulated year where the signal amplitudes were maximum, we find that 

the signal powers in the two time series agree to the numerical precision of the calculation 

(about a part in lo5) .  

From figures (4,5) we conclude that, for the nominal LISA noises, integration times 

-- 10,000 s, TDIR determines the time delays with accuracies sufficient to suppress the 

laser phase fluctuations to a level below the LISA secondary noises, while a t  the same time 

preserving GW signals. Our simulations assumed synchronized clocks aboard the spacecraft, 

but we anticipate that TDIR may be extended to achieve synchronization, by minimizing 

noise power also with respect to clock parameters. 

TDIR has the potential of simplifying the LISA design, allowing the implementation of 

TDI without a separate inter-spacecraft ranging subsystem. At the very least, TDIR can 

supplement such a subsystem, allowing the synthesis of TDI combinations during ranging 

dropouts or glitches. TDIR may be applicable in other forthcoming space science missions 

that rely on spacecraft formation flying and on inter-spacecraft ranging measurements to 

achieve their science obj ectives. 
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