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Abstract. The two most important factors in improving performance 
in any software system, but especially a real-time, embedded system, are 
knowing which components are the low performers and knowing what 
can be done to improve their performance. The word performance with 
respect to a real-time, embedded system does not necessarily mean fast 
execution, which is the common definition when discussing non real-time 
systems. It also includes meeting all of the specified execution dead- 
lines and executing at the correct time without sacrificing non real-time 
performance. Using a Java prototype of an existing control system used 
on Deep Space 1[1], the effects from adding memory areas are measured 
and evaluated with respect to improving performance. 

1.1 God 

Many features are added to the Java virtual machine and libraries through the 
Real-time Specification for Java[2] (RTSJ) with the intent to improve the real- 
time performance of Java. One of the more interesting features is the addition 
of scoped memory, where the intent is t o  separate functional regions of the 
user's application from interactions with the garbage collector (GC) . In theory, 
a scoped memory area is entered prior to  the execution of a functional region 
and exited after the region. The functional region does not interact with the GC 
because reclamation occurs when the thread count in a scoped memory region 
goes 1;o zero and is performed without the aid of the GC. Of course, allocating 
and reclaiming memory without the aid of the GC means that there are rules on 
cross referencing memory areas that are detailed in the RTSJ. The goal of t h s  
work is to  demonstrate that the intent of the scoped memory area holds true 
with "real world" software. 

1.2 Approach 

A Java prototype of the Deep Space 1 attitude control system was developed in 
order to  show that Java is usable in the production of spacecraft software. The 
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prototype was profiled on the desktop to measure memory and processor usage. 
The )profile information shows that almost all of the garbage collected memory is 
alloc.sted in the portion of the system that computes the output response from 
the sensor input - the control law. The excessive allocation js due to  the choice 
of arlzhitecture for the prototype which forces an immutable implementation of 
a physical units package. The physical units package is used extensively when 
converting from the input of angular velocity to  the command thrust of each 
individual thruster. Hence, the control law allocates enough data to activate the 
GC in about 3 cycles. The software was then adapted to include placing the 
control law within a scoped memory block whose size was larger than required 
as m~easured from the profiling and placing instrumentation in critical parts of 
the system. The latter adaptation was done because there are no tools available 
for p.rofiling with Timesys's Reference Implementation[S] of the RTSJ (RI). 

1.3 Tools 

COTS graphical development tools were used extensively in this project. Specif- 
ically, the open-source Eclipse[4] integrated development environment provided 
graphical code editing, browsing, debugging, and refactoring capabilities. Head- 
way's Review[S] product was used to graphically inspect our design, plan refac- 
toriny, and allow us to maintain a consistent architecture. Additionally, JProbe[6] 
was used to examine memory usage and to identify critical regions for future op- 
timization. Lastly, Timesys's Reference Implementation[S] of the RTSJ is used 
because it is the only fully functional, freely available implementation of the 
RTSJ'. 

2 ]Measuring Time 

The original intent was to  use the clocks and date functions provided by Sun's 
JVM and the ELT. However, both of these implementations limit the time resolu- 
tion to a millisecond and the smallest time scales being measured stre hundreds 
of microseconds. Therefore, a simple JNI interface to the Linux time services 
was cleveloped which has a microsecond resolution. This section is devoted to  
the characterization of the JNI interface with Sun's JVM and the FU, using the 
same shared libraries and byte code for all tests. 

2.1 Using Sun's JVM 1.4.1 

As can be seen from the histogram (see Fig. 11, using either the Mandrake 9.0 
stock kernel or the Timesys red-time Linux kernel version 3.2 has little affect 
on the latency where almost all calls are between 3 and 25 microseconds. I t  can 
also b~e seen in figure 3 that there appears to  be a periodic delay associated with 
the Sun JVM which corresponds to  the third mode around 1.3 milliseconds in 
the histogram. An attempt was made to profile this test in order to determine if 
the third m.ode was related to  the GC, but the profiler measurement interfered 
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with the test and the results were less than clear. However, an analysis of the 
test ~ j o f t w ~ e  indicates with a good level of confidence that the object allocation 
rate corresponds t;o the second mode, but the analysis is not complete and is too 
speculative to say conclusively that it is the GC. There are only minor differences 
in results between the two kernels and they all appear in the distribution of higher 
ordered modes. 

Fig. 1. JVM 1.4.1 Latency Histogram 
This diagram illustrates the Iatei~cy behavior differences between the Mandrake 
9.0 s1,ock kernel and Timesys's real-time kernel with respect to  retrieving the 
current time using the JNI  and a call to  gettimeofday from jsys/time.hi. 

2.2 Using the RI 

As can be seen from the histogram (see Fig. 21, the RI behaves wildly different 
from the Sun JVM, where the main difference for the little bit of code being 
executed is the HotSpot compiler. Given a very aggressive GC, the allocation 
rate links the second or third mode to the garbage collector. However, there is 
still an undetermined, systematic error just as influential as the GC which is 
causing the other mode. The large difference can be seen in the first mode of 
the histogam, where the M's distribution is much more Poisson than is Sun's 
JVM counterpart1 and is centered at a much higher value. The best explanation 
for the constant offset and wider distribution is the lU's lack of HotSpot or any 
other just-in-time compiler technology. Each iteration of the loop in the RI is 

It is expected that the first mode of the histogram for Sun's JVM is also Poisson, 
but at a much smaller scale like 2 to 50 microseconds. 



4 A1 Niessner et al. 

interpreted, while only the first few in Sun's JVM are interpreted before they 
are compiled. However, expecting transient delays from the HotSpot compiler, 
the first 100 were ignored in ail the tests, allowing the JVMs to reach a steady- 
state condition before measuring began. Hence, none of the delays seen should 
be associated with HotSpot. 

Fig. 2. RI Latency Histogram 
This diagram illustrates the latency behavior of the RI with Timesys's real-time 
kernel with respect to  retrieving the current time using the JNI and a call to 
gettimeofday from jsys/time.hi. 

3 llleasuring Performance 

The .lava prototype being measured can be broken into three distinct parts: the 
full software loop, the control law, and the thruster command processing. The 
thruster command processing portion takes as input the desired thrust from the 
control law and commands the individual thrusters on the spacecraft to  exert 
the specified force. The control law takes as input the latest sensor readings and 
the desired attitude requirements, allowing it t o  compute the desired force to 
meet its requirements. The full loop does all of the management related tasks, 
making sure that the other two components have their necessary inputs and that 
all other management tasks are made aware of what is happening. 

Just as with the previous tests, the software is moved from a Maadrake 9.0 
system with a stock kernel to the Timesys real-time kernel using Sun's JVM as a 
baseline. I t  is then tested with RI JVM using none of the RTSJ features. The RI 
scheduler is then added, followed by scoped memory areas. Some of the results 
will t'hen be compared to highlight the most interesting details. 



Title Suppressed Due to Excessive Length 5 

Samwle Number 

Fig. 3. Latency Times 
This diagram is the measured latency from a call through the JNI to gettime- 
ofday from jsys/time.hi for all JVM's and kernels used. It is the data that was 
used to construct the histograms in figures 1 and 2. 
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111 order to execute the same code on both the desktop and with the RI, an 
abstraction layer was added to the system to separate the problem being solved 
from any implementation of the desired solution. There are two abstraction layers 
that are used during this test to  change the behavior or the Java prototype: a 
scheduler abstraction Iayer and a memory area abstraction layer. The scheduler 
abstraction layer basically delegates either to the RI default scheduler or to a 
home-grown scheduler. The homegrown scheduler was written not as a serious 
scheduler but, rather, as a tool to  allow the Java tools available on the desktop 
to used with the prototype. The memory area abstraction layer either delegates 
to th.e RI memory areas when on that platform or simply uses the heap when 
using; Sun's JVM, and the scoped memory is allocated in the immortal space 
when delegating to  the RI. 

3.1 On the Desktop 

The performance chart (see Fig. 4) shows a distinct improvement (roughly 4x) in 
the nzaximurn processing time between the stock kernel and Timesys's real-time 
kernel. In any case, all cycles were processed within their alloted time. It is also 
important to notice that none of the delays over two milliseconds occurred while 
the control law was in operation, which is the heaviest allocation portion of the 
system. Profiling also suggests the GC caused the difference, but it cannot be 
stated conclusively. If i t  really was the GC, the expectation is the GC would 
actimte during the heaviest allocation portion of the system because memory 
was exhausted. Otherwise, the processor duty cycle is less than 25%, which leaves 
plenty of processing power for the GC to complete. If the GC did not complete in 
time, then the software would either process as normal or report that a complete 
cycle was missed. The jitter from the GC and the scheduler is ignored as long 
as the cycle boundaries are not exceeded. 

3.2 Using the RI 

The performance chart (see Fig. 5) shows that the RI, even without memory 
areas and the built-in scheduler, is much more deterministic than Sun's JVM. 
The 'LOO millisecond spikes in the loop are interactions with the GC, and those 
interactions that are missing occurred in portions of the system that are beyond 
the scope of this paper - namely, the homegrown scheduler developed for the 
desktop and the spacecraft simulator. It is interesting that none of the GC delays 
occurred within the control law itself; the reason has still not been identified. 

3.3 Using the RI Scheduler 

The hame-grown scheduler was then replaced with the FU scheduler. The per- 
formance chart (see Fig. 6) shows the full interaction of the system with the GC 
- the 120 millisecond spikes. Three of the GC executions occurred while com- 
manding the thruster. There is a small bit of allocation (about 5% of one cycle) 
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(a) stock kernel 

Cycle Number 

(b) Timesys reaEtime kernel 

Fig. 4. Desktop Performance 
This diagram illustrates, when comparing (a) to (b), the change in performance 
due to kernel changes. The control law takes such a smalI portion of the time 
that jt is always near zero. The processing of the results and other management 
overhead is where the variations in processing time occur. Otherwise, the red- 
time kernel is somewhat slower, but otherwise performs like the stock Mandrake 
kernel. 
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Fig. 5. RI Performance 
This chagram illustrates, when comparing it to Fig. 4(b), the difference between 
the Rl and Sun's JVM 1.4.1. The overall performance is slower, but seemingly 
more deterministic. 

that takes place between the completion of the control loop and the start of the 
thruster command. Hence, it is not possible to determine if the GC execution 
occurred before or after the thruster command in the other cycles. However, the 
results from adding memory areas would imply that the delays come after the 
thruster command is executed and some cycle cleanup is in progress. 

3.4 Adding Memory Areas 

Lastly, scoped memory areas were included in the test system. The performance 
chart (see Fig. 7) does not contain all of the GC interactions, which is a minor 
mystery. The RI scheduler is being used, but there is a more processing taking 
place because of the scoped memory area. Hence, i t  is not too surprising that 
the iiiteraction between the test system and the GC changes. There are minor 
spikes at the correct periodicity to  be the GC is another minor mystery. There 
is no reason to measure such minor delay from the GC unless the GC only did a 
partid recInmatian before returning cantroI to the test software since the threads 
are all at  the normal priority and none of them are nc-heap real-time threads. 

3.5 Comparing the Results 

Comparing the full loop performance of each platform (see Fig. 8) highlights 
four very interesting details. First, the best loop time, even if it is less deter- 
ministic, is using Sun's JVM with Timesys's real-time kernel. Second, the loop 
processing time increases as RTSJ features are used. Third, the periodicity of 
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Fig. 6. RI Scheduler Performance 
This diagram illustrates, when comparing it to  Fig. 5, the performance changes 
from using the RI defadt scheduler. 
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Fig. 7. RI Memory Area Performance 
This diagram illustrates, when comparing it to Fig. 6 ,  the performance changes 
from using the RI default scheduler and memory areas. 
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the GC changes with schedulers - (3) and (4) in Fig. 8 - and the period is larger 
with the home-gown scheduler even though the allocation rate and volume are 
larger. Fourth, the periodicity of the GC activity is the same between (4) and 
(5) in figure 8, even though there is at least a 30% reduction in allocation on 
the l-teap. 

mle Number 

Fig. 8. Full Loop Comparison 
(1) is Sun's JVM 1.4.1 with Mandrake's 9.0 stock kernel. 
(2) is Sun's JVM 1.4.1 with Timesys's real-time kernel. 
(3) is the lU with the same homegrown scheduler used in (1) and (2) and no 
RTSJ other features either. 
(4) i s  the RI with its defadt scheduler and no other RTSJ features. 
(5) is the RJ. with its defauIt scheduler and memory areas covering the control 
law. 
This diagram simply collects the data from the previous diagrams for a more 
direct comparison. Not dl of the lines are easily visible as ( I )  and (2) coincide 
nearly everywhere as do (4) and (5). 

The fact that Sun's JVM performs better than the RI in these tests is not 
too disturbming. To put this observation into perspective we need to investigate 
three anomalies: One, the large variation between (1) and (2) in Fig. 8 can be 
attributed to  the difference in background services that were running simulta- 
neously, which could have interfered with the test; most notably, XI1 was not 
active with the Timesys real-time kernel. Two, the main difference between (2) 
and (3) in Fig. 8 is just-in-time compilation technology that is present in Sun's 
JVM and n-on-existent in the RI. Third, the test does not stress the capabilities 
of the hardware that the test was performed on; which is to say, the load is 
less than 50% of the hardware's capability. Hence, while Sun's JVM did better 
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in this instance, it probably would not scaIe with loading which a full imple- 
mentation of the RTSJ presumably would. This observation does imply that the 
performance, both in the real-time and non real-time sense, can be significantly 
improved from compilation. 

Using ETSJ features adds performance penalties. Increased time with the 
addition of memory areas is understandable because more checks are required in 
order to  detect illegal assignments across memory barriers. The increase between 
choices of schedulers is a bit more perplexing. The home-grown scheduler is a very 
poor scheduler that uses very short sleep intervals, the smallest available period, 
as interrupts for yielding control to the rest of the test system. The sleep interval 
is notoriously poor with jitter and this, of course, bleeds over to the home-grown 
scheduler, which is why I called it very poor. However, the difference between 
(3) and (4: in Fig. 8 indicates the home-grown scheduler requires less processing 
powei than the RI's scheduler, which surprised me because the home-grown 
scheduler is poorly written, is a high allocation rate, and is interpreted. The RJ. 
scheduler, on the other hand, appears to be part of the binary distribution and 
is interfaced through the JNI, which suggests that the scheduler should be fast 
and efficient. Hence, the penalty observation implies that one should measure 
every feature before using it to  improve performance because it may not have 
the expected outcome. 

The homegrown scheduler GC period is smaller than the RI scheduler's 
period. Again, since the RI's default scheduler appears to be a binary distribution 
accessed via the JNI, then less allocation should be taking pIace. Less allocation 
means thxt it would take more cycles to allocate enough trash to activate the 
GC. The incorrect change of periodicity is simply an extension of the penalty 
observation and implies the same consequences as well. 

S:tgnificantly reducing heap allocations through the use of scoped memory 
increases overall processing time and the GC1s activation periodicity does not 
change. This observation is contrary to  the intent of scoped memory regions and 
is more than just an extension of the penalty observation. As Fig. 9 shows, the 
processing time of the control law is affected by the GC when running with Sun's 
JVM, but the FtI performance contains all of the same features which are more 
than one cycle in width with only a constant between them. The control law is 
straight forward code with a single branch that is clearly present around cycle 
110, .where the type of compensator is changed. In the two cases (3) and (4) in 
Fig. 9, it is believable that they both have the same features since they both use 
the h.eap. However, ( 5 )  in Fig. 9 has the same structure as (3) and (4), which 
implies one of the following: 

1. The structure is a function of reading the time through the JNI and therefore 
appears in all the RI runs. Fig. 3 contradicts this implication as there is no 
frequency of delay and, since the structure is defined by more than a single 
cycle, it is unlikely for a random process to  repeat so well over an extended 
time. 
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2. The use of the scoped memory area is erroneous and the heap is being used. 
'This is unlikely because an illegal assignment exception had to be fixed prior 
to  the test working. 

3. Scoped memory is strongly related to the heap and therefore exhibits some 
o:F the same features, but, at the end of the day, it is independent of the heap 
and the intended benefit can be realized. Fig. 8 clearly shows that the scoped 
memory area and the heap are not independent because the periodicity of 
the two tests, (4) and (5), are identical when there Is at least a 30% reduction 
o.F allocations to the heap. 

Since none of the implications are valid, the intent of the scoped memory area 
cannot be realized. The last observation implies that memory areas are not very 
effective in reducing GC interaction with the user's application. 

Fig. 9. Control Law Comparison 
See Fig. 8 for line definitions. This diagram simply collects data from the previous 
diagrams for a more direct comparison. In this diagram, only (1) and (2) are 
near1 y coincident. 

The best performance enhancements came from compilation and not from trying 
to  isolate the system from the GC through the use of memory areas. Memory 
areas require additional run-time processing time to ensure that dangling ref- 
erences and other problems do not occur. The use of static compliers[7,8] with 
automated scoped memory detection [9] would remove the necessity for some of 
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the run-time checking, and, perhaps, allow the intent of scoped regions to be 
realized. 

Also, the lack of a tool API specification in the RTSJ and/or performance 
moni1,oring tools themselves makes it near impossible to gain conclusive data 
from the ItI. If the RTSJ provided a required tools API for compliant JVMs, 
then the developer could use a generic tool or, in the worst of conditions, develop 
the required tools when manufacture does not supply them. The API would 
have to give the user visibility into GC, memory areas, the scheduler, and event 
handling. 

As an aside, one of the problems associated with using the RTSJ memory 
area is the difficulty of moving data from one memory area to  another, it has 
a viral affect on the design and architecture of the software (for further details 
see [I 01). It was particularly time consuming and tedious to add memory areas 
in an architecture that uses the immutable object as a way of improving thread 
safety. 

As a further aside, this is a single test case and its performance with RTSJ fe* 
tures may be improved by removing many of the abstraction layers that separate 
the prototype from any specific real-time extension to Java and fully embrac- 
ing the RTSJ and it features, the existing benefits of the Java prototype would 
be compromised through increased complexity and the loss of the architectural, 
design, and maintenance benefits of Java. 
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