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Abstract. This paper explores the uses of planar, simple-periodic symmetrical families of 
orbits in mission designs in the Earth-Moon system. This classification is defined as the 
planar periodic orbits that pierce the x-axis in the rotating frame exactly twice per orbit 
where each piercing is orthogonal to the x-axis. A continuation method has been used to 
explore several families of this class of orbit in the Earth-Moon restricted three-body system. 
The invariant manifolds of the unstable orbits in each of these families are then produced 
and several mission designs are discussed that take advantage of these manifolds. Focus is 
given to mission designs that implement resonant orbits that periodically fly by the moon. 

Nomenclature 

C = Jacobi constant 
P = three-body constant, the ratio of the smaller mass to the total mass in the system 
1 = eigenvalue 
MI = primary mass in the three-body system 
M2 = secondary mass in the three-body system (M2 < MI) 
LLi = i" Lagrange point in the Earth-Moon system 
ELi = i" Lagrange point in the Sun-Earth system 

I. Introduction 

T HE nature of unstable three-body orbits has only recently been studied with any practical application in mind. 
Yet, even with incomplete knowledge of the orbital possibilities in the system, many highly successful mission 

designs have been constructed that have implemented unstable orbits, e.g., the SOHO, WIND, and Genesis 
missions. The focus of this study is to explore the uses of unstable orbits fi-om the class of planar, simple-periodic 
symmetrical orbits in the Earth-Moon three-body system. This study will be used as a foundation for further studies 
of orbits in the Earth-Moon system, including three-dimensional orbits and asymmetric orbits, as part of the 
development of an architecture to use in missions in the Earth-Moon system. 

This study first presents the background for the work in Section I. In Section I1 it introduces the properties of 
several families of simple-periodic symmetrical orbits in the Earth-Moon system, including their shapes, stability, 
and invariant manifolds. Section 111 discusses orbit transfer options in the system and demonstrates how to take 
advantage of these invariant manifolds. Finally, Section IV introduces practical applications for these orbit 
transfers, as well as discussing future extensions for this research. 
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A. Background 
A large amount of work has been completed studying the three-body problem since Newton first formulated it in 

the late 1600's. It was not until the 1960's that computers were available to numerically search for periodic orbit 
solutions in the three-body problem. Prior to the 1960's, many simplifications were required in order to begin 
analytically exploring the system. The planar restricted three-body problem (PCRTBP) was one of the most widely- 
used models of the three-body problem, especially for motion in the solar system. The general aspects of the 
periodic orbit solutions in the PCRTBP were well known, primarily because of the work of str6mgren1, ~ o u l t o n ~ ,  
and ~ a r w i n ~ ,  among others. By 1940 no more than a hundred periodic orbits had been computed in the PCRTBP, 
but the basic properties of several families of orbits had been recognized. 

Once computers were available and capable of performing the calculations necessary to integrate orbits in the 
system, the study flourished as numerical techniques were employed to find new solutions to the problem. By the 
late 1960's thousands of orbits had been computed, much of the work accomplished by HCnon (Ref. 4-8) among 
others. A large portion of the solutions to the problem were of the class of simple-periodic symmetrical orbits, as 
defined by ~tr0m~ren. l  Several satellite missions had begun to be developed that implemented these three-body 
periodic orbits in their mission designs, including the Genesis mission. 

In the recent decade a new method of analyzing dynamical systems has been developed, implementing invariant 
manifold theory to determine the stable and unstable flows in the system. 

B. Planar Circular Restricted Three-Body Problem 
The planar circular restricted three-body problem (PCRTBP) has been used to model the orbits in this study. In 

general the characteristics of a trajectory modeled in the PCRTBP are preserved when transferring to the full solar 
system model. Koon et al? demonstrated this when transferring from a libration orbit about the Earth's L2 point to a 
libration orbit about the Moon's L2 point. Realistically, it is unwise to assume that lunar flybys will be modeled 
well using the simplifications of the PCRTBP; hence, trajectories that require lunar flybys are avoided in this paper 
when considering practical mission designs. Nevertheless, the tools that exist that take advantage of the symmetry 
and simplifications found in the PCRTBP are very helpfbl in the development of mission designs that would 
otherwise be very difficult to implement in the full solar system model. Therefore, the PCRTBP has been adopted 
for this study. 

The PCRTBP restricts the movement of all three bodies to the x-y plane and assumes the moon is in a circular 
orbit about the earth. Since the moon's eccentricity and inclination are low, approximately 0.0549 and 5.1454", 
respectively,10 this is a good first-approximation of the dynamics in the system. The coordinate system is set to 
rotate with the motion of the moon about the earth, where the origin is defined to be at the center of mass of the 
system. The x-axis, also known as the syzygy axis, extends from the origin through the moon, the z-axis (which is 
not used in the model except to set up the axes) extends in the direction of the angular momentum of the system, and 
the y-axis completes the right-hand coordinate frame. It is convenient to normalize the units in the system such that 
the following metrics are equal to one: the distance between the two primaries, the sum of the two primaries, and the 
gravitational parameter is set to 1. The three-body constant, p, is defined as the ratio of the small mass to the large 
mass, approximately equal to 0.0121506 for the Earth-Moon system. Since the system has been normalized, the 
coordinates of the earth and moon in the rotating axes are therefore equal to [-p, 01 and [l-p, 01, respectively. The 
mass of the third body is neglected in the model. 

The equations of motion for the third body in the rotating fiame are equal to: 

where rl and r2 are equal to the distance fiom the third body to the earth and moon, respectively: 

2 
American Institute of Aeronautics and Astronautics 



In this form it is clear that the dynamics of the system depend only on the mass fraction p. The dynamics of the 
PCRTBP permit an integral of motion to exist, namely the Jacobi constant, C: 

c=2u-v2 (3) 

where 

The Jacobi constant is considered only in normalized units; it is nontrivial to convert fiom the normalized units to SI 
units. 

It is well known that five equilibrium points exist in the PCRTBP, referred to as the Lagrange points. In this 
study we will adopt the nomenclature that L, lies between the earth and the moon, Lz beyond the moon, L3 beyond 
the earth, Lq above the x-axis, and L5 below the x-axis. Figure 1 shows a plot of the locations of these Lagrange 
points in the Earth-Moon rotating coordinate system. 

X 

Figure 1. The earth, moon, and five Lagrange points in the 
rotating coordinate system of the PCRTBP. 

C. Finding Symmetric Periodic Orbits in the PCRTBP 
A simple differential corrector, given in Ref. 11, has been used in this study to produce symmetric periodic orbits 

in the PCRTBP. The differential corrector invokes a shooting method to converge on the solutions. The only 
constraint on the system is that the corrector has been designed to converge on a certain type of solutions, namely 
orbits that pierce the x-axis orthogonally twice per orbit. They may pierce the x-axis more times, but must pierce it 
twice orthogonally. This study has further limited the search to simple-periodic orbits,' which only pierce the x-axis 
orthogonally. The corrector follows the following procedures: 

The third body begins with initial conditions (x, y, 2, j) = (xo , 0, 0, yo); 
It is then propagated until it pierces the x-axis n times (half of a period); 
For the trajectory to be periodic, the state must now be (x, y, i, y) = (x,,, , 0, 0, hence all velocity 
in the x-direction is undesirable. The corrector attempts to remove this velocity by adjusting either xo or yo 
and keeping the other initial condition constant; 
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The process is repeated until a given tolerance is met. 

The corrector may be designed to adjust one or the other initial condition of the third body. See Ref. 11 for more 
information. 

D. The Continuation Method 
Periodic orbits in the PCRTBP may be grouped into one-parameter families, where a family contains an infinite 

number of periodic orbits whose properties vary continuously from one end of the family to the other. This property 
of the PCRTBP is due to the existence of the Jacobi constant, the PCRTBP's integral of motion.' Once a single 
periodic orbit is known then the continuation method may be used to traverse that orbit's family. One parameter of 
the known periodic orbit is perturbed and a differential corrector is applied to find that periodic orbit's neighbor in 
its family. Howell's differential corrector" is well-suited to this method for simple-periodic symmetrical orbits 
because one may vary the initial position and correct for the initial velocity that corresponds to the next periodic 
orbit in the family (or vice versa, if desired). 

To demonstrate this method, the continuation method has been applied to the family of Lyapunov orbits that 
exist about the Earth-Moon L2 point (LL2). By varying xo, one can produce the plot shown in Figure 2, the initial 
conditions for those orbits shown in Figure 3. The axes are in the rotating coordinate system, but converted to SI 
units. 

Initial Conditions for Lyapunov Orbits about the LL2 Point 

1.51- 

380 390 400 410 420 430 440 450 

+, (xlo3 km) 

Figure 2. A plot of the initial conditions of the family of Lyapunov 
orbits about the Earth-Moon Lt point (LL2). 
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The continuation method works well when the perturbations are small; in practice it is beneficial to predict the 
differential corrector's adjustment to the perturbation because this allows larger jumps in the varying parameter. 
Furthermore, if the perturbations are too large, the differential corrector may converge on a solution of a different 
family. Thus smaller steps or better prediction methods may be required to make the continuation method more 
reliable. The work for this study implemented a quadratic prediction method that used the three previous data points 
of the family to predict the next data point. This was sufficient to allow the differential corrector to converge 
quickly while allowing the curve of the family to evolve naturally over the state space. 

E. Stability 
The stability of a periodic orbit can be determined by analyzing the eigenvalues of the orbit's monodromy 

matrix. Orbits in the PCRTBP have four eigenvalues, Li for i = 1 ,. . . ,4, corresponding to the eigenvectors v,. The 
eigenvalues are related in the following way: 

where the reciprocal of an imaginary eigenvalue is the complex conjugate of that eigenvalue. Periodic orbits in the 
PCRTBP have at least two imaginary eigenvalues that are complex conjugates of each other. The other two 
eigenvalues are either imaginary or real numbers. If there is a real eigenvalue outside of the range [-1,1], then the 
periodic orbit is asymptotically unstable, referred to here as unstable, along the corresponding eigenvector. If there 
are no real eigenvalues outside of that range, then the periodic orbit is neutral& stable, or a center.12 

F. Invariant Manifolds 
All periodic orbits have invariant manifolds, but the interesting manifolds for mission design purposes are the 

stable and unstable invariant manifolds of unstable periodic orbits, referred to as @ and Ff, respectively. An 
orbit's unstable invariant manifold is composed of the set of all trajectories that a particle could take after a 
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perturbation in the direction of the orbit's unstable eigenvector. In practice any perturbation £tom the unstable orbit 
will include at least a small portion of the orbit's dominant unstable eigenvector; that portion will quickly grow and 
the particle will asymptotically approach the unstable manifold. The orbit's stable manifold is similarly defined as 
the set of all trajectories that a particle could take to arrive onto the periodic orbit. It is produced in the same manner 
as the unstable manifold, but integrating time backwards instead of forward. See Howell et a1.13 or Parker and 
chuaI4 for more details regarding the construction of these manifolds. 

11. Simple-Periodic Symmetrical Orbits 
Several families of simple-periodic symmetrical orbits have been found in the Earth-Moon system. 

~ a t u k u m a ' ~ ~ ' ~  and str6mgren1 classified five families of such orbits using the nomenclatures shown in Table 1, 
based on where the families originated. 

Table 1. Classification of symmetric periodic orbits in the PCRTBP 
based on their origins. 

Origin of the Family 
Author Ll M2 M2 Branch of 

Retrograde Prograde g 
Matukuma F F a A, B H, E, 12, G 
Stromgren a c f g g' 

The trouble with the classic scheme for classifying symmetric periodic orbit families is that the family gradually 
moves around the system until it may not be clear which object is at its center. In this study the orbits of interest are 
still in portions of their respective families that are near their origin, thus this classification scheme would work 
well. However, the interest is to pursue more complicated trajectories in the future and therefore another 
classification scheme is preferable. ~roucke" conjectured that since this type of orbit pierces the x-axis two times 
orthogonally, one could introduce six classes that would easily contain all such periodic orbits based on the locations 
of those piercing. The "center7' of the orbit would then be clearly defined. Furthermore, one family of orbits is 
always contained within a single class. The classes and a pictorial description are listed in Table 2. 

Table 2. Classification of symmetric periodic orbits in the PCRTBP based 
on their orthogonal x-axis crossings. 

Class Structure Center 

Class 1 xo XI MI M2 
I w 

, L3 
I 

Class 2 xo MI XI M2 , MI 
I - I 

Class 3 xo MI M2 XI , Ml+M2 
I - - I 

Class 4 xo x1 M2 , L1 
I I - 

Class 5 Xo M2 XI , M2 
I - i 

Class 6 21 M2 xo XI , L2 - I I 

The initial conditions of the simple-periodic symmetrical orbits found in the Earth-Moon system that did not hit 
the earth's surface or the moon's surface are shown in Figures 4 and 5, below. Figure 4 shows those orbits whose 
initial conditions lay on the far side of the moon, between the moon and LL2; Figure 5 shows the orbits with initial 
conditions between the earth and moon. In both cases the gray orbits are neutrally stable and the black orbits are 
unstable. Special attention was paid in search of orbits near the moon; hence several families of periodic orbits are 
certainly missing whose initial conditions lie on the opposite side of the earth. Those will be explored in a later 
paper. 
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Simple-Periodic Symmetrical Orbits in the Earth-Moon Svstem 

% (xlo3 km) 

Figure 4. The initial conditions of simple-periodic symmetrical orbits in the Earth-Moon 
system. The orbits in gray are neutrally stable; the orbits in black are unstable. 
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Simple-Periodic Symmetrical Orbits in the Earth-Moon System 
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Figure 5. The initial conditions of simple-periodic symmetrical orbits on the near 
side of the moon in the Earth-Moon system. The orbits in gray are neutrally 
stable; the orbits in black are unstable. 

Figure 6 shows the periodic orbits7 Jacobi constant as functions of xo for those orbits given in Figure 4. The 
orbit families are labeled corresponding to the classification scheme given in Table 2 with Strijmgren7s classification 
fiom Table 1 in parentheses; the bold-letter families are arbitrary family identifiers used in this paper. Brief 
descriptions of these lettered families are given in Table 3, below. 

Simple-Periodic Symmetrical Orbits in the Earth-Moon System Simple-Periodic Symmetrical Orbits in the Earth-Moon System 

Class 5 (g); 
3.8 Family D 

(a) % (x103 km) (b) (x103 km) 

Figure 6. The periodic orbits' Jacobi constant as functions of xo for periodic orbits whose initial conditions 
are on the left (a) and right (b) side of the moon. The labels are classifications based on Table 2 with 
Striimgren's classification in parentheses. The bold letter labels are arbitrary and only used to identify the 
different curves in this study. 
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Table 3. A brief description of each of the families presented in this study. 
Broucke's 

Classification Description 

A Class 6 Lyapunov orbits about LL2. 
B Class 4 ~ ~ a b o v  orbits about LL,. 
C Class 5 Distant retrograde orbits about the moon. 
D Class 5 Low prograde orbits about the moon. 
E Class 5 Distant prograde orbits about the moon. 
Fi Class 3 Periodic resonant lunar flyby orbits. 

Figure 7 shows the periods of the orbits as functions of xo for those orbits given in Figure 4. The orbit families 
are labeled corresponding to the classification scheme given in Table 2 with Striimgren's classification from Table 1 
in parentheses. The bold-letter families are arbitrary family identifiers used in this paper. 

Simple-Periodic Symmetrical Orbtts m the EarthMwn System Simple-Penoda Symmetrical Orbtts ~n the EarthMoon System 
100 

90 

80 

70 LL2 

;i@' 
P % 50 
: 40 

30 

20 

10 

0 
50 100 150 200 250 300 350 380 390 400 410 420 430 440 

(a) % ( x ~ o ~  km) Co) % ( ~ 1 0 ~  km) 

Figure 7. The periods of the orbits as functions of xo for periodic orbits whose initial conditions are on the left 
(a) and right (b) side of the moon. The bold letter labels correspond with the families of the same identifier in 
Figure 6. 

The orbits in each of the families will now be examined in more detail. 
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A. Family A: Lyapunov orbits about LL2 
Family A was chosen to begin this examination since it was used as the example in Figures 2 and 3. This family 

of periodic orbits is commonly known as the family of Lyapunov orbits about the lunar L2 point. Figure 8 shows the 
full state space curve of initial conditions that produce these orbits, up until they impact the lunar surface. 
Theoretically this family continues, but since this study is concerned with potential mission designs it will not dwell 
on families that extend into the lunar surface. Figure 9 shows characteristic Lyapunov orbits of this type in position 
and velocity space. 

Simple-Periodic Symmetrical Orbits in the Earth-Moon System 
2.5 

X,, (xlo3 km) 

Figure 8. The cuwe of initial conditions that produce Family A, the 
family of Lyapunov orbits about LLP 

Lyapunw Orbits about the L h  Point LyapunovOrbits about the L h  Point 
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The stable and unstable invariant manifolds of two representative Lyapunov orbits are shown in Figures 10 and 
11. The trajectories on the manifolds were propagated for approximately one month. The initial conditions and 
Jacobi constants for these orbits are given in Table 4. 

Table 4. The initial conditions and Jacobi constants for the Lyapunov 
orbits shown in Figures 10 and 11, given in normalized units. 

Orbit xo Vo C 
Figure 10 1.1 1 862643 0.18438956 3.15035182 
Figure 1 1 1.02757544 0.74692043 3.00995 185 

Stable Inwriant Manifold Unstable Inwriant Manifold 

x(x103 km) x(xlo3 krn) 

Figure 11. The stable (left) and unstable (right) invariant manifolds of a Lyapunov orbit about LL2 
that has a Jacobi constant of 3.15035182. 

Stable Inwriant Manifold Unstable Inwriant Manifold 

x(x103 km) X (x?03 km) 

Figure 10. The stable (left) and unstable (right) invariant manifolds of a Lyapunov orbit about 
LL2 that has a Jacobi constant of 3.00995185. 
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B. Family B: Lyapunov orbits about LL1 
Family B of simple-periodic symmetrical orbits is much like Family A. It is commonly known as the family of 

Lyapunov orbits about the lunar L, point. Figure 12 shows the full state space curve of initial conditions that 
produce these orbits, up until they impact the lunar surface. Every orbit on the curve is asymptotically unstable. 
Figure 13 shows characteristic Lyapunov orbits of this type in position and velocity space. 

Simple-Periodic Symmetrical Orbits in the Earth-Moon System 

140 160 180 200 220 240 260 280 300 320 

x, (~103 km) 

Figure 12. The cuwe of initial conditions that produce Family B, 
the family of Lyapunov orbits about LL,. 

LyapunovOrbits about the LL, Point LyapunovOrbits about the LL, Point 

x(xlo3 km) Vx (kmls) 

Figure 13. The position (left) and velocity (right) plots of Family B: the family of 
Lyapunov orbits about LL1. 
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The stable and unstable invariant manifolds of two representative Lyapunov orbits are shown in Figures 14 and 
15. The trajectories on the manifolds were propagated for approximately one month. The initial conditions and 
Jacobi constants for these orbits are given in Table 5. 

Table 5. The initial conditions and Jacobi constants for the Lyapunov 
orbits shown in Figures 14 and 15, given in normalized units. 

Orbit xo V o  C 
Figure 14 0.81165453 0.25479879 3.13004286 
Figure 15 0.71 540062 0.60461 823 2.95097632 

Stable Inmriant Manifold Unstable I ~ r i a n t  Manifold 

~~ - - -  

x (XI o3 km) x ( ~ 1 0 ~  km) 

Figure 14. The stable (left) and unstable (right) invariant manifolds of a Lyapunov orbit about LLl 
that has a Jacobi constant of 3.13004286. 

Stable Iniafiant Manifold Unstable Inwriant Manifold 

x (x~o= km) ~ ( ~ 1 0 ~  km) 

Figure 15. The stable (left) and unstable (right) invariant manifolds of a Lyapunov orbit about 
LLl that has a Jacobi constant of 2.95097632. 
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C. Family C: Distant Retrograde Orbits PROS) about the moon 
Family C consists of orbits that traverse the moon in a retrograde fashion in the rotating frame. The family 

includes unstable and neutrally stable orbits, where the unstable orbits pass near the earth. Figure 16 shows the state 
space curve of initial conditions that produce these orbits, up until they impact either the earth's or the moon's 
surface. The gray portion of the curve indicates where the orbits are neutrally stable; the rest of the curve 
corresponds with unstable orbits. Figure 17 shows characteristic DROs of this type in position and velocity space. 

Simpl~Periodic Symmetrical Orbits in the EarthMoon System 

50 100 150 200 250 300 350 

% (XI o3 km) 

Figure 16. The curve of initial conditions that produce Family C, the family 
of distant retrograde orbits about the moon. The points in gray represent 
neutrally stable orbits; the points in black represent unstable orbits. 

Distant Retrograde Orbits about the Moon Distant Retrograde Orbits abwt the Moon 

x(xlo3 km) Vx (kmls) 

Figure 17. The position (left) and velocity (right) plots of Family C: the family of 
distant retrograde orbits about the moon. The orbits in gray are neutrally stable; the 
orbits in black are unstable. 
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The invariant manifolds of the DROs found in this study are generally not very interesting. The neutrally stable 
DROs, although great for station-keeping requirements, do not lend themselves to free transfers of any sort. The 
orbits that approach the earth, however, do experience brief moments of large instabilities as they pass by the earth. 
Figure 18 shows an example of a stable and an unstable invariant manifold produced from one of these unstable 
DROs. Only four trajectories were propagated on these manifolds, but those were propagated for a year. One can 
see that the earth's perturbations influence the trajectories to go nearly anywhere in the system, but the flow near the 
manifolds is stable except near the earth or moon. Table 6 lists the initial conditions and Jacobi constant for the host 
DRO. 

Table 6. The initial conditions and Jacobi constant for the DRO shown 
in Figure 18, given in normalized units. 

Orbit xo vo C 
Figure 18 0.05202914 5.39508005 1.70562520 

Stable Ineliant Manifold Unstable Inmiant Manifold 

X ( X ~ O ~  km) x (~10' km) 

Figure 18. The stable (left) and unstable (right) invariant manifolds for a distant retrograde orbit 
about the moon. 

D. Family D: Low Prograde Orbits about the Moon 
Family D consists of orbits that traverse the moon in a direct fashion in the rotating frame. The family includes 

unstable and neutrally stable orbits, where the unstable orbits pass near LL,. Figure 19 shows the state space curve 
of initial conditions that produce these orbits, up until they impact the moon's surface. The gray portion of the curve 
indicates where the orbits are neutrally stable; the rest of the curve corresponds with unstable orbits. Figure 20 
shows characteristic low prograde orbits of this type in position and velocity space. 
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Simple-Periodic Symmetrical Orbits in the Earth-Moon System 
2.4r : 

-. . 
380 385 390 395 400 

X,, (xlo3 km) 

Figure 19. The cuwe of initial conditions that produce Family D, the family 
of low prograde orbits about the moon. The points in gray represent neutrally 
stable orbits; the points in black represent unstable orbits. 

( ; surface 

x(xlo3 km) 

1 

Vx (kmls) 

x (XI o3 km) Vx (kmls) 

Figure 20. State space plots of Family D: the family of low prograde orbits about the moon. Position plots 
are continued in (a) and (c); velocity plots are continued in (b) and (d). The orbits in gray are neutrally 
stable; the orbits in black are unstable. 
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The invariant manifolds of the family of low prograde orbits are interesting as the orbit family approaches LL,. 
An example set of stable and unstable invariant manifolds of this family is shown in Figure 21. The trajectories in 
the manifold have been propagated for approximately two weeks. The structure in these manifolds is less 
pronounced than in the Lyapunov orbit manifolds, mostly due to the close proximity of these manifolds to the moon. 
The initial conditions and Jacobi constant for this orbit are shown in Table 7. 

Table 7. The initial conditions and Jacobi constant for the low prograde 
orbit shown in Figure 21, given in normalized units. 

Orbit xo V o  C 
Figure 2 1 0.99900000 1.39554029 3.18374229 

Stable Inmriant Manifold 

40 r I 
Unstable hmriant Manifold 

I 

soL t ,  ' -401 I ,  
260 280 300 320 340 360 380 400 420 260 280 300 320 340 360 380 400 420 

~ ( ~ 1 0 ~  km) ~ ( ~ 1 0 ~  krn) 

Figure 21. The stable (left) and unstable (right) invariant manifolds of a low prograde orbit about the 
moon. 

E. Family E: Distant Prograde Orbits about the Moon 
Family E consists of some of the most interesting direct orbits about the moon. The family includes a neutrally 

stable region that would have branched fiom Family D in the case when p = 0. Continuing that region toward LL2 
one finds orbits that are nearly symmetrical to those found in Family D; continuing toward the moon's surface one 
finds orbits that loop around in the rotating fiame, eventually making two close flybys of the moon per period. 
Figure 22 shows the state space curve of initial conditions that produce these orbits, up until they impact the moon's 
surface. Figure 23 shows characteristic distant prograde orbits of this type in position and velocity space. 
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Simple-Periodic Symmetrical Orbits in the Earth-Moon System 
2.5r  . 

Moon- 

; Moon's 

380 390 400 410 420 430 440 

% (xlo3 km) 

Figure 22. The curve of initial conditions that produce Family E, the 
family of distant prograde orbits about the moon. The points in gray 
represent neutrally stable orbits; the points in black represent unstable 
orbits. 
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Figure 23. State space plots of Family E: the family of distant prograde orbits about the moon. Position 
plots are continued in (a) and (c); velocity plots are continued in (b) and (d). The orbits in gray are neutrally 
stable; the orbits in black are unstable. 
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The invariant manifolds of the family of distant prograde orbits are interesting as the orbit family approaches the 
moon. The invariant manifolds of the orbits that approach LL2 are similar to those that approach LL, fkom Family D 
and won't be reproduced here. Figures 24 and 25 show two example sets of stable and unstable invariant manifolds 
of Family E. The trajectories in the manifold have been propagated for approximately one month. The structure in 
these manifolds includes sharp features as the trajectories approach the moon's surface. The initial conditions and 
Jacobi constant for this orbit are shown in Table 8. 

Table 8. The initial conditions and Jacobi constants for the distant 
pmgrade orbits shown in Figures 24 and 25, given in normalized units. 

Orbit xo V o  C 
Figure 24 1.0564 1000 0.4516603 1 3.1 1538832 

Stable lnlariant Manifold Unstable Invariant Manifold 

x(xio3 km) X(XI$ km) 

Figure 25. The stable (left) and unstable (right) invariant manifolds of a distant prograde orbit about the 
moon. The Jacobi constant for this orbit is approximately equal to 3.11538832. 

Stable lrneriant Manifold Unstable Invariant Manifold 

~ ( x l d  km) x(x103 km) 

Figure 24. The stable (left) and unstable (right) invariant manifolds of a distant prograde orbit about the 
moon. The Jacobi constant for this orbit is approximately equal to 3.00176743. 

19 
American Institute of Aeronautics and Astronautics 



F. Family F: Periodic Resonant Lunar Flyby Orbits 
Family F consists of orbits that make periodic close flybys of the moon while orbiting the earth in nearly two- 

body motion. These periodic flybys may occur at any resonance with the moon. This paper has explored three such 
families that fly by the moon beyond its radius, safe for all missions designed in the PCRTBP. Figure 26 shows the 
state space curve of initial conditions that produce these orbits, up until they impact the moon's surface. It is more 
useful to plot xo vs. the orbit's period for these families because then the resonances may be identified more readily. 
The families constructed here have resonances near 3:2,5:2, and 3:l with the moon. The curves each continue, but 
by continuing the curves one would introduce orbits that struck the moon. However, those orbits certainly are useful 
if one is interested in impacting the moon or understanding orbits that do impact the moon (or depart from the 
moon). This will be discussed more later. Figure 27 shows characteristic orbits of this resonant periodic type in 
position and velocity space. 

Simple-Periodic Symmetrical Orbits in the Earth-Moon System 

loo Y 
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% (x103 km) 

Figure 26. The cuwe of initial conditions that produce Family F, the family 
of simple-periodic resonant flyby orbits. Every orbit shown here is unstable. 
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Family F, 
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Figure 27. State space plots of Family F: the family of distant resonant orbits about the moon. Family F1 
(3:2 resonance with the moon) is shown in (a) and (b); Family F2 (52  resonance) is shown in (c) and (d); 
Family F3 (3: 1 resonance) is shown in (e) and (0. All of the orbits shown here are unstable. 
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The invariant manifolds of the families of resonant flyby orbits are certainly interesting because of their close 
proximity to the moon. The dynamics are very stable during the lengthy trip around the earth since the moon's 
perturbation at those distances is minimal. Nonetheless, the small deviations about the nominal periodic orbit will 
be much more magnified as the third body draws nearer to the moon and during the lunar flybys. This characteristic 
of the orbit's stability is observable from the stable manifold plotted in Figure 28 (symmetric to the unstable 
manifold). This manifold corresponds to an example periodic orbit from the F1 family. One can see in the blow-up 
of the region near the moon that the trajectories were bunched prior to the lunar swingby; the trajectories spread out 
much more noticeably after the encounter. The trajectories in the manifold were propagated for approximately six 
weeks. The initial conditions and Jacobi constant for this orbit are shown in Table 9. 

Table 9. The initial conditions and Jacobi constants for the distant 
prograde orbits shown in Figures 24 and 25, given in normalized units. 

Orbit xo Wo C 
Figure 28 1.01703000 0.85628297 3.05359715 

Stable Inwriant Manifold 

X (XI o3 km) 

Figure 28. The stable invariant manifold of a resonant lunar flyby orbit in the Earth-Moon system. Notice 
in the blow-up how the trajectories spread out after the flyby with the moon. 

111. Orbit Transfers 
Once a particle or spacecraft is on an unstable periodic orbit in the three-body system, then it may theoretically 

stay there for an arbitrarily long time or it may fall off of that orbit by following any trajectory on that orbit's 
unstable manifold. Theoretically the manifolds approach the unstable periodic orbits asymptotically and a particle 
on the orbit would take an infinite amount of time to depart; but in the real world there are constant perturbations 
and one is never actually on the periodic orbit. Thus the cost of controlling the departure in a real mission is the 
same order of magnitude as station-keeping. 

One may notice by studying the unstable manifolds from the orbits given in the previous section that by 
controlling exactly when the spacecraft departs from its periodic orbit, it may be able to transfer to numerous other 
locations in the state space, including, but not limited to, the surface of the moon, any of the five lunar Lagrange 
points, another unstable periodic orbit in the system, or an escape trajectory away from the vicinity of Earth. The 
spacecraft may perform any of these transfers for free if the destination has the same Jacobi energy as the 
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spacecraft's host periodic orbit. If not, then at least one maneuver will be required to change the spacecraft's Jacobi 
energy$. 

A. Heteroclinic Transfers 
A flee transfer flom one periodic orbit to another is known as a heteroclinic transfer. These transfers are 

theoretical constructs since the trajectories on an orbit's stable invariant manifold asymptotically approach the orbit 
without ever achieving the orbit. Nevertheless, heteroclinic transfers in the PCRTBP are a good approximation for 
fkee transfers in the real system. Figure 29 shows a plot of the orbit families given in this paper and their Jacobi 
constants. Any two unstable orbits with the same energy may have a flee transfer between them. The regions 
outside of this plot are less interesting in terms of fiee orbit transfers because the orbits outside of this region are 
largely stable orbits. 

Simple-Periodic Symmetrical Orbits in the Earth-Moon System 

240 260 280 300 320 340 360 380 400 420 440 

% (xlo3 km) 

Figure 29. A state space diagram of the periodic orbits in this paper. The black 
curves are unstable orbits; any two unstable orbits with the same Jacobi constant 
have a set of free transfers between them. 

To construct a flee transfer between two unstable periodic orbits, one only needs to find the intersection of the 
fnst orbit's unstable manifold with the second orbit's stable manifold. At any intersection in position-space, the 
third body may perform a maneuver to transfer onto the new manifold, where the required AV is the difference in 
velocities between the two manifolds at the intersection. If the two manifolds intersect in position and velocity then 
the transfer is flee. Free transfers require the third body to depart fiom its origin orbit at precisely the right time and 
then arrive onto the destination orbit at a specific point in the orbit. If those conditions are not ideal for a mission 
then a maneuver could be made to satisfy other mission criteria. 

To demonstrate flee transfers in the PCRTBP, this study has produced fkee transfers between unstable orbits in 
Families B and E (both B-E and E-B) and between unstable orbits in Families E and A for several different Jacobi 
energy values. Figures 30, 31, and 32 show these four transfers for Jacobi constants of 3.13443929, 3.09418559, 
and 2.96330290, respectively. Other transfers exist between Families D and B/E/A as well as between Families F, 
and B/E/A. Figure 33 shows the transfers between on orbit of Family F1 with an orbit in Family A. 

' This is true in the PCRTBP; however, in the real system the spacecraft or particle could have an interaction with 
another planetary body, solar radiation, drag, etc, that would alter its Jacobi energy. 
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Free Transfer, C = 3.13443929 

i ,  
320 340 360 380 400 420 440 
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Figure 30. Free transfers between Families B (Lyapunov orbits about LL1), E (distant prograde orbits 
about the moon), and A (Lyapunov orbits about LL2) where all three orbits have the same Jacobi constant 
C = 3.13443929. 

Free Transfer, C = 3.09418559 

320 340 360 380 400 420 440 460 
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Figure 31. Free transfers between Families B (Lyapunov orbits about LL,), E (distant prograde orbits 
about the moon), and A (Lyapunov orbits about LL2) where all three orbits have the same Jacobi constant 
C = 3.09418559. 
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Free Transfer, C = 2.96330290 

x (xl o3 km) 
Figure 32. Free transfers between Families B (Lyapunov orbits about LL1), E (distant prograde orbits 
about the moon), and A (Lyapunov orbits about LL2) where all three orbits have the same Jacobi constant 
C = 2.96330290. 

Free Transfer, C = 3.06934582 
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Figure 33. Free transfers between an orbit in Family F, (Resonant lunar flyby orbit) and an orbit in 
Family A (Lyapunov orbits about LL3 where both orbits have the same Jacobi constant C = 3.06934582. 

Since these orbit transfers are fiee, a combination of such transfers will constitute another periodic orbit solution 
in the PCRTBP. Several of these periodic transfers are introduced as periodic orbits in Ref. 18, e.g. orbits 
categorized in the Families Hb and g3. In fact, due to the dynamics in the system, one may construct a trajectory that 
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follows any unstable periodic orbit for pl periods, transfers to the vicinity of another periodic orbit and follows it for 
p2 periods, transfers to another, ad inznitum, where the values of pi, for i = 1,2, ...,a, are arbitrary non-negative 
integers19. If the sequence of pi's is periodic then one has constructed a periodic orbit solution in the PCRTBP. 
Thus, there are infinitely many periodic orbits in the system. 

IV. Mission Design Opportunities 
It has been seen that one may transfer between unstable periodic orbits of equal energy for fi-ee. One may use 

this to construct a mission design architecture for the Earth-Moon three-body system, or for any other three-body 
system as well. This subject will be further discussed in later papers. 

Many mission design options are available that may take advantage of the orbits shown in this paper. First of all, 
since there are heteroclinic connections between the various families of orbits, one always has the option to transfer 
to those other locations in the Earth-Moon space, provided that one has the correct energy level (and the required 
energy ranges are wide for the Lyapunov orbits and prograde orbits). If one is interested in escaping fi-om the Earth- 
Moon system, one need only follow the unstable manifold of one of these unstable orbits. The orbits that pass very 
close to the moon, i.e., the large resonant orbits, have a wide range of possible escape trajectories since deviations 
near the moon are magnified greater than deviations away from the moon. The moon's influence may be used as a 
gravity slingshot to send spacecraft out on missions, but it may also be used as a target for returning spacecraft. An 
incoming spacecraft may target the stable manifold of an orbit that passes near the moon, such as a large, periodic 
resonant orbit. Then it may use that periodic orbit as a staging or quarantine orbit. The large resonant orbits are 
particularly interesting to be used as a quarantine or staging orbit because they require little station-keeping except 
when approaching and near the moon. Since there are so many resonant orbits, one may select the period of choice 
to be used as the staging orbit. From that orbit, the spacecraft could transfer for free to the surface of the moon, to 
other periodic orbits, such as the Lyapunov orbits, or to a trajectory that will fly by (or collide with) the earth. 

V. Conclusions 
The exploration of simple periodic orbits in the PCRTBP has revealed that numerous orbits contain invariant 

manifolds that can be used in the Interplanetary Superhighway. It has been found that heteroclinic orbits exist 
between two unstable orbits in the PCRTBP that have the same Jacobi energy. The orbits' invariant manifolds 
provide a good way to locate these heteroclinic orbits quickly. Finally, these orbits provide a good foundation to be 
used when constructing an architecture for mission design options in the three-body problem. Additional work will 
be completed shortly extending the focus of this paper into the third dimension and outside of periodic symmetrical 
orbits. The extensions to this work appear promising for future mission design opportunities. 
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