
A Distributed Data Architecture for 2001 Mars Odyssey Data Distribution

Daniel J. Crichton J. Steven Hughes Sean Kelly
Jet Propulsion Laboratory Jet Propulsion Laboratory Independent Consultant

Dan.Crichton@jpl.nasa. gov Steve.Hughes@jpl.nasa.gov Sean.Kelly@jpl.nasa.gov

Abstract backend data systems to plug in and share their data with
frontend systems providing access. The middleware

N~~~~ instruments and communicatj'ons encapsulates differing representations, formats, locations,

techniques have given scientists and meanings of data, making data interoperable and

unprecedented amounts of data, more than relieving researchers of requiring foreknowledge of

can be feasibly distributed through traditional localized data system organization and representation.
Using the OODT Framework, PDS developed a next-

methods as generation data distribution system that was online and
Leveraging the web makes sense since It web accessible, transcending the traditional CD-ROM
enables scientists to request specific data and distribution model [71.
retrieve oroducts as soon as they're available.
Yet dehning the middleware system to
support such an application has remained just
out of reach, until Odyssey. For the first time
ever, data from all Odyssey mission
instruments were made available through a
single system immediately upon delivery to
the Planetary Data System (PDS).

The Object Oriented Data Technology (OODT)
software made such an application possible.

1. Introduction

The Planetary Data System (PDS) has had a long
tradition of using metadata. Metadata, which is literally
data about data, describes the shape and meaning of data.
Metadata enables both human researchers and automated
systems to determine if a certain piece of data is the right
piece, what operations may be done on it, whether it is of
value for the current course of research, how it relates to
other data, and so forth. What the PDS lacked was the
middleware to handle that metadata [8].

Middleware, which is literally software components
that glue backend and frontend systems together, was
exactly what the PDS needed. The Object Oriented Data
Technology (OODT) task at NASA's Jet Propulsion
Laboratory had been developing a software framework
for handling data and metadata in a uniform way. This
framework acts as a middleware system, enabling

2. Location Independence

The first step towards making data independent of its
physical location and storage formats is to describe the
data. The OODT Framework requires client components
to use profiles to describe data [3]. Profiles literally
profile resources, providing a usable description of a
resource. A resource in this context can mean any
electronically addressable item, be it a granule of data, a
dataset, a document, an image, a web page, a software
service, and so forth.

By profiling what's available, OODT software
components can answer queries about what exists and to
what things it may be similar. Profile servers handle
queries for profiles and manipulate collections of profiles
in order to answer the question, "Where is X?"

Profile Representation

Profiles contain three specific kinds of metadata. First
is metadata about the profile itself. This metadata includes
information such as who made the profile, whether it's
classified, what revisions were made, and so forth. While
not directly useful to researchers, it serves to provide
auditing and other maintenance information.

Second is inception metadata. Inception metadata
describes a resource's creation. It includes knowledge of
who created the resource, who contributed to it, what
temporal and physical periods it covers, its title,
description, keywords, and so forth. Rather than attempt
to define overlapping and redundant metadata elements to

describe a resource's inception, we chose to adopt the
metadata elements created by the Dublin Core Metadata
Initiative [I]. Originally targeted for online libraries, the
Dublin Core metadata elements have wide reusability and
have been adopted by a large number of organizations.

Third is the composition metdata. Composition
metadata describes the shape of the resource. This
includes data elements that may occur within it, the limits
of values of those elements, specific occurrences of
characteristics or other features. As an example, a table of
temperature readings should include temperature as a
compositional metadata element, as well as the ordinate
value against which temperature was measured (time,
location, etc.). Included in the description of temperature
would be the units of temperature and the range of values
represented in the table.

To define composition metadata, we turned to the
ISOIIEC 1 1 179 standard for describing metadata elements
(a metametadata standard) 161. Such a standard indicates
what information must be captured to make description of
metadata elements useful, such as units, representation,
synonyms with other elements, legal values, and so forth.

Table 1 includes the list of all information captured in
a profile.

Table 1. Metadata captured in a profile

Profile Metadata
Profile ID
Version
TY pe
Status
Security
Inception Metadata
Identifier
Title
Formats
Description
Creators
Subjects (keywords)
Publishers
Contributors
Dates
Types
Composition Metadata
Element ID
Element name
Element description
Data type of element
Units
Legal values

ID of parent profile
IDS of child profiles
Registration authority
Revision notes

Sources
Languages
Relations
Coverage
Rights
Contexts
Aggregation
Class
Locations

Minlmax values
Synonyms
Obligatory
Max occurrence
Comments

Profile Servers

A profile server is the software component that handles
profile queries and manages collections of profiles. For
the PDS, we deployed profile servers that were equipped
with profile metadata about data collected at the nodes of

the PDS. Profile servers answer queries from the PDS
distribution web application about where data is located
and provides researchers with overviews about what's
available, leading them to further queries for actual data.

Profile servers are accessible using a number of
communications protocols as well as software APIs in
Java and C1Ci-t. Profile servers themselves are
implemented in Java. Using Java's interface feature, we
define the interface that a source of profiles must
implement (called a ProfileHandler) and can then provide
specialized handlers for certain tasks. Figure 1 depicts the
delegation. For example, profiling individual granules of
a dataset means much repeated information (principal
investigator who created the data, name of the instrument
that sourced it, and so forth); a query handler specific to
that dataset could generate the static inception and
composition metadata while varying the composition
metadata as necessary for each granule.

(Handler 1 I Hanlder I I Hanlder 1

Profile Server - >

Figure 1. UML diagram of profile server and
several profile handlers.

Profile Handler
cc interface))

3. Format Independence

Using profiles and profile servers, the PDS data
distribution web application can provide researchers with
details about what's available. Retrieving those resources,
however, requires a second component of the OODT
framework. That component is the product service [3].

The product service consists of a series of product
servers that are accessed and queried exactly like profile
servers. In fact, they use the same query expression.
However, instead of yielding metadata, they yield data.

Product servers have two responsibilities. One is to
provide access to data at a curating node in such a way
that storage at that node is not impacted. Much in the
same way an operating system device driver encapsulates
access to a device, a product server encapsulates access to
the specific storage mechanism, providing an interface to
the framework. A node of the PDS specializing in
emissivity data, for example, may continue to ingest and
store that data in relational database tables or in some
other node-specific way that is convenient to the
investigators. Using a plug-in architecture, a product
server installed at that node must access that relational
structure (or other proprietary or node-specific

mechansim). Once accessed, it can yield the data in an
Internet standard format for sharing amongst all the
OODT Framework and its users.

That's the second responsibility of product servers: to
convert any node-specific storage format into a neutral
format. Conversion currently is to Internet standard
formats specified by MIME types [5] . Product servers
receive a query for a desired product along with a list of
acceptable MIME types. Emissivity tables may be
converted into the textltab-separated-value type, and
proprietary image formats into the imageitiff or other
type, for example.

The architecture allows many .such mechanism
and format conversions to be swapped in and out within a
single product server, even at run time. Figure 2 depicts
this delegation relationship.

File-based
Hanlder Hanlder

Figure 2. UML diagram of product server and two
query handler implementations.

For the PDS, our first deployment included a product
server capable of yielding raw product files, PDS labels,
and a variety of ZIP archives. Because many of the nodes
use a PDS-mandated file system structure, it was simple
to define a file-based query handler. More query handlers
are under development now that provide image
conversion capabilities as well as retrieval of products
from non-file system sources.

4. Query Representation

Profile and product servers use the same query
expression. Termed an XMLQuery (due to the fact that it
can be represented as an XML document), this query
expression provides a uniform way of addressing a user's
desired data.

The XMLQuery tracks several sets of aspects of a
query: the domain (termed the "from" set), the range
(termed the "select" set), and a constraint (termed the
"where" set). Each set is a collection of elements that
form a boolean expression that determine what's being
queried. This neutral query format is used internally by
the OODT framework and passed to and from profile and
product servers.

Query handlers installed in each profile and product
server have the responsibility of understanding the query
in a way appropriate to their underlying source of

metadata and data. As an example, a query handler in a
product server delivering products from a relational
database may translate the boolean expression in the
"where" set into the "where" clause of an SQL
expression.

The query expression is general enough to support
most kinds of queries for scientific data. With this
generality comes complexity. Although framework users
may construct such boolean expression sets in an
XMLQuery directly, it is far easier to write the query as a
string. As such, the XMLQuery software class includes a
facility for parsing such a string in as a keyword=value-
style expression and generating the "from," "select," and
"where" sets appropriately. Future facilities may include
creating XMLQuery objects from SQL expressions, RDF
query expressions, or other expressions.

With an XMLQuery in hand, a typical interaction that
yields data takes a two step process: one is to pass the
XMLQuery to a network of profile servers. The profile
servers examine the query and yield profiles that describe
product servers that can satisfy the query. The second
step is to pick a product server and pass the same
XMLQuery to it. The product server then returns the
actual data product. Figure 3 depicts this interaction.

R
Resegrcher

Figure 3. UML diagram of profilelproduct two-
step query.

5. User Interface

Working with PDS developers, OODT developers
created the frontend application that links to the
middleware and provides access to the backend data. The
application is a web application providing a single point
of entry on the public Internet to anyone with a web
browser. The address of the application is
http://starbrite.jpl.nasa.gov/pds/. Figure 4 shows a portion
of a screen shot from a browser visiting the web
application's quick search page.

Users select mission, target name, insmment, or other
criteria to see what data's available. The framework
handles this step using profile queries. The user can
select resources or drill down and retrieve products. The
framework handles this step using product qucries.

The underlying mechanisms involving profile qutries
to locate the data and product queries to retrieve the data
art not directly revealed in the web interface, although the
two-step query strategy is visible.

In the interaction diagram in Figure 3, the role of the
"Researcher" is repiaced by the web application, which
performs the resource location step and the product
retrieval step on behalf of the users. Funhennore, the web
applidon has HTTP interfaces that enable any language
that can manipulate H'ITP to access the OODT
Framework's and product servers. -

MARS Data Set Quick Search

Figure 4. Screen shot of PDS web application.

6. Communication

OODT Framework components use Internet standard
protocols in order to communicate queries and gather
results between each other. The Framework supports
multiple, concurrent prowols as well, encapsulating
communications layer apart from metadah and data
manipulation.

Metadata and Data Exchange-

In order to communicate results, we take a view that
makes framework components remote objects and invoke
methods on those objects remotely.

For example, finding matching profile servers means
caIling the profile server's remote findprofhes method,
passing an XMLQuery object, and retrieving a Iist of
matching Profile objects. Queries to product servers are
similar.

The underlying communications protocol can be based
on C O M A (using llOP [lo]) or Java MI. For PDS.
we're currently using Java RMI for its lighter weight and
faster performance.

For secure metadata and data exchange, we also
support both I IOP and RMl over TLS [4].

Remote Management

Installation of new plug-ins for product servers and
profile servers, debugging of framework components, and
starting and stopping serven at remote PDS nodes
requires a remote access by OODT developers and PDS
central node administrators. However, remote
management was further hampered by heterogmeous
system environments at each node as well as various
security restrictions. As a result, we bundled remote
management featms directly into the OODT framework.
Because the remote management components will

have to administer and debug the communications
protocols used by the operational framework components,
the system had to use a separate communications system.
We turned to XMLRPC [9] for its simplicity and the fact
that it runs over HTTP. We use HTTP authentimtion to
protect access to the remote systems as well as to assign
various roles to various users. Further, the capabilities of
the remote management components go only as far as that
of the system environment afforded to it. For example,
several sites choose to run the system with a specific user
ID that can only write files that comprise the software
itself.

Figure 5 shows a m a 1 screen shot of a client of the
remote management features. This graphic client is used
by PDS administrators and developers to check on the
stahts of remote servers, start and stop processes, and
upgrade the system.

Figure 5. Screen shot of the remote management
user Interface.

7,2001 Mars Odyssey Data DesWbution

The development of an online data distribution system
far the 2001 Man Odyssey mission was initiated when it
was realized that it would be cost prohibitive to distribute
the large volumes of data expected on CDlDVD media. In
pdculm the -1 Emission Spectrometer -IS)
h w n t was expected to produce an estimated 4
terabytes of data Rtquimnents gathering for the
Planetary Dab System Distribution system (PDS-D)
began at @e end of 2001 with the goal of suppofting the
fmt Odyssey data release in October 2002. The use of the
OODT s o w allowed the design of a multi-tiered
architecture that met the key development requirements
including that the distribution system provide d e s s
m h and retrieval of data products from distributed
heterogeneous data rcpositorie$, support online access as
the primary method of data distribution, and leverage the
exb4ing PDS resources and capabilities with minimal
impact to tbe existing data system. PDS- D s ~ s s f u t l y
suppomd the first release of Odyssey data in OWber,
providing the fmt ever disfribution of planetary science
data as it was relwcd to the public.

The first delivery of the system, PDS-D W1,
supported the Mbution of 14 data sets from Ti-lF,MIS,
Gramma Ray Spctwmctcr (GRS), Martian Radiation
Envhnment Experiment (MARE), AcceImmttcr,
Radio Science, and aavi@on ancillary infomation.
Urn have access to the data through the existing
Planetary Atlas and several new Wefaultit" data set
browsers. Six product servers were installed at remote
sites, including a THEMIS product server at Ariuma
State University (ASU). The ASU instaltortion allowed the
THEMIS data to be distributed from the instrument's team

site, precluding the need to transfer the data set to the
PDS for distribution. An additional product server was
also installed for a large disk repository at the PDS central
node for backup. This was successfully used on stvml
occasions to address Internet performance problem and
machine d m times. One profile server was installed to
provide supporting high-level formation from the central
data set catalog, including an inventory of useful Web
resources. A subscriptionlnotification sewice was
implemented to allow planetary scientists to subscribe and
receive an email notification when data was r e l e d . The
notification included URLs that linked to the appropriate
data set browser.

8. Conclusions

The OODT Framework for me?adata-based
middleware served the PDS in its next-generation data
distribution efforts. modernizing a million-dollar CD-
ROM distribution effort into a web based, scaIcablt,
metadatadriven system.

And yet the h e w o r k is not specific to the PDS at all.
As a general purpose rnetadataldata middleware based on
standards, it's suitable for correlation, discovery, and
exchange af any kind of data. We deployed the identical
middleware software to a cancer biornatkers program run
under the auspices of the Natiortal Cancw Institute and
the National bstitutes of Health [Z]. The same software
makes differing specimen databases located acrass the
country appear as a single, vast tissue bank, improving
correlative capabilities for cancer research.

We continue to develop the metadata middleware by
exploring ways to improve the metadata descriptions as
well as peer-@peer pmbcoIs for metadawdata
exchange.

9. References

[I] DCMI, "Dublin Cwt M-ta Element Set, Version 1.1:
Reference Dewription," Dublin Core Metadah Initiative,
1999.

[2] D. Crichton et al.. "An Interoperable Data Arctii- for
Data Exchange in a Biomedical Remuch Network," 14'
IEEE International Symposium on Computer-Based
Medical System, Bethesda, 2001.

[3j D. Crichton et al., "Science Search and Retrieval wing
XMLn CODATA, Washington DC. 2000.

[4] T. Dierks, C. Allen, "'The TLS Fhtocol;' Internet Society,
Reston 1999, RFC2246.

151 N. Freed N, Borenstein, "Multipurpose Intemet Mail
Extensions (MlME) Part Two: Media Types," Intemet
S ~ i c t y , Reston, 1996, RFC2W.

[6] ISOIIEC, "Framework for the Specification and
Standardization of Data Elements 11 179-1," SpeciJication
and Standardization of Data Elements 111 79, International
Organization for Standardization, Geneva, 1999.

[7] S. Kelly, D. Crichton, J.S. Hughes, "Deploying Object
Oriented Data Technology to the Planetary Data System,"
34'h LPSC, Houston, 2003, p. 1607.

[8] S. Slavney, R.E. Arvidsen, E.A. Guiness, "Mars Global
Surveyor and 2001 Mars Odyssey Science Data Archives,"
331d LPSC, Houston, 2002, p.1303.

[9] D. Winer, "XML-RPC Specification," UserLand 1999.

[lo] "Common Object Request Broker: Architecture and
Specification," Object Management Group, Lexington,
2000.

