
Characterization of Future Deep Space Computing Loads

Peter M. Kogge
Univ. ofNotre Dame
kogge@cse.nd.edu

Jeffrey Namkung, Nazeeh Aranki,
N. Benny Toomarian

Jet Propulsion Laboratory
{Jeffrey.Namkung, Nazeeh.I.Aranki,
Nikzad.Toomarian} @jpl.nasa.gov

Kanad Ghose
State Univ. ofNew York

at Binghamton
ghose@cs.bingham­

ton.edu

Abstract

This paper reports on the characteristics ofa future
deep space computing application. This includes the
testbed used to make the measurements. the application
suite itself, the scenarios measured. the detailed power
and performance measurements taken, and the timing
characteristics ofthe system.

1. Introduction

As part of the MORPH project [I] on inherently low
power microprocessor architectures, a collaboration of
the Univ. of Notre Dame, JPL, and the State University
of New York at Binghamton have developed a testbed
of a future deep space mission, DEEP IMPACT [2], and
instrumented it to provide insight into very realistic
processing loads and timing requirements under a vari­
ety of scenarios. Our original project goal was to use
this data to baseline time and power data against which
our proposed new architectures [5] would be, and have
been [4], evaluated. However, the wealth of data from
this testbed is useful for far more than just our project,
since they represent a unique view into a type of appli­
cation that will become of increasing importance,
namely embedded systems involving multiple different
tasks running under real-time constraints.

This paper will describe the testbed facility, an appli­
cation suite that when running on the testbench mirrors
closely the code expected to run on the real mission,
and summarize the key characteristics of load patterns
derived from this testbed.

2. An Instrumented TestBench

The testbench itself is modified single board com­
puter (SBC) of the same type and performance as is
projected to fly in several future missions. Modifica­
tions to the board include chip extenders to allow
access to individual chips. This testbench was then con­
nected to a testbed that provided a simulation of the rest

of the spacecraft, in real time. A methodology was then
developed that allowed instrumentation connected to
this testbench to perform significant and detailed power
and timing measurements, while application scenarios
were being run.

2.1. The Modified Single Board Computer

We chose an SBC designed by WindRiver that
housed a Motorola PowerPC 750 processor, 128 MB
RAM, a serial port, and two PCI ports. It runs VxWork-

stm as its operating system, just as the real system. One
PCI port contained a Network Interface Card, while the
other PCI port contained a reflective shared memory
card. This board was a prime choice due to its use of a
PGA (Pin Grid Array) connection to attach the proces­
sor chip to the board. This allowed us to access all the
pins on the processor, and thus directly measure current
between the power and ground pins on the processor.
Furthermore, access to all the I/O pins allows the use of
a logic analyzer to accurately obtain a timing profile of
the processor's interaction with peripheral devices, e.g.
bridge controllers, memory, etc.

Modifications as seen in Figure I were made to the
SBC to allow access to circuit connections designated
for power to the processor. An oscilloscope with a cur­
rent probe measured the current being drawn by the
CPU and memory. A power distribution module pro­
vided easy access via a connector to the board housing

Figure 1. The single board computer

2.3. Measurement Methodologies

Figure 3. Babybed autonomous test bed
computer is responsible for running a space environ­
ment simulator as inputs to the flight software.

A performance profile was generated for the flight
software in terms of cache misses, CPU utilization, and
MIPS. These figures can be seen in Table I..

The test bench described in the previous section was
ported to the autonomous test bench by replacing the
single-board computer running the flight software with
the power measurements test bench. Because the power
measurements test bench provided two PCI slots, a
reflective memory card with a PCI interface was used
to enable communication of the space environment
simulator with the power measurement test bench.

2.2. Monitoring Facilities

JPL supports an Autonomous Test Bench, known as
Babybed, which had been previously been developed
for mission software development and performance
benchmarking, as shown in Figure 3. The system runs
on two processors that share a common VME or PCI
back plane. One processor runs a simulation of a virtual
vehicle and the second processor runs the control soft- Power profiling was performed at three levels of
ware that drives the simulated vehicle, currently a granularity. At the fine-grain level, power was mea-
three-axis stabilized, free-floating spacecraft. The simu- sured at the instruction-level. The instruction set of the
lation is a fully end to end real-time software simulation processor used for experiments, a Motorola PowerPC
which allows actual mission fight software to commu- 750, was profiled comprehensively, i.e. a measurement
nicate with virtual spacecraft devices like actuators and for each instruction in the instruction-set was obtained.
sensors, as well as power, telecom and science hard- The basic idea for profiling was to place a single
ware. As commands are issued and executed by the vir- instruction into a loop, and repeat it until it reaches a
tual devices, the spacecraft dynamics are affected steady state. At this point we could measure the power
accordingly and the sensor models sense the results. of that instruction. More details of this method is docu-

The autonomous test bench also includes two single- mented in [6], with a subset seen in Figure 4.
board computers communicating via shared memory. At the medium-grain level, power was measured at
implemented by using two reflective memory cards and the event-level. Events at the micro-architecture level
a fiber optical cable providing transparent communica- included data-forwarding, cache accesses, floating-
tion between them. One of the SBCs is responsible for point pipelining, instruction units, etc. A sequence of
running the flight software. The other single-board instructions was programmed with the understanding

Table 1. Basic processor characteristics

Figure 2. Current probe
the processor and memory. Calculating power from the
current measurements was simply done by measuring
the voltage at the CPU and memory and using the prod­
uct of the two to determine the instantaneous power
consumption. Figure 2 pictures an oscilloscope with the
current probe attached to the SBC to measure power.

MIPS Rating far Selected Tests

Test
T.st Name

MIPS (PPC7S0 .. MIPS (PPC7S0 ...

It 233MHz) 133MHz)

2 pre launch Idle 2•• '5'
3 posi 'detum"bie:' Idle 2.0 "9
5 dseu in scan mode

7 bursting dseu and I
I····

258

12 im'age"co'mp'ress'j"o" 195 ,"
13 a mit Oeter~'in8tl'o'n" '21

Tnt

13 0 rbit Determination O.10~.- ".""" .
H ManueverPlanrolng

PPC7S0

CPU IDLE

"

Instruction Execution units Measured
involved current

(Amps)

subfze Both IV· units 1.75

subf Both IV units 1.89

subfe Both IV units 1.90

subfe Both IV units 1.75

subfle Both IV units 1.90

subfme Both IV units 1.77

sub Both IV units 1.88

addle Both IV units 1.90

addis Both IV units 1.89

dlvw IV2 1.65

muUw IV2 1.78

Figure 4. Sample instruction power measurements

that certain events would take place. For example,
sequencing an add instruction with dependencies on
each previous add instruction would invoke the data­
forwarding mechanism to avoid pipeline stalls. Further
details on the methodology and analysis of these results
can also be found in [6].

Lastly, coarse-grain measurements were performed
at the operating system level by analyzing multiple run­
ning tasks and associated power profiles with the tasks.
This paper focuses on these results.

To identify tasks that were executing during a test
we invoked a WindRiver tool called WindView. This
allowed us to generate a timeline of software activity.
The start and stop time ofeach task when it took control
of the processor was shown graphically and could also
be stored in a database file. Combined with the power
measurements, the relationship between the power pro­
file of software and the tasks running were trivial.

2.4. Power Measurements

Power profiles were taken from a subset ofthe entire
software suite. The modules we chose to profile
included image compression, orbit determination,
maneuver planning, and several operating modes. The
first three mentioned are of importance because they
show dynamic profiles that reflect their computational
complexity. Figure 5 shows power profiles for these.

2.5. Timing Measurements

The timing profiles produced by WindView became
very useful in determining which task was consuming
power at different times. Graphically, the timing pro­
files for each of the three modules mentioned above can

be seen in Figure 6. As can be seen, there is a close cor­
relation between power profiles and timing profiles.

3. The Application Suite

The application suite used in Morph is derived from
the Deep Space I (DSI) mission, and modified to
reflect potential use on the Deep Impact mission. Deep
Impact involves a comet orbiter that includes an instru­
mented spike-like probe. After release from the orbiter,
the probe will impact the comet. Visual analysis of the
dispersal from the orbiter should yield significant
insight into the interior nature of the comet.

The DSI flight software is comprised of some 60
tasks that are initiated and initialized at startup, and run
forever. The tasks vary in priority. Some tasks wake up
and execute in response to interrupts, and others run
when the scheduler activates them. The software oper­
ates loosely on a I second cycle. Nominally all tasks
run at least once every second. Some tasks run more
frequently (4Hz and 8Hz rates). The general procedure
is for a task to wake up, run and go back to sleep (pend­
ing state).

When a task wakes up, it performs some basic duties
and/or check its inter-process communications (IPC)
queue(s). It will attempt to complete its duties and/or
process all the data in its queue(s) before it is suspended

m_'

Figure 5. Sample power profiles

by the operating system. Any unfinished business is
picked up the next time the task awakes. Naturally,
tasks with high priority have more opportunity to exe­
cute each second than lower priority tasks. As a result,
busy high priority tasks may prevent lower priority
tasks from ever waking up within some second.

When there is not much activity and all tasks finish
early within the I second interval, the tIdleTask uses the
remaining time. As system activity increases, the
amount of time the tIdleTask runs becomes less and
less. Further details can be found in [3].

Due to ITAR restrictions, the DS1 flight software is
not publicly available to the research community. As an
alternative, a software module from the suite was modi­
fied so that it could be made publicly available. The
module chosen, MICAS, is an image compression algo­
rithm. The computational complexity coupled with the
need for generous amounts of memory I/O made this a
good choice for power profiling and optimization.

In addition to providing the MICAS source, 1PL per­
formed both power and performance characterization of

Figure 6. Timing Profiles

Figure 7. MICAS power details
the software without any optimizations. A general
power profile of MICAS can be seen in Figure 7(a).

WindView provided a timing profile of the tasks
running. The results from WindView can be seen in
Figure 7(b). As can be seen there is a strong correlation
between the power and timing profiles.

Each task trace shown graphically was exported to
an Excel worksheet displaying the timestamps of each
task's start and stop time, as demonstrated in Figure 8.

3.1. Simulated Flight Scenarios

Seven different flight scenarios were profiled for
power consumption and time traces. The first scenario
(prelaunch) simulated the flight computer while in an
idle state prior to vehicle launch. The second scenario
was to profile the flight after a vehicle launch. The third
and fourth scenarios (DSEU_Scan and DSEU_Burst)
involved placing the flight computer into different
modes corresponding to their DSEU operation. The
remaining scenarios involved image compression, orbit
determination, and maneuver planning.

The Motorola PowerPC 750 can be configured to
enable access to an L2 cache or to bypass the L2 and go
directly to memory. In addition, a dynamic power man­
agement (DPM) feature, based on clock gating, can be
enabled or disabled. Most of the seven scenarios men­
tioned above were run in three modes: L2 enabled with
DPM on, L2 enabled with DPM off, and L2 accesses
disabled with DPM off.

lWvRButlMgr
tNetTask
tWdbTask
Idle

0.0 lNetTask
0.0166696 Idle
0.0185665 Idle
0.0185665 !NetTask
0.0186709 Idle .
0.0186709.lNetTask
0.0333347 .idle

Figure 8. Sample Task Trace

4. Trace Processing

The traces as gathered from the testbench formed the
basis for the load analysis of the Deep Impact code
done for the Morph project. This analysis was done in
three steps - a preprocessing step, an interval identifica­
tion and analysis step, and a power modeling step. The
last is discussed more fully in [4].

4.1. Preprocessing

The trace logs consisted of literally thousands of
entries, each giving start time and task number. These
were first inspected to eliminate recording errors, and
then preprocessed to remove effects of the task tracing
hooks by replacing all routines known to be part of the
testbench system, and not to be found in the expected
flight software, by idle. Multiple neighboring entries to
the same task (primarily idle) were then collapsed into
one, and each remaining trace entry augmented from
outside information with the task priority (in the current
state of the flight software, priority assignments are
static, and range from a highest level of "0", to a low
idle level of "255"). A variety of global statistics were
then computed for each trace, such as total time, tasks
started per second, total busy and idle time, etc., along
with statistics on each task, such as the number of times
it was run, the minimum, maximum, and average exe­
cution times, and the standard deviation in this time.

4.2. Interval Analysis

From each preprocessed trace, sequences of process­
ing "intervals" were identified, where one interval starts
at the end of an idle period, after which a string of one
or more real tasks were executed, and terminated with
some other idle period. For each such interval, the over­
all busy and idle periods were computed. Histograms
were then developed from this data.

A key statistic taken from each such interval for use
in the power modeling analysis was the ratio of the total
interval time to the processing time. This ratio indicates
by how much a factor the CPU's performance could be
slowed down during the processing period to eliminate
the idle period, and run in a lower power mode. Again,
this is discussed more fully in [4].

5. Application Characterization

Table 2 summarizes the overall characteristics of
each of the 15 scenarios investigated, including:

the scenario name (with "00", "of', & "ff" corre-

Table 2. Overview Scenario Characteristics

I""""

sponding to L2 and DPM on and off),
the overall power configuration (whether or not the
L2 cache and/or the DPM facility was active),
the total time of the simulated mission phase,
the total number of original traces from the trace
log, expressed as an average per second,
the equivalent number of scheduling "events" per
second after eliminating the non-operational tasks
and combining idle tasks,
the average number of intervals per second that
would be observed in the mission phases,
the percent of the total scenario time that the
microprocessor was idle,
the percent of the time that the processor was busy
executing code (100% minus the prior number).

Figure 9 plots three of the more important of these
characteristics grouped by mission phase, and ordered
in rough order ofload on the CPU (% Busy).

A key observation is the broad range of busy times,
from about 3% to 60%, for a 20 to 1 variation. This ver­
ified a key premise for the Morph program as a whole
that processing loads were highly variable during mis­
sions, and that knowing that fact, and having control
over power/performance of the CPU could lead to dra­
matic overall mission power and energy savings.

One interesting observation that the data doesn't
always play out as one would expect is variations as the
settings for L2 and DPM are changed. For example, one
would expect the most busy configuration to be the
ones where L2 if off, but this is not true for Prelaunch.
A similar seeming inconsistency can be seen in the
"Intervals per second," where variations are strongest
for the middle phases when the DPM is turned off.

A more general observation is that for the most part,
the number of tasks scheduled per second changes dra­
matically versus mission phase (as expected), but does
not change much versus configuration. This makes
sense, since in each phase one would expect the same
mix of tasks to be executed at the same rates, regardless
of the loading on the microprocessor.

5.2. Execution Breakdown by Task

a
scenario, there is an even bigger variation in scheduling
rates of the different tasks.

Table 4 is similar in structure to the previous table,
but with the main table entries indicating what percent
each task's execution takes up out of a second of execu­
tion of the specified scenario. A blank entry indicates
that the task is executed for less than 0.1% of a second.
This table thus indicates how a CPU spends its time
over the average second, during each scenario. The
"tidleTask" is again the time the CPU is idle.

The "Ratio" row is the ratio of the largest entry over
the smallest non-zero entry, as evaluated over each sce­
nario. The "Ratio" column on the right gives an equiva­
lent ratio over each task.

The tasks that had a significant amount of process­
ing divided into three groups. The first are relatively
low level processing that is constant across all scenar­
ios. The second are also relatively low, but much more
scenario dependent. Finally, are heavy tasks that are
scenario dependent.

g

PLoo PLot PUt 0500 050t 05ft OBoo OBot MPoo MPot MPft 0000 OOot OOft IPoo IPot IPff Mloo
% Busy 3.09 15.26 5.56 3.95 4.84 11.41 10.06 15.88 37.49 40.74 51.93 37.79 33.56 45.69 59.98 39.87 57.60 62.42

Ratio 927.6 797.6 718.0 786.2 818.8 791.8 657.0 614.5 489.2 474.9 1.0 1.0 1.0 1.0 478.4 613.2 337.4 Ratio
t1dleTask 97% 85% 95% 96% 95% 89% 90% 84% 63% 59% 48% 62% 66% 54% 40% 60% 42% 38% 2.6

strokeWOT 0.0
health 0.0

bus 0.4% 0.4% 0.4% 0.5% 0.5% 0.6% 0.7% 0.7% 0.4% 0.4% 0.5% 0.4% 0.4% 0.5% 0.5% 0.4% 0.5% 1.7
dfi 0.1% 0.1% 0.2% 0.1% 0.1% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.2% 0.2% 0.2% 0.2% 1.7

eeo sec hi 0.0
eeo file 0.0

eeo. file small 0.0
eeo sec 10 0.0

micas 9.3% 6.3% 10% 1.6
aes 0.3% 0.3% 0.4% 0.3% 0.3% 0.4% 0.3% 0.4% 0.4% 0.4% 0.4% 0.4% 0.3% 0.5% 0.4% 0.4% 0.4% 1.5
tor 0.0
tl 0.0
t2 2% 13% 4% 2% 3% 9% 7% 13% 28% 33% 44% 33% 27% 40% 47% 31% 44% 23.4

5.1. Task Scheduhn Mix Characteristics vanation in how often each task is mvoked. \ ithin

Table 3 summarizes the dynamic scheduling charac­
teristics of the different scenarios. Scenario names are
listed across the top. The second row labeled "% Busy"
is just the average percent of time that the CPU is busy
during that scenario. "Ratio" is the ratio over that sce­
nario between the highest task scheduling rate and the
lowest non-zero scheduling rate. Next, "% of all Tasks"
is the percent of all the listed tasks that are in fact
invoked at one time or another during the scenario.

There is one row below these for each task that is
part of the operational mix (not all rows shown here).
The column next to the task name is the percent of all
the scenarios studied where that task was invoked at
least once. The numbers inside the table are the average
number of invocations of that task per second, per sce­
nario. The column on the right is a ratio between the
highest and lowest scheduling rate for that task. The
row labeled "tidleTask" indicates the number of times a
second the CPU switches into idle.

Several observations come out of this table. With the
exception of MICAS, every scenario includes some
executions of virtually every task, but with a significant

Table 3. Task scheduling characteristics

%M PLoD PLot PUt DSoo DSot DSft DBoo DBotMPoo MPot MPff0000 0001 OOff IPoo IPot IPff Mloo
% Busy 3.1 15.3 5.6 4.0 4.8 11.4 10.1 15.9 37.5 40.7 51.9 37.8 33.6 45.7 60.0 39.9 57.6 62.4

Ratio 796 808 1274 1019 699 752 716 731 941 924 950 546 503 469 1162 1554 1573
%ofaliTasks 89% 89% 95% 91% 91% 91% 91% 91% 91% 91% 93% 91% 91% 95% 89% 89% 95% 4% Ratio

t1dlaTask 100% 103 95.5 128 104 106 102 99.2 107 252 253 202 206 238 149 110 156 151 178 2.6
strokaWDT 17% 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 2.2 0.0 1.2

haalth 94% 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.3 0.3 0.2 0.4 0.5 0.3 0.1 0.1 0.1 0.0 4.7
bus 94% 25.7 25.3 29.5 24.6 25.6 26.3 24.2 24.9 25.7 24.6 27.0 26.7 23.7 26.4 27.4 36.6 34.6 0.0 1.5
dfi 94% 6.3 6.6 7.7 6.6 6.4 6.8 6.3 6.7 6.7 6.8 6.8 6.4 7.1 7.0 7.9 11.3 11.0 0.0 1.8

eee sec hi 94% 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.3 0.3 0.2 0.4 0.5 0.3 0.1 0.1 0.1 0.0 4.7
aao fila 94% 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.3 0.3 0.2 0.4 0.5 0.3 0.1 0.1 0.1 0.0 4.7

aao fila small 94% 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.3 0.3 0.2 0.4 0.5 0.3 0.1 0.1 0.1 0.0 4.7
aao sec 10 94% 0.1 0.1 0.1 0.1 3.3 0.1 0.1 0.1 0.3 0.3 0.2 0.4 0.5 0.3 0.1 0.1 0.1 0.0 33.5

micas 94% 0.3 0.8 0.8 0.2 0.3 1.1 1.0 0.7 0.5 0.3 0.4 0.8 0.5 0.6 72.4 76.9 87.3 0.0 419.6
BCS 94% 19.6 20.0 23.9 19.4 19.6 20.0 19.1 28.6 20.9 21.6 21.0 19.6 19.4 20.7 21.6 32.3 30.7 0.0 1.7
for 94% 1.0 1.1 1.4 0.9 1.1 1.1 1.0 1.0 1.1 1.1 0.8 1.1 0.9 1.3 1.3 3.0 2.6 0.0 3.5
tl 11% 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 1.0
t2 94% 104.3 96.2 121.7 106.0 105.4 104.6 100.1 98.9 106.2 104.7 97.9 93.7 96.1 82.9 116.4 145.1 157.5 0.0 1.9

adst 94% 0.4 0.7 0.8 3.1 2.7 2.9 2.9 2.6 0.8 0.8 0.6 0.4 0.5 0.3 0.6 0.7 0.8 0.0 9.8

5.3. Intervals

0.0

An interval is a period of time that starts at the end
of an idle period when a string of tasks are executed
back to back, followed by another idle period. Figure
lO(a) gives a cumulative distribution of both the pro­
cessing, idle, and total times of all intervals in the
Image Processing scenario (both L2 and DPM on). The
50% point for intervals as a whole is at about 300
microseconds, while the equivalent 50% point for idle
periods is at about 70 microseconds. On the other hand,
more than 50% of all intervals are less than 10 usee.

Figure lOeb) gives a different view of intervals for
the same scenario- a histogram of the number of tasks
in the processing part of an interval. This is an exponen­
tial drop-off, with a long tail - a significant number of
intervals have thirty of more tasks present in them.

Next, Figure lO(c) gives a scatter diagram where
each point comes from an interval in the Image Pro­
cessing scenario, L2 and DPM on. Time is in microce­
sonds. There are two strong lines that show up here.
First is a line at 0.125 seconds which must represent the
8 Hz period. Second is a 45 degree line representing
intervals with very short idle times.

Finally, Figure lO(d) gives a scatter plot of time ver­
sus number of tasks in an interval. A strong horizontal
line at I task indicates very simple intervals whose pro-

r- I----

I-- r- I----

I-- r- ~ f--

f- f- f-- f- I-- ~ f--

f- f- f-- f- I-- ~ f--

~
h

h=il flill! I
I IF

IWil I F'l!iTl I
", n.... , .. " ".,..

1;;~;;a;a;;;ooTm
.•..•.-.-~ ,..,.....

f- f-----'

f- f- f--------l
l- I- f----j

I- ~ t;F'l 181 l- I-- I-

~ih rr;;ll 1m;!

0.0

Figure 9. Characteristics by scenario
1200

1000 -1---------------:-~~-----l

140.0

1M

70.0

120.0

800.0

M

700.0

J800n

l""'"
1<010
1",,·0

1200 0

.. 100.0

1 100.0

! 80.0

i :::
20.0

1"1H--IH-t--------­
!

.. l:I lQ I:; l'J ;;; A llJ !O; III Q 11
.Gl'T..... IrI........

0.010.0001
O_-~--~----~----~

0.000001

Time (sec)

[I Processing ...•....Idle m ••m. Int""," I

2OO+---I~------------i

3 800 -mtTtt-n-HcH+LL!..!.'-'-'-'---;;II_Ii""'=+-------j

~ 800 -1-----4~---,,.w.==---------i
~.. 400 t----i~----------__j

!.,;Je tt"..... 1..._-,.. . ~

••_... .
• ':.; .

Processing Time

.
. . .~;
- ;'·11

;;...- ~.•..
1"1'.. .iii ..--.. ..--l- . ..

1.E+00
1.EiQ1 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

j
B-oo 1.EiQ1

~
'li..

1.E+021.EiQ7

1.E+OO

e 1.E+05

i= 1,E+04

1,·E+03

.5 1.E+02

l.EiQ1

1.E+OO
1.EiQ1 1.EiQ2 1.EiQ3 1.E+04 1.E+05 1.E+OO 1.EiQ7

Processing Time

Figure 10. Interval Statistics

6. Summary and Conclusions

1.E+OO
1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Proceulng Time

Figure 11. Slowdown Ratio vs, Processing Time

cessing times can vary significantly. Second is a band
that grows with the processing time. More tasks here
translates into increased processing time.

A key part of the power modeling work done on
Morph was based on slowdowns that could be imposed
on the processing parts of intervals. Figure II gives yet
another scatter plot on the same scenario, this time with
the slowdown ratio of total interval time to processing
time. What is key is the large number of intervals with
ratios in the tens, hundreds, and thousands. Also appar­
ent is the diagonal line downward. This probably corre­
sponds to the horizontal line in the prior chart, where
interval time was independent of processing time.

1.E+04

:l: 1.E+03

~

~ 1.E+02

i
iii 1.E+01

~

• •
". I ...

•• I::~••
• I"•• ;"

fL_. ..

clusters of function units, register files and cache parti­
tions on the basis of the dynamic demands of the appli­
cation [4]. The main idea is to conserve the energy
requirements of the application by allocating just the
right amount of resources to meet the instantaneous
performance needs of the computation. Additionally,
further energy conservation is achieved by deactivating
byte-slices (within the data path's interconnections,
storage artifacts and function units) that do not contrib­
ute to the results produced [8]. The MORPH run-time
system incorporates functions for explicitly controlling
data placement and its movement within the memory
hierarchy, for implementing power-aware real-time
scheduling algorithms (including facilities for tradi­
tional voltage and frequency scaling) and for selective
activation and deactivation of partitions of an inher­
ently low-power cache system. Our planned future
activities include the incorporation of these primitives
into VxWorks and an evaluation of the efficacy of our
solutions using the testbed described in this paper.

7. Acknowledgements

This work was funded in part by the DARPA Power
Aware Computing and Communication (PAC/C) pro­
gram under contract F30602-00-2-0525.

This paper has discussed a very detailed analysis of
a complex suite of real-time applications running
together on a single processor under realistic data. Our
analysis of the trace data for the Deep Impact applica­
tion reveals the presence of a large dynamic range of
the processing activities across the various phases of
this application. CPU utilizations in-between idle peri­
ods can vary dramatically; the number of scheduling
events within each phase as well as the number of inter­
vals per second within a phase can both vary signifi­
cantly from one phase to another. Understanding the
dynamics of these statistics will be invaluable in under­
standing how best to craft efficient real-time embedded
processing systems, especially for space applications.

As a particular example, the project originating this
work, MORPH, has as its core development of a pro­
cessor architecture and its associated run-time system
that is designed to cope with such processing dynamics
and actually exploit the dynamics to conserve the
energy required for such processing. Rather than using
a conventional microarchitecture that always dedicates
a fixed set of resources for the processing, regardless of
the dynamics of the application, the MORPH processor
allocates data path resources such as register file seg­
ments, issue queue and reorder buffer partitions [7] and

8. References

[I] http://www.cse.nd.edu/vcse.proj/morph

[2] http://www.ss.astro.umd.edu/deepimpact/

[3] "or PPC750 Evaluation", JPL Intemal Document 2001

[4] Peter M. Kogge, et ai, 'A Comparative Analysis of Power
and Energy Management Techniques in Real Embedded
Applications," IWIA '03, IEEE, Kauai, HI, Jan. 24, 2003.

[5] Peter Kogge, et al, "Morph: Adding an Energy Gear to a
High Performance Microarchitecture for Embedded Applica­
tions," Kool Chips Workshop, MICRO-33, IEEE Monterey,
CA, Dec. 10, 2000.

[6] Jeffrey Namkung, "An Event-Level Power Measurement
Methodology and Analysis," Master's Thesis, May 200 I.

[7] Dmitry Ponomarev, G. Kucuk, K. Ghose, "Reducing
Power Requirements of Instruction Scheduling Through
Dynamic Allocation of Multiple Datapath Resources,"
MICRO-34, Dallas, TX, Dec. 2001, pp.90-101

[8] Dmitry Ponomarev, G. Kucuk, K. Ghose, " Dynamic
Allocation of Datapath Resources for Low Power", Workshop
on Complexity-Effective Design (WCED'OI), ISCA-28,
Goteborg, Sweden, June 2001.

