
RTSJ Memory Areas and Their Affects on the
Performance of a Flight-like Attitude Control

System

Albert F. Niessner and Edward G. Benowitz

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

{A1.Niessner,Edward.G.Benowitz}Qjpl.nasa.gov

Abstract. The two most important factors in improving performance
in any software system, but especially a real-time, embedded system, are
knowing which components are the low performers and knowing what
can be done to improve their performance. The word performance with
respect to a real-time, embedded system does not necessarily mean fast
execution, which is the common definition when discussing non real-time
systems. It also includes meeting all of the specified execution dead-
lines and executing at the correct time without sacrificing non real-time
performance. Using a Java prototype of an existing control system used
on Deep Space 1[1], the effects from adding memory areas are measured
and evaluated with respect to improving performance.

1.1 God

Many features are added to the Java virtual machine and libraries through the
Real-time Specification for Java[2] (RTSJ) with the intent to improve the real-
time performance of Java. One of the more interesting features is the addition
of scoped memory, where the intent is t o separate functional regions of the
user's application from interactions with the garbage collector (GC) . In theory,
a scoped memory area is entered prior to the execution of a functional region
and exited after the region. The functional region does not interact with the GC
because reclamation occurs when the thread count in a scoped memory region
goes 1;o zero and is performed without the aid of the GC. Of course, allocating
and reclaiming memory without the aid of the GC means that there are rules on
cross referencing memory areas that are detailed in the RTSJ. The goal of t h s
work is to demonstrate that the intent of the scoped memory area holds true
with "real world" software.

1.2 Approach

A Java prototype of the Deep Space 1 attitude control system was developed in
order to show that Java is usable in the production of spacecraft software. The

2 A1 Niessner et al.

prototype was profiled on the desktop to measure memory and processor usage.
The)profile information shows that almost all of the garbage collected memory is
alloc.sted in the portion of the system that computes the output response from
the sensor input - the control law. The excessive allocation js due to the choice
of arlzhitecture for the prototype which forces an immutable implementation of
a physical units package. The physical units package is used extensively when
converting from the input of angular velocity to the command thrust of each
individual thruster. Hence, the control law allocates enough data to activate the
GC in about 3 cycles. The software was then adapted to include placing the
control law within a scoped memory block whose size was larger than required
as m~easured from the profiling and placing instrumentation in critical parts of
the system. The latter adaptation was done because there are no tools available
for p.rofiling with Timesys's Reference Implementation[S] of the RTSJ (RI).

1.3 Tools

COTS graphical development tools were used extensively in this project. Specif-
ically, the open-source Eclipse[4] integrated development environment provided
graphical code editing, browsing, debugging, and refactoring capabilities. Head-
way's Review[S] product was used to graphically inspect our design, plan refac-
toriny, and allow us to maintain a consistent architecture. Additionally, JProbe[6]
was used to examine memory usage and to identify critical regions for future op-
timization. Lastly, Timesys's Reference Implementation[S] of the RTSJ is used
because it is the only fully functional, freely available implementation of the
RTSJ'.

2]Measuring Time

The original intent was to use the clocks and date functions provided by Sun's
JVM and the ELT. However, both of these implementations limit the time resolu-
tion to a millisecond and the smallest time scales being measured stre hundreds
of microseconds. Therefore, a simple JNI interface to the Linux time services
was cleveloped which has a microsecond resolution. This section is devoted to
the characterization of the JNI interface with Sun's JVM and the FU, using the
same shared libraries and byte code for all tests.

2.1 Using Sun's JVM 1.4.1

As can be seen from the histogram (see Fig. 11, using either the Mandrake 9.0
stock kernel or the Timesys red-time Linux kernel version 3.2 has little affect
on the latency where almost all calls are between 3 and 25 microseconds. I t can
also b~e seen in figure 3 that there appears to be a periodic delay associated with
the Sun JVM which corresponds to the third mode around 1.3 milliseconds in
the histogram. An attempt was made to profile this test in order to determine if
the third m.ode was related to the GC, but the profiler measurement interfered

Title Suppressed Due to Excessive Length 3

with the test and the results were less than clear. However, an analysis of the
test ~ j o f t w ~ e indicates with a good level of confidence that the object allocation
rate corresponds t;o the second mode, but the analysis is not complete and is too
speculative to say conclusively that it is the GC. There are only minor differences
in results between the two kernels and they all appear in the distribution of higher
ordered modes.

Fig. 1. JVM 1.4.1 Latency Histogram
This diagram illustrates the Iatei~cy behavior differences between the Mandrake
9.0 s1,ock kernel and Timesys's real-time kernel with respect to retrieving the
current time using the JNI and a call to gettimeofday from jsys/time.hi.

2.2 Using the RI

As can be seen from the histogram (see Fig. 21, the RI behaves wildly different
from the Sun JVM, where the main difference for the little bit of code being
executed is the HotSpot compiler. Given a very aggressive GC, the allocation
rate links the second or third mode to the garbage collector. However, there is
still an undetermined, systematic error just as influential as the GC which is
causing the other mode. The large difference can be seen in the first mode of
the histogam, where the M's distribution is much more Poisson than is Sun's
JVM counterpart1 and is centered at a much higher value. The best explanation
for the constant offset and wider distribution is the lU's lack of HotSpot or any
other just-in-time compiler technology. Each iteration of the loop in the RI is

It is expected that the first mode of the histogram for Sun's JVM is also Poisson,
but at a much smaller scale like 2 to 50 microseconds.

4 A1 Niessner et al.

interpreted, while only the first few in Sun's JVM are interpreted before they
are compiled. However, expecting transient delays from the HotSpot compiler,
the first 100 were ignored in ail the tests, allowing the JVMs to reach a steady-
state condition before measuring began. Hence, none of the delays seen should
be associated with HotSpot.

Fig. 2. RI Latency Histogram
This diagram illustrates the latency behavior of the RI with Timesys's real-time
kernel with respect to retrieving the current time using the JNI and a call to
gettimeofday from jsys/time.hi.

3 llleasuring Performance

The .lava prototype being measured can be broken into three distinct parts: the
full software loop, the control law, and the thruster command processing. The
thruster command processing portion takes as input the desired thrust from the
control law and commands the individual thrusters on the spacecraft to exert
the specified force. The control law takes as input the latest sensor readings and
the desired attitude requirements, allowing it t o compute the desired force to
meet its requirements. The full loop does all of the management related tasks,
making sure that the other two components have their necessary inputs and that
all other management tasks are made aware of what is happening.

Just as with the previous tests, the software is moved from a Maadrake 9.0
system with a stock kernel to the Timesys real-time kernel using Sun's JVM as a
baseline. I t is then tested with RI JVM using none of the RTSJ features. The RI
scheduler is then added, followed by scoped memory areas. Some of the results
will t'hen be compared to highlight the most interesting details.

Title Suppressed Due to Excessive Length 5

Samwle Number

Fig. 3. Latency Times
This diagram is the measured latency from a call through the JNI to gettime-
ofday from jsys/time.hi for all JVM's and kernels used. It is the data that was
used to construct the histograms in figures 1 and 2.

6 Al Niessner et al.

111 order to execute the same code on both the desktop and with the RI, an
abstraction layer was added to the system to separate the problem being solved
from any implementation of the desired solution. There are two abstraction layers
that are used during this test to change the behavior or the Java prototype: a
scheduler abstraction Iayer and a memory area abstraction layer. The scheduler
abstraction layer basically delegates either to the RI default scheduler or to a
home-grown scheduler. The homegrown scheduler was written not as a serious
scheduler but, rather, as a tool to allow the Java tools available on the desktop
to used with the prototype. The memory area abstraction layer either delegates
to th.e RI memory areas when on that platform or simply uses the heap when
using; Sun's JVM, and the scoped memory is allocated in the immortal space
when delegating to the RI.

3.1 On the Desktop

The performance chart (see Fig. 4) shows a distinct improvement (roughly 4x) in
the nzaximurn processing time between the stock kernel and Timesys's real-time
kernel. In any case, all cycles were processed within their alloted time. It is also
important to notice that none of the delays over two milliseconds occurred while
the control law was in operation, which is the heaviest allocation portion of the
system. Profiling also suggests the GC caused the difference, but it cannot be
stated conclusively. If i t really was the GC, the expectation is the GC would
actimte during the heaviest allocation portion of the system because memory
was exhausted. Otherwise, the processor duty cycle is less than 25%, which leaves
plenty of processing power for the GC to complete. If the GC did not complete in
time, then the software would either process as normal or report that a complete
cycle was missed. The jitter from the GC and the scheduler is ignored as long
as the cycle boundaries are not exceeded.

3.2 Using the RI

The performance chart (see Fig. 5) shows that the RI, even without memory
areas and the built-in scheduler, is much more deterministic than Sun's JVM.
The 'LOO millisecond spikes in the loop are interactions with the GC, and those
interactions that are missing occurred in portions of the system that are beyond
the scope of this paper - namely, the homegrown scheduler developed for the
desktop and the spacecraft simulator. It is interesting that none of the GC delays
occurred within the control law itself; the reason has still not been identified.

3.3 Using the RI Scheduler

The hame-grown scheduler was then replaced with the FU scheduler. The per-
formance chart (see Fig. 6) shows the full interaction of the system with the GC
- the 120 millisecond spikes. Three of the GC executions occurred while com-
manding the thruster. There is a small bit of allocation (about 5% of one cycle)

Title Suppressed Due to Excessive Length 7

Cycle Number

(a) stock kernel

Cycle Number

(b) Timesys reaEtime kernel

Fig. 4. Desktop Performance
This diagram illustrates, when comparing (a) to (b), the change in performance
due to kernel changes. The control law takes such a smalI portion of the time
that jt is always near zero. The processing of the results and other management
overhead is where the variations in processing time occur. Otherwise, the red-
time kernel is somewhat slower, but otherwise performs like the stock Mandrake
kernel.

A1 Niessner et al.

Fig. 5. RI Performance
This chagram illustrates, when comparing it to Fig. 4(b), the difference between
the Rl and Sun's JVM 1.4.1. The overall performance is slower, but seemingly
more deterministic.

that takes place between the completion of the control loop and the start of the
thruster command. Hence, it is not possible to determine if the GC execution
occurred before or after the thruster command in the other cycles. However, the
results from adding memory areas would imply that the delays come after the
thruster command is executed and some cycle cleanup is in progress.

3.4 Adding Memory Areas

Lastly, scoped memory areas were included in the test system. The performance
chart (see Fig. 7) does not contain all of the GC interactions, which is a minor
mystery. The RI scheduler is being used, but there is a more processing taking
place because of the scoped memory area. Hence, i t is not too surprising that
the iiiteraction between the test system and the GC changes. There are minor
spikes at the correct periodicity to be the GC is another minor mystery. There
is no reason to measure such minor delay from the GC unless the GC only did a
partid recInmatian before returning cantroI to the test software since the threads
are all at the normal priority and none of them are nc-heap real-time threads.

3.5 Comparing the Results

Comparing the full loop performance of each platform (see Fig. 8) highlights
four very interesting details. First, the best loop time, even if it is less deter-
ministic, is using Sun's JVM with Timesys's real-time kernel. Second, the loop
processing time increases as RTSJ features are used. Third, the periodicity of

Title Suppressed Due to Excessive Length 9

0.14 -
c33t.c Li~r

T~.TLE!+< ~ ~ : : . ' , ~ * ~ ~
Full loep -- "" -.

O t -

..............

.......-......

.................,,.........

I i
. 0.02 -. i, . : i . I i , It - :..................I

j i 11 1 :
- - - -; f L ; i 1 I. I

0 0 . . "
0 20 40 50 80 lim la, 140

Cycle Number

Fig. 6. RI Scheduler Performance
This diagram illustrates, when comparing it to Fig. 5, the performance changes
from using the RI defadt scheduler.

0.14
cnt"e1Lw -

Tbz:xe Cw'msri --
Full icq -

....

0.1 -

.... .
f
t

... F - .-

................. 0.04 : ..< .-:
. - .

0.02 -. ,;

i ...-..
0 ..-... .
0 20 41) 60 80 1W 120 140

+la Number

Fig. 7. RI Memory Area Performance
This diagram illustrates, when comparing it to Fig. 6 , the performance changes
from using the RI default scheduler and memory areas.

10 A1 Niessner e t al.

the GC changes with schedulers - (3) and (4) in Fig. 8 - and the period is larger
with the home-gown scheduler even though the allocation rate and volume are
larger. Fourth, the periodicity of the GC activity is the same between (4) and
(5) in figure 8, even though there is at least a 30% reduction in allocation on
the l-teap.

mle Number

Fig. 8. Full Loop Comparison
(1) is Sun's JVM 1.4.1 with Mandrake's 9.0 stock kernel.
(2) is Sun's JVM 1.4.1 with Timesys's real-time kernel.
(3) is the lU with the same homegrown scheduler used in (1) and (2) and no
RTSJ other features either.
(4) i s the RI with its defadt scheduler and no other RTSJ features.
(5) is the RJ. with its defauIt scheduler and memory areas covering the control
law.
This diagram simply collects the data from the previous diagrams for a more
direct comparison. Not dl of the lines are easily visible as (I) and (2) coincide
nearly everywhere as do (4) and (5).

The fact that Sun's JVM performs better than the RI in these tests is not
too disturbming. To put this observation into perspective we need to investigate
three anomalies: One, the large variation between (1) and (2) in Fig. 8 can be
attributed to the difference in background services that were running simulta-
neously, which could have interfered with the test; most notably, XI1 was not
active with the Timesys real-time kernel. Two, the main difference between (2)
and (3) in Fig. 8 is just-in-time compilation technology that is present in Sun's
JVM and n-on-existent in the RI. Third, the test does not stress the capabilities
of the hardware that the test was performed on; which is to say, the load is
less than 50% of the hardware's capability. Hence, while Sun's JVM did better

Title Suppressed Due to Excessive Length 11

in this instance, it probably would not scaIe with loading which a full imple-
mentation of the RTSJ presumably would. This observation does imply that the
performance, both in the real-time and non real-time sense, can be significantly
improved from compilation.

Using ETSJ features adds performance penalties. Increased time with the
addition of memory areas is understandable because more checks are required in
order to detect illegal assignments across memory barriers. The increase between
choices of schedulers is a bit more perplexing. The home-grown scheduler is a very
poor scheduler that uses very short sleep intervals, the smallest available period,
as interrupts for yielding control to the rest of the test system. The sleep interval
is notoriously poor with jitter and this, of course, bleeds over to the home-grown
scheduler, which is why I called it very poor. However, the difference between
(3) and (4: in Fig. 8 indicates the home-grown scheduler requires less processing
powei than the RI's scheduler, which surprised me because the home-grown
scheduler is poorly written, is a high allocation rate, and is interpreted. The RJ.
scheduler, on the other hand, appears to be part of the binary distribution and
is interfaced through the JNI, which suggests that the scheduler should be fast
and efficient. Hence, the penalty observation implies that one should measure
every feature before using it to improve performance because it may not have
the expected outcome.

The homegrown scheduler GC period is smaller than the RI scheduler's
period. Again, since the RI's default scheduler appears to be a binary distribution
accessed via the JNI, then less allocation should be taking pIace. Less allocation
means thxt it would take more cycles to allocate enough trash to activate the
GC. The incorrect change of periodicity is simply an extension of the penalty
observation and implies the same consequences as well.

S:tgnificantly reducing heap allocations through the use of scoped memory
increases overall processing time and the GC1s activation periodicity does not
change. This observation is contrary to the intent of scoped memory regions and
is more than just an extension of the penalty observation. As Fig. 9 shows, the
processing time of the control law is affected by the GC when running with Sun's
JVM, but the FtI performance contains all of the same features which are more
than one cycle in width with only a constant between them. The control law is
straight forward code with a single branch that is clearly present around cycle
110, .where the type of compensator is changed. In the two cases (3) and (4) in
Fig. 9, it is believable that they both have the same features since they both use
the h.eap. However, (5) in Fig. 9 has the same structure as (3) and (4), which
implies one of the following:

1. The structure is a function of reading the time through the JNI and therefore
appears in all the RI runs. Fig. 3 contradicts this implication as there is no
frequency of delay and, since the structure is defined by more than a single
cycle, it is unlikely for a random process to repeat so well over an extended
time.

12 A1 Niessner et al.

2. The use of the scoped memory area is erroneous and the heap is being used.
'This is unlikely because an illegal assignment exception had to be fixed prior
to the test working.

3. Scoped memory is strongly related to the heap and therefore exhibits some
o:F the same features, but, at the end of the day, it is independent of the heap
and the intended benefit can be realized. Fig. 8 clearly shows that the scoped
memory area and the heap are not independent because the periodicity of
the two tests, (4) and (5), are identical when there Is at least a 30% reduction
o.F allocations to the heap.

Since none of the implications are valid, the intent of the scoped memory area
cannot be realized. The last observation implies that memory areas are not very
effective in reducing GC interaction with the user's application.

Fig. 9. Control Law Comparison
See Fig. 8 for line definitions. This diagram simply collects data from the previous
diagrams for a more direct comparison. In this diagram, only (1) and (2) are
near1 y coincident.

The best performance enhancements came from compilation and not from trying
to isolate the system from the GC through the use of memory areas. Memory
areas require additional run-time processing time to ensure that dangling ref-
erences and other problems do not occur. The use of static compliers[7,8] with
automated scoped memory detection [9] would remove the necessity for some of

Title Suppressed Due to Excessive Length 13

the run-time checking, and, perhaps, allow the intent of scoped regions to be
realized.

Also, the lack of a tool API specification in the RTSJ and/or performance
moni1,oring tools themselves makes it near impossible to gain conclusive data
from the ItI. If the RTSJ provided a required tools API for compliant JVMs,
then the developer could use a generic tool or, in the worst of conditions, develop
the required tools when manufacture does not supply them. The API would
have to give the user visibility into GC, memory areas, the scheduler, and event
handling.

As an aside, one of the problems associated with using the RTSJ memory
area is the difficulty of moving data from one memory area to another, it has
a viral affect on the design and architecture of the software (for further details
see [I 01). It was particularly time consuming and tedious to add memory areas
in an architecture that uses the immutable object as a way of improving thread
safety.

As a further aside, this is a single test case and its performance with RTSJ fe*
tures may be improved by removing many of the abstraction layers that separate
the prototype from any specific real-time extension to Java and fully embrac-
ing the RTSJ and it features, the existing benefits of the Java prototype would
be compromised through increased complexity and the loss of the architectural,
design, and maintenance benefits of Java.

5 Acknowledgments

The researchin this paper was supported by and carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under contract with NASA.

References

1. Id. Rouquette, T. Neilson, and G. Chen, "The 13th Technology oiDS1." Proceedings
of IEEE Aerospace Conference, 1999.

2. (2. Bollella , J. Gosling, B. Brosgol, P. Dibble, S. Furr, M. Turnbull, The Read-Time
:ipecification for Java, Addison-Wesley, 2000.

3. 'rimesys Reference Implementation, http://www.timesys.com/index.cfm?bdy=java~bdy~i.cfm,
2003.

4. '.Eclipse.orgn , http://www.eclipse.org/, 2003.
5. "Headway Software", http://www.headwaysoft.com/, 2003.
6. "Sitraka JProbe", http://www.sitraka.com/sokware/jprobe/, 2003.
7. la. Rinard et al., L'FLEX Compiler Infrastructure", http://www.flex-

c:ompiler .lcs.rnit .edu/, 2003.
8. ,4. Corsaro and D.C. Schmidt. "Evaluating Real-Time Java Features and Perfor-

inance for Real-time Embedded Systems." Technics: Report 2002-001, University
of California, Irvine, 2002.

9. Morgan Deters and Ron K. Cytron, "Automated Discovery of Scoped Memory
]Regions for Real-Time Java." In Proceedings of the 2002 International Symposium
on Memory Management (Berlin, Germany), pp. 25-35. ACM, June 2002.

10. P. Dibble, Real-Time Java Platform Programming, Prentice Hall, 2002.

