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Abstract—Under its Vision for Space Exploration, N
moving from designing single space missions to archlte i
whole exploration campaigns. In comparing campai : : jHave highlighted the importance of
options, the flexibility to respond to discoveries and adapt tg, : _ nd real options theory when evaluating

uncertainties is critical. This papes ys the benefits of}, 5P : have flexibility to respond to uncertainty
Decision Analysis techniques don design and ¥ lamassoure][séleh][shishko]. While recognized as valuable,

evaluatmn Important concgfts Of dc analysis are *%fié"these approahes have rarely been used for NASA missions,
i hose ﬂex1b111ty after launch is limited. But under the new

exploitable equatorial wat

developed herein is general to 3 y: :
fexploration campaigns. A campaign includes links between

opportunities inAppivi e = ' subsequent missions, but also options to change future
campaigns. 24 _ missions based on earlier outcomes, and on the resolution of
technological and programmatic uncertainties.
£ . iy
Shortcoming of the traditional approach
1. INTRODU : »; The traditional approach to space program planning has
7. PROBLEMD ‘ : several shortcomings for campaign evaluation.
3. PROBLEM o INFLUENCE  First, even when designing a series of missions, the typical
DIAGRAMS : approach optimizes one mission at a time. This ignores the
4. MODELS FOR DECISI 1 vsis INPUTS fact that the optimal choice for the first mission depends on
5, PROBLEM SOLVING WITEDECISION TREES the options available for subsequent missions.
6. CONCLUSIONS & Second, the approach typically uses one of two comparison
7. REFERENCES techniques: either setting requirements and comparing the
8. ACKNOWLEDGEMENTS cost of various design options; or setting a cost cap, and
9. BIOGRAPHIES comparing the performance of various mission options. But

even when designed to meet the same requirements, several
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mission options often have different performance
characteristics. More importantly, they often open up
different options for the next mission in the campaign (for
example, through technology feed-forward).

Finally, the traditional approach does not explicitly take
uncertainty into account. When considering design options
for the second mission in the campaign, it assumes a
deterministic set of results from the first mission. In reality
however, the results of each mission are probabilistic. The
mission could fail; it could be moderately successful; it
could discover the unexpected, etc. What the decision maker
needs to select is not one option for the subsequent mission,
but instead a strategy, i.e. a mission option for each possible
outcome of the first mission. The probability of each of
these possible outcomes should influence the decision.

Effective methods for designing space missions and
estimating their cost have been used for years [teamx].
Recent improvements in concurrent engineering are
expanding point designs into sizing models that capture the
local trade space, making possible the rapid generation of
cost/performance curves on a mission-per-mission basns
fmorse]. In order to properly evaluate alternate caf
design options, three elements need to be added to th
program planning methods: (1) evaluating cost-b
metrics instead of cost alone, (2) taking uncertainty
account and (3) considering strategies for whole series
missions, instead of missions one-at-a-time.

i
a framework of sequentla
uncertainty to campaign planning:

’mount of water on
h the best campaign

analysis in order to det ? i
and the value of gathe ET information. The first
benefit of this approach is“fhat it explicitly incorporates
uncertainty, rather than asmg that certain results will
happen, or using averages. This allows for a well developed
solution to the problem and helps to avoid surprises. The
second benefit is that it allows us to incorporate the value of
flexibility [Dixit Pyndyck]. Finally, it helps define which
information requires further study, thus saving significant
study time and money.
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4 m—space assembly [isru 1], If and where

resent water would be, by far, the most interesting

A Tapp]. Water is already thought to exist at the poles, in
e form of water ice. But equatorial water would be
particularly interesting, as other engineering considerations
favor equatorial landing for the first human mission,
Knowledge of the presence, form, and amount of any
exploitable equatorial water would therefore have significant
value when designing a human mission to Mars.

What is the best way to develop this knowledge? While
remote  sensing missions offer coverage, in-situ
measurements provide the only unambiguous proof of the
presence of water. Intermediate options include aerial
platforms, rovers, and networks of small probes. To
maximize returns, a several-mission approach might be
interesting. What combination of missions would maximize
the probability of finding exploitable water, while
minimizing total cost?

Typical answer with the traditional approach

The traditional approach to mission optimization would
select a few deterministic series of missions, and compare
their cost and performance. In this case, the candidates for
comparison would likely include one stationary Lander



concept and one Rover concept, with the possibility to

precede either mission with a remote-sensing Orbiter. The

decision would be driven by one key constraint coming from
above, such as cost or schedule. A logical conclusion would
be as follows:

o If only one mission opportunity is allowed to search for
water and the budget is low, only one stationary Lander
is possible.

e« If only one opportunity is allowed, but the budget
makes it possible, send a Rover to take advantage of the
additional range, improving the likelihood of a find and
a characterization of the water extent.

s If two opportunities are available, send first a remote-
sensing Orbiter, so as to improve the site selection for
the in-situ mission. Then choose the in-situ mission
(Lander or Rover) based on the available budget (as
above).

o If three opportunities are available, with sufficient
budget, send an Orbiter first, then refine the search with
a long-range Rover. Finally send a stationary Lander
equipped with an in-situ research utilization (ISRU)
technology demonstration, at the site where I{be most
resource was found.

Limitations of the traditional approach

This approach has the advantage of simplicity and rapid
but it does not answer all the decision makers® questions. [

fore sending
ond mission
making it

3. PROBLEM

DIAGRAMS

A decision-analytic approach addresses the shortfails of the
traditional approach. To mgke this point, this section will
describe the proposed decision-analytic framework,
illustrating the concepts at each step with their application to

the search-for-water campaign.

General approach summary

Figure 2 summarizes the decision analysis process as this
paper proposes to apply it to campaign architecture. The
process starts with a definition of the campaign goals,
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constraints, and figures of merit, i.e. the ultimate parameters
of interest to the decision makers. The second and most
important step is the formulation of the problem in terms of
uncertainties, decisions, and relationships between them.
Influence Diagrams (IDs) are useful tools in this problem
formulation. Once formulated, the problem needs to be
quantified. Mission studies, databases, or expert knowledge
provide ranges of estimates for all required mission
information. Expert knowlédge provides the basis for
modeling of the uncertginties. An influence diagram, once
well documented witlf piission information and uncertainties
models, provides.t for generation of a decision tree
(DT). “Rolling 5 : ision tree solves for the optimal
| input values. Sensitivity
input values provides
sults, and the need for

etailed information, The anii
4 I robust ans’gger is reached.
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Figure 2. General Campaign Analysis Approach

Defining campaign goals

Campaign goals- It is important to start the analysis with a
clear understanding of the campaign goals, against which
alternative strategies will be evaluated. A campaign can
have primary and secondary goals.



In this case, the primary goal is to locate near-surface
(within the upper 5-m) water in the equatorial regions of
Mars (+/- 30 deg latitude), and characterize its form and
extent (3-dimensional concentration maps). Other human
precursor measurements can constitute secondary goals.

Campaign consfraints- When they exist, strict constraints on
the campaign design must be identified upfront.

The search for water on Mars would be subject to a
constraint on total budget, yearly budget, total schedule,
and/or number of mission disasters. Only campaign
strategies that meet all constraints will be considered in the
analysis. The analysis below does not include numerical
values for these constraints, which were unknown for the
study; instead, these constraints were kept for sensitivity
analysis.

Formulating the problem

Once the goals are clear, three key elements define any
decision problent: values, alternatives, and uncertainties.

Figures of Merit- Figures of Merit (FoMs), or V ;
what the decision maker (DM) uses to determine %
outcomes are better than others. Values are principles
to evaluate the “actual or potential consequences of act:
and inaction” [keeney]. They must measure how well tli
campaign meets its goals and constrai

lich wold strongly
kelihood of securing

metric. This aggregation can Be an equation of any form. For
simplicity, in this study the aggregate value was taken as the
weighted sum of all FoMs. The choice of weights is highly
dependent on the decision maker. Sensitivity analysis with
respect to FoM weights is important. Table 1 lists the FoMs
and their baseline weight as used in the study.

Table 1. Baseline FoM Weights

| FoM |  Weight

J

4

Cost (in Millions $) -1
Time to Complete (in months) -10
Number of Mission Disasters -1000
Likelihood of “H” find at the site level 10,000
Likelihood of “M” find at the site level 1000
Likelihood of “H” find at the area level 10

Likelihood of “M” find at the area level 1

Coverage, per 100 regions 5
Coverage, per 100 areas 5
Coverage, per 100 sit 5
Additional Measu 300

5 1fy a 6ne month delay. Similarly, the value
ed to Likelihood of “H” find at the site
£ the DM would be willing to pay up to
at was certain to find “H” at the area

ves are actions that the DM can
he avallablllty of future alternatives to
‘¢solution of uncertainties is what defines a

i%g our,example, the alternatives are mission options for each

HAaunch opportunity.
© study assumes a discovery-driven program, where the

##choice of each mission is be dependent on the results of the

previous mission, This can be achieved either by spacing the
missions sufficiently so as to allow for development time
(i-e., launch a mission to Mars every other opportunity), or
by developing several mission options in parallel (thus being
able to launch at every opportunity). The former approach
will be assumed in the paper as a baseline. The two
approaches are easy to compare using the framework
proposed herein.

Information- Information is what connects alternatives to
values. Some information is well known, or can be known
with varying levels of accuracy by carrying out studies at
various levels of detail. This is the case, for example, of
mission cost, or likelihood of a mission disaster. For the
sake of the study, this information can be considered
deterministic. If studies have not yet estimated the
information with accuracy, a range of values can be used;
sensitivity analysis will determine the importance of refining
the estimate.



But other key information in often unknown, and cannot be as diamonds; alternatives as squares; and uncertainties as
known before exercising one of the alfernatives available in ~ ovals. Each node is associated with tables or trees of
the decision problem. This is the case, in our example, of the information. For example, each decision is associated with
distribution of water on Mars, and of the amount of water its alternatives. For this example, the alternatives in Mission
that a given mission will find. These pieces of information 1 are Orbiter, Aerial, Lander, Network, and Rover. Each
cotrespond to the key uncertainties of the problem. uncertainty is associated with a list of outcomes, and the
probabilities over those outcomes. The final node (*FoMs™)
Uncertainties- Some of the uncertainties will get resolved as  represents the aggregate value of the campaign. It aggregates
the campaign progresses, and their resolution will influence  all the FoMs into one valugiftigtric, and aggregates all values
future decisions. Each uncertainty has a list of possible  for each possible outc tﬁéﬁeampalgn
outcomes. For example one uncertainty is “What is the
highest concentration of water within a given area on  Arcs- The other “ments in IDs are the arrows or arcs.
Mars?”. The possible outcomes range from 0% to 100%. They illustrate:ho Savrious elements in the decision

odes indicates that a
his occurs when the

Influence Diagrams

Influence Diagrams (IDs) are useful tools in formulating
decision problems [ID citations]. Influence Diagrams are a
visual representation of a decision problem. They are
“graphic representations of formal mathematical models”
[owens shacter nease], which lay out the relationships
between decisions, uncertainties and values.

£

cé%;entratlon Note shat the existence of
ak assertion — a relationship may exist. The
oW is a strong assertion: the events are
fiendent, given all other relationships on
e cogt after the first mission does not
et water on Mars,

gne decision node intoc another implies
is made and known before the second
ken, Similarly, an arrow going from an
uncertainty e into a decision node implies that the
%utcome of that uncertainty node will be known before the

an arro

Figure 3 illustrates the Influence Diagram for thd
campaign. In one simple drawing, the influence diz
summarizes all the relationships between the decisio
make in the campaign, the uncertainties that will °
resolved over time, and how they relate to the ultlma@
campaign values. For this reason,
problem formulation, as well as @ itgation.

s
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Figure 3. Influence Diagram for the Water-Search Campaign
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are known.

As illustrated on Figure 3, the search for water on Mars is
driven by a key uncertainty: the distribution of near-surface
equatorial water on Mars. This distribution, which is highly
uncertain at the beginning of the campaign, influences the
outcomes of each mission. In turn, after each mission we can
update the state of knowledge about the water distribution
using Bayesian updating (discussed in detail in the next
section). Each mission also increases the total campaign cost
and time to complete, and influences all other FoMs. The
final campaign value is a function of these aggregate mission
FoMs, together with the final state of knowledge on the
water distribution.

4. MODELS FOR DECISION ANALYSIS INPUTS

Once the problem formulation has been laid out, quantitative
estimates of uncertainties and alternatives must be
developed as numerical inputs to the decision analysis
problem. The required amount of modeling is very
dependent on the campaign problem. As an illustrative case,
this section will describe the models used for the seag
water case.

Modeling uncertainties

As illustrated in the ID (Figure 3), the key uncertainty is t%

distribution of equatorial water on urrent knowledgﬁ»
provides for averages over larg i
data from the Mars Odyssg
(MGS) orbiters, full coy
concentration, induced from
top 1-m of the surface average
longitude by 5 de;
information is,@¥;

everywhere’
subsurface

2, 18 1mportant
ftinating betwee

Odyssey water data™,

ooty of L

“In  this

Figure 4. Initial State of Knowledge [water_rapp]

Geographical extents- The relationship between the water
distribution and the range of exploration of various mission
platforms can be captured by defining several “geographical
extents”. The chosen definitions are summarized in Table 2.

Table 2. Geographlcal Extents (“pixels”)
S Side Size
(m)
120,000
12,000
120

dimension of water
r within the top 5-m
simplicity, this
foblem. Three
¢+ low (ISRU not
“ and high (very
-ISRU). Baseline threshold values for these
rized in Table 3.

%,
Concentgition, levels -The
1011 i %e concenlrat:on

Ref. average
2.5%
>5%, <20% 10%
>20% 25%

model, the state of knowledge about water

tribution can be described with two parameters: the water

ution already found; and the percentage of the planet
eady covered.

he water distribution already found is a vector of size 3

(number of “pixel sizes” in Table 2), where each element

can take 4 values (per Table 3}):

e “NS” if no search was carried out at that level of
resolution (such is the case at the “areca’ and “site” level
at the beginning of the campaign),

*  “L” if all explored pixels of that size have been found to
have low water concentration,

o “M” if at least one pixel has been found with medium
concentration, but none with high concentration (such is
the case at the “region” level at the beginning of the
campaign),

e and “H” if at least one pixel with high water
concentration was found.

The coverage parameter is a matrix of size 3 x 3 per the
number of geographical extents. Element (i,j) in the matrix
is the percentage of all pixels of size (i) on the planet that
have been explored already, with resolution (j). At the
beginning of the campaign, the whole planet has been
explored at the “region” level.



Water distribution- Once the average water cencentration is
known over a pixel, the distribution of water within the pixel
can be modeled as a probability density function; this is a
convenient way to capture the likelihood that a randomly
chesen “small pixel” within the “large pixel” would have a
certain water concentration. In this study, a beta distribution
was chosen to model water distribution. This distribution has
the benefits of allowing only values between 0% and 100%;
and of taking any possible shape by changing its parameters.
With a beta distribution, the water distribution is
characterized by the average and the standard deviation of
the water concentration. The reference average values
chosen for each level (L, M, H) are summarized in Table 2.
The standard deviation is an unknown of the problem.
Therefore, standard deviation must be one of the
uncertainties captured in the state of knowledge. Figure 35
illustrates 3 representative  water  distributions,
corresponding to 3 representative standard deviations of the
water concentration. Lacking further information, baseline
inputs assume these there distributions have equal
likelihood. %&

Correlation- Another important parameter to estimage
value of mobility is the correlation between adjacent p‘éﬁeI
If a site has low water concentration, how likely @
neighboring sites to also score “low”? This effect is capturé
by a correlation factor between adJa
unknown at the beginning of the
the geographical extent,
correlated than regions. It

more likely
the standard
verall shape

t sites. The factor i}
[t can depend on %

ative Water Distributions with (a) low,
(c) high standard deviation

-
2 Table 4. Initial Stage State of Knowledge assumption on

?;vate distribution. For each “pixel size”, the table shows 6
Zapossible standard deviation/correlation pairs, with their
probability occurrence.

* Region-level
St Dev, 25% (1) 50% (m) 100% (h)
Correl. 50% | 40% | 30% | 70% | 60% | 50%
Proba. 17% | 17% | 17% | 17% | 17% | 17%
Area-level
St Dev. 25% 50% 100%
Correl. 70% | 60% | 60% | 90% | 80% | 70%
Proba. 17% | 17% | 17% | 17% | 17% | 17%
Site-level
St Dev. 25% 30% 100%
Correl. 95% | 85% | 75% | 99% | 95% | 85%
Proba, 17% | 17% | 17% | 17% | 17% | 17%

Mission outcomes- Each mission has four possible
outcomes: disaster (no science return), “L” (over the
resolution searched, only pixels with low concentration are
found), “M” (at least one pixel with medium concentration)
and “H” (at least one pixel with high concentration). Given
no mission disaster the likelihood of “L”, “M” and “H” is
calculated in three steps.



The first step calculates the likelihood of each outcome at
the first pixel explored as a function of the average water
concentration over the region explored, the standard
deviation of this water concentration, and the percentage of
the region that has already been explored (assuming that we
don’t go twice to the same area). The average water
concentration and its standard deviation determine the
number of “L”, “M”, and “H” pixels over the region
explored by the mission, by using the beta distribution. The
likelihood of each find is therefore simply a “find 1 out of
N problem.

The second step takes correlation into account to determine
the likelihood of each find at each following pixel. A
Markov chain provides a good model of this problem, as
Figure 7 illustrates. In this figure, Pc is the correlation
factor, and Pi is the likelihood that any random site has a
concentration i (where i is L, M or H).

X

The third step repca
possible water dis
correlation pair). The
current state of knowledge
value” of each outcome prob,

¢d to calculate the “expected

lity.
Bayesian updating

A key component of uncertainty modeling for “search”
campaigns is to update the state of knowledge based on each
mission find. For example, if an Orbiter mission f{inds all
sites to be “medium”, this suggests that the standard
deviation of the water distribution is lower than initially
expected; this needs to be taken into account before

evaluating the next mission, as it will diminish the value of
mobility and favor stationary platforms. In order to update
the probability distribution over the distribution of water on
Mars, Bayes® rule is used. Denoting Pc as the correlation
factor, S the standard deviation, j the index of each possible
standard deviation/correlation pair, and K the outcome
observed, and noting that P(xly) means the probability of
outcome X given outeome y:
P(Sj, Pcj [K) = P(
where the a-priori :
explained above is:

8j,Pcj)*P(Sj,Pcj) / P(K)
1ty of outcome K was, as

1 explored with area resolution and found
ea find is updated to “high”.

values, and the number of
search” campaign. The same model
to consider searching for resources

r life on Mars, etc. But a campaign with
- goal, such as emplacing a power and

@g
%commumcatmns infrastructure to prepare for a human visit,

ould be faced with a very different set of uncertaintics. It
# require the development of new and different

" Modeling alternatives

In a campaign problem, the alternatives are various mission
options. There are three components in modeling the
alternatives: (1) defining the set of available options, (2)
defining the information required on each mission option
and (3) filling out the matrix of mission information for each
option with numerical values.

Defining options- The set of mission options is typically
determined by expert knowledge, consultation of mission
study databases, or brainstorming sessions. In order to keep
the problem manageable and to understand the results, the
initial set of options should be small. If necessary, options
can be initially grouped in families.

In this case, we define five initial families: Orbiter, Lander,
Rover, Aerial (platform) and Network (of small landers).
Only those families that will prove interesting after a first
round of analysis will be worth breaking down into several
design options.



Table 6. Initial Mission Information (cost not shown)

Mission Orbiter Aerial Lander Network Rover
Explores Planet Region Area Area Area
#platforms 1 1 1 3 1
Resolution Region Area Site Site Site
Coverage 50% 0.5% 0.01% 0.01% 0.8%
Error Factor 1.5 3 1 1 2
P(disaster) 5% 20% 10% 10% 10%
Error Factor 1.5 3 2 2 1.5
Add® Meas. 2 2 1 1 3
Time {months) 52 e 26 26 26 52

Defining information- The information to capture for each
mission option flows from the campaign goals and
constrainis on the one hand, and the uncertainty model on
the other hand.

The information necessary to calculate campaign FoMs
flows directly from these FoMs. In our case it consists of:
mission cost (for total campaign cost), time to comglete the
mission (for time to complete the campaign), “Bission
coverage and resolution (for campaign coverage
resolution), and number of additional human precd
measurements. :

Numerical estzmates- Whether '
included or
numerical est
a challe

61‘1'01‘

ission‘information.
which ranges are too

The initial mission ‘ i
campaign is summarized " Table 4 (except for the cost
information). The “error factgr” applies to the baseline value
for estimation of the upper (multiplication) and lower
(division) bounds of the “error bar”. In some cases, such as
the aerial platform, the error bar is a-priori very large. This
reflects a new concept, for which no detailed design study
has been carried out yet.

This set of mission information is typical of any campaign.
Cost, time to complete, and probability of mission disaster
will always be important. In addition, every campaign will

, epresentatmn

such as the number of
surements in this case.
.a case-by-case basis,
goals.

A

. s
have cam alg‘a%emﬁc

The power
was described

gﬁthat the decisions will be made and the outcomes will be
#iscovered.
-

¢ision analysis uses the same conventions for the nodes in
e tree that in the influence diagram: squares represent
decisions, ovals represent uncertainties, and a polygon, in
this case a triangle, represents the values or FoMs.

Decision nodes- The branches extending from a decision
node represent each of the alternatives available at that
decision point. For example, in Figure 8, there are five
alternatives for the first mission: Orbiter, Aerial, Lander,
Network, or Rover. Each alternative may be associated with
a value. In this case, each alternative mission is associated
with its cost. The value is presented in a box just below the
name of the alternative. We use variables rather than fixed
values to increase the flexibility of the tree. Thus, below
“Orbiter” you see a box with “Cost_Orbiter”.

Uncertainty nodes- The branches extending from an
uncertainty node represent the possible outcomes of the
uncertainty. For example, in Figure 8, there are four possible
outcomes resulting from sending an orbiter: Disaster, Low,
Medium, and High. Each outcome has a probability, which
is placed below the name of the outcome. Again, the
probabilities are represented as variables here, with



P _Dis_Orbiter representing the probability of a disaster with
an orbiter.

Terminal nodes- At the end of each terminal branch there is
a terminal value node. Here the aggregate value is equal to
the value of the amount of water that has been found minus
the sum of the costs of all missions that have been
performed to get to that point. For example, the value
associated with the second terminal node is equal to the
value of finding a Low site minus the cost of the orbiter
minus the cost of the lander. In this figure, the formula has
been shortened for display clarity. The real value includes
all the FoMs with their associated weights as summarized in
Table 1.

Note that the Bayesian updating and other probability
calculations take place outside the tree. The probability that

a Lander finds a high site depends on the current set of
probabilities over the distribution of water, as well as on the #
mission information on resolution and coverage.

Given the number of possible mission options and the
number of possible outcomes for each option, the d8gision
tree for a campaign problem rapidly “explodes”." .
illustration, Figure 7 shows only a small extract

decision tree for our case study.

Rolling back the tree: general prii

ing back the
information
al campaign
lling back

A basic Decision Analysi
decision tree” is the op
input into a DT can be t¢
strategy. There are two essentiakigper:
the tree: calculating expected valties’
options. The operifiGa s from the*
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Calculating Expected Oufcomes- The first step calculates
the expected values at each of the uncertainty nodes that
precede the terminal value nodes. The expected value after
each uncertainty node is calculated by taking the product of
the probability of an outcome with the aggregated value for
that outcome, and then summing these¢ products over all
outcomes of the uncertainty node. For example, the expected
value of the Lander following an Orbiter disaster is 0.8%(-2)
+ 0.2%(8) = 0. The expected values are shown in the shaded
boxes below the probabilities.

Choosing best decisions- The next step is to choose the best
alternative at each decision node preceding the uncertainty
nodes. For example, following an Orbiter Disaster, we
would choose the alternative (Lander, Network, or Rover)
with the highest expected value - in this example, we would
choose Rover with an expected value of 2. This value
becomes the expected value of a Disaster. The tree can then
be rolled back another level. For ¢xample, the expected
value over all the outcomes of the initial Orbiter mission
equals 0.2*2 + ... +0.1*14=7.1.

E
(2

Identifying the best strategy- The rolling back cefiti es
e -2
=(,8
Lander ®
8
2
Disaster Network

8
Orbiter

- .

Orbiter

until we end up with a single strategy. The strategy will
consist of a first decision, and then later decisions for each
possible outcome. An example strategy is presented in
Figure 8b. In this strategy an Orbiter is followed by a
Network if it does not find a medium or high water site. The
program stops after the network, except in one case. If the
Orbiter has a disaster and the Network finds low water, then
a Rover is sent (these examples are for illustrative value;

in the Influence Diagram
n outcoméhad the same proba
tedi issh 15, then available o
tiple ID into a decis
ome campaign analyzes.
&, however, both the available options and

Disaster __ Network

Network

Stop

Figure 8. Example of “Rolling back™ a DT: (a) Tree (b) Optimal Strategy
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Check Rules for
all Possible
Missions at this

Opp.

Calculate Probability of Mission
Quicome hased on:
*Mission Metrics
*Previous State of Knowledge

Create Branch for
Each Mission
Outcome

|y Update State of Knowledge
based on this Mission Outcome

Go to next
opportunity

Max number of
missions?

Roll Back Tree

throughout the tree. At each mission epportunity, constraints " .
apply to restrict the available mission options: science  The gefk ucture of the automatic tree generation
constraints (no remote sensing mission can be last), cost  algorithm is ic to any campaign. Parts to be tailored for

Biofile), he functions calculating the probability

would be attempted again after a disaster). In addition
probability of each mission outcome depends on
previous missions flown and their outcomes, as described
the uncertainty modeling section, ip. updating needs

o g

able 7 sumrdarizes the baseline results, Several conclusions
an already be reached.

or automatic

der of mission opportunities- The first conclusion i
le rules. The ’ 4 P ¢ s

H the overall value of the campaign increases as the
Z*humber of mission opportunities increases. For the baseline
FoM weights, the increased likelihood of a find, together
with the increased coverage, are worth the increased cost

generation of the dec1510n tree
routine uses an iterative algo

L. and time.
’ Ending the search- The second conclusion is that the search
) should end as soon as a site with high water concentration is
found. The additional coverage alone is not worth additional
3 missions at that point. Compared to a traditional planning

approach, which would assume a set number of missions, the
decision-analytic approach thus saves the cost of a 3™
mission for some cases, increasing the total value of the
campaign. This reflects the value of the “option to launch or
not launch a third mission”,

i the probability of the
mission outcome ba the previous state of
knowledge, and the misgfon performance information
(as described in the uncertainty modeling section).

4. TFor each mission outcome, read mission information to

update the campaign FoMs and use Bayesian updating Table 7. Baseline Results

to calculate the new state of knowledge.

5. Repeat for next mission opportunity, using the new . # tBiSt Value ($M-eq.)
values of campaign FoMs and state of knowledge as a  [—oooionS | SIAIZEY
start. 1 Rover : Expected: 3460
6. When no mission is available based on the tree building 2 Rover“un’tjll e 5.25?’
rules, start rolling back the tree. find “H Worst exp for last mission: 1510
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Best: 9185 (39% chance, 1* finds) | results suggest that there might be value in developing

3 Rover until Expected: 5317 designs and technologies for such a mission.

find “H” Worst: -440 (2 disasters)
Best: 9185 (39% chance, 1% finds) | Aerial versus Rover- Figure 11 shows the results of

sensitivity analysis with respect to all mission information
Dominating mission- The third conclusion is that for the  for the Aerial platform and the Rover concepts, for the case
baseline set of information and FoM weights, the Rover  of 3 mission opportunitics. The figure represents the space
concept dominates all other missions. No matter what the  of Rover information improvement versus Aerial platform
number of mission opportunities, the optimal strategy is to ~ information improvement.: example, +100% on the
send a Rover until a high-water-concentration site is found. ~ horizontal axis repres ase where all Rover metrics
Given that regions exist with an average medium water  Were increased by 1 f their error bar, i.e. the “best™ end
concentration, and given the range of a Rover, the likelihood ~ of the Rover erzge mallest cost, highest coverage,
that at least one of the sites visited by the Rover will be “H”  smallest probabilit digaster). The vertical axis similarly
is 39%. This is sufficient to outweigh the value of remote  represents the e Aerial concept. For all points
sensing for site selection. ue ine” 4 , the Aerial platform

first mission for all pom

Importance of sensitivity analysis ;
The bouﬁgary curve is very |

Sensitivity analysis is always important to understand the .
context of the respits, as vs_felll_as their rc.)busyness. In the case Y ; St etWee 5 the tw o %ﬁ assible decisions.
of campaign design, sensitivity analysis with respect to all
mission information “with error bars” is particularly
important. If the conclusions of the analysis charfgg, when
varying parameters within their error bar, then the ana
inconclusive; smaller error bars are required.

concepts changes when the FoM
2The red dashed “FOMs x10” curve
“gse where weights that favor an aerial
area fi nd) are multlphed by 10, and

Figure 10 offers another snapshot of the baseline resultsﬁé}
compares the value of the campaign as a functlon of missio
opportunity, and as a function ofé e of mission for 2y

1.:he first o}}:portumtyi asi"_lml' : ! @ /. This curve is very close to the basehne curve, showing that
is made thereafter (in this s fissions are %%be FoM weights have little influence on the conclusion. In

Rovers). ¢ase, the decision maker preferences influence the

- :
e resilts less than the mission cost and performance

= Lﬁ,{ sAnformation

=

8

g

£ & Orbiter 100% ,

o q -~ 1

o OAerial £ Aerial i

gE?‘ O Lander E 50% -

Q = - ™

= ;mfrk 4 = —Baseline

> = = o

= E 100% b 100% 0Ll

2 -g -50% 4 Rover

<
1+686%
Rover Improvement
) Figure 11. Aerial vs Rover: Information Space. Each axis

The figure shows how the value of the Rover relative to the  represents changes from the baseline within the error bar of
other alternatives diminishes with increasing number of mission information. Curves represent the points above
mission opportunities. The closest contender to the Rover which an Aerial platform would dominate as 1* mission.

mission appears to be the Aerial platform, closely followed

by the Orbiter. This suggests that the value of remote  Sepsirivity 1o initial knowledge- To conclude the Rover
SEISING 6 f ﬁrs_t nission ‘rmght depel?d on the numerical  versus Aerial platform comparison, Figure 12 compares the
assumptions. While the Aerial platform is a new concept, the  effect of various inputs on the conclusion. The plot

compares the total value of a 3-opportunity campaign
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starting with an Aerial platform to that starting with a Rover, Coverage 2.1% 21% 6.9%
under different conditions. The “bound of mission data™ {each)

conditions correspond to the “best” end of the Aerial Error Factor 2 2 2
platform mission information error bar, and the “worst” end | P(disaster) 10% 10% 15%
of the Rover mission information error bar. The “bound of | Error Factor 1.5 1.5 1.5
water distribution” conditions correspond to a case where Add® Meas. 3 3 3
areas are known to be highly uncorrelated, but sites are Time (months) 52 52 78

known to be very correlated; in such a case, an aerial
platform is very valuable to pinpoint the right area before  Out of this list of study

sending a surface mission. The figure shows that varying the  the breaking down of Rgver ptrﬁms Flgure 12 breaks down
water  distribution  (likelihood of each standard ilv i e concepts with smaller error bars:
deviation/correlation pair) is the most significant driver of , 2 seflar Revers, or 1 RPS (radioisotope power
the comparison. While the water distribution is unknown, its 1 solar Rover, the 2-Rover

impact on the best campaign strategy is actually more i ial range, and an increased
important than that of mission cost and performance. Any ;
study or expert interview that would make possible a refined
model of water distribution would therefore have significant
value.

it to two different areas.
tange than both the 1-

8000 _ 2 Table 6 i ew results with this

7000 ] tions. All three options score better than the

. gggg T j‘ _ Aerial plaffg The results suggest two interesting
2 2000 +—| : gf‘:::r' conclusions. :

* 30004 . i fe over an RPS rover. For the

1000 +— pravater distribution, the additional

0 L ! ¥ PS Rover is not Worth its additional

baseline bound of mission bound of water
data disfribution

S

,' #-only one or two mission opportunities are
%avallable a second solar Rover sent to a different area
‘%gcreases the probablhty of finding water to a degree that it

Figure 12. Aerial vs Roveg Drivers

o >he optimal strategy becomes to send only ! solar Rover at
a time, until a high-concentration site is found. Only at the
last mission opportunity does it become worthwhile sending
a 2-Rover mission.

Table 9. Baseline Results

# Best strategy Value ($M-eq.)
missions
1 2 solar Expected: 4182
Rovers
platform as a first misior A 2 2 solar Expected: 6142
e  After the first mission, @ ®Rover mission is always the Rovers until Worst exp for last mission:
best strategy. Thereforegthere might be value in refining find “H” 2232
the selection of possible Rover designs. Best: 9185 (42% chance, 1%
finds)
Table 8. Refinement of Rover options {cost missing) 3 1 Solar Rover Expected: 7163
Mission 1 solar 2 Solar 1 RPS until find Worst: 845 (2 disasters)
Rover Rovers Rover “H”, or2 Best: 9635 (36% chance, 1%
Explores Area Area Area solar Rovers finds)
#platforms 1 2 I for last
Resolution Site Site Site mission
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Non-trivial strategies- For 100% improvement in the Aerial
platform information, the Aerial platform is the optimal first
mission. In this case, the optimal strategy becomes
interesting. The model results recommend repeating Aerial
platforms until a high-concentration area is found, then send
1 solar Rover to that area. If no high-concentration area is
found before the last mission opportunity, then 2 solar
Rovers should be sent to the highest-concentration area
found so far. As in the baseline results, the added value of
the second Rover is worth the cost only in some
circumstances. The ease with which such conclusions can be
reached and quantified shows the power of a decision-
analytic approach.

Understand design drivers- Figure ** shows the total
campaign value as a function of number of mission
opportunities, and as a function of the mission chosen for the
first opportunity {solar Rovers being optimal thereafter).
The figure shows that the value of the three Rover concepts
is actually very close. This suggests the importance of
sensitivity analysis with respect to Rover informau%n $O as
to understand the drivers of Rover value. Also, OUr
baseline values, it appears that sending 2 Solar Rove
first mission is robust to the number of m
opportunities: it is not the optimal first choice if theref:%;re
three opportunities, but the value is extremely close to ¢ ré
of the opt1mal Thus if there 1s som

uncertainty over th e

8500
7500
6500

5500
4500
3500
2500 A
1500 -

@ Aerial

11 Solar Rover
02 Sclar Rovers
B 1 RPS Rover

500
-500 1
-1500

Total Value [$M equivalent]

1 2 3

#Mission Opportunities

Figure 13. Rov dns Comparison

Impact of Range on Perforinance- As an example study of
design features that drive mission value, Figure 14 shows the
impact of Rover range. Based on the probability model
described in Section 3, the first plot shows how the
probability of a “high” find wvaries with Rover range
capability. Several curves compare a 1-Rover concept with a
2-Rover concept where each Rover would have only % the
range (same total range). Dashed curves show how the
results change when sites have, respectively, low or high
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correlation. From this plot, it becomes apparent that
additional Rover range offers diminishing returns beyond
15-20 km. This explains the relative value of solar Rovers
compared to the RPS Rover concept. The plots also show
that this threshold range is insensitive to number of Rovers,
and to level of site correlation. Finally, the figure illustrates
the value of “breaking down the range” between two
separate Rovers, instead of mcreasmg the range of one

“second graph shows how these
(4] campaign value. For each
value as a finction of
sercentage with respect
fhoct of “diminishing
witti the other

Rover m it‘plots the o
E87AN Rover range capab111

in pefformance are comb
Weparticular cost. Becatiseits total range is
at-Rover concept would*benefit more from
ient than the 2-solar-Rover concept, which is
of diminishing returns. No matter what
the 1-solar-Rover concept is a less
¥s a result, there is a range beyond
ich the 1-Rovercanc: bt becomes optimal: the added
ance of a secof éﬁilover does not justify its cost This

ge capability’ he value of this capability increase is
several $100} glven the baseline FoM weights and the
@basehne mission cost estimates.
o
80% - Arome cromepom=s S R
y 80% —] »___‘
e b :
3 e sl S e
% 60% et e =
£ som _ -/—"‘"'""—'J'MJ“:
's 40%
-§ 30%
[ ——2 Ravers
m ~#-1 Rover with 2x Range | |
20% --o=: 2 Rovers - High Comr
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ira —-r—- 1 Raver - High Corr
o =1 Rcvsr-Lm\lr Carr
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Sensitivity to Rover Range Capability
8000
7500
7000
g
§ 6500
6000
5500 7 |—«- 2 Solar Rovers [
5000 +————————t———|——1RPS Rover ._Jl 1
50% 100% 150% 200%
Tech Improvement in Rover Range

Figure 14, Effect of Rover Range (a) on likelihood of find,
(b) on campaign value

Study Conclusions

Direct conclusions- Even with limited available information
and large error bars on mission information, the decision-
analytic approach helped gain a number of insights into the
search for water on Mars. In particular, the following
conclusions can be reached without further study:
e A Rover is the best platform to find the water,
o Ifthe water find is valuable, it is worth spending sever

mission opportunities searching for water. Staggéj:ing'

the investment is less expensive than sending many
Rovers on one opportunity.

e Depending (1) on the disparity in:the distribution of". .

water and (2) on mission.: cnstfpe ______

platform can provide : valuable “remote sensing,

pinpointing the location’ 'where it is best to send the

Rover mission. i,
o Other missions are dommated {wer the _,,hole range of

possible input ‘ ' very interesting

15-20 km. There lé vg_l_L_l_f.:_m t@qhno]og,y development to
increase solar rover range-up to that point.

Focusing future studies- Furthermore, this high-level study
helps reach non-trivial conclusions as to what information is
worth more work. Fully detailing all possible mission
concepts, and accurately estimating their cost and
performance, would be a daunting task. Instead, the results
help focus future work towards the following areas:
o Refined models are needed for the possible water
distributions over different geographical scales. For
each model, a thorough expert survey should be carried

“already available;” |

-The modeling

rformance, an acrial “illustrate the various concepts of decision analysis. Before

out, so as to conclude on the consensus “likelihood™ of
each model. This is a particularly interesting insight, as
uncertainty models are not a part of traditional space
program planning. This analysis shows that they should
be, since they drive the optimal exploration strategy.

e Mission information for Rovers (both solar and RPS
concepts) and for Aerial platform are worth refinement.
Together with a better water distribution model, they
would help conclude ofi-the optimal mission strategy.
They would also help conclude on the value of

stment into aerial concepts.

raign FoMs, the time to achieve its

¢ rate and daily
ould’captire this ef'f'ect adequately.
e results suggest that it is worth spending
numerots mission opportunities on the search for water.
In reality, sigl‘l ficant Programmatic and Cost constraints
would limit the possibilities. These constraints need to
¢ well understoo __For a smaller cost or schedule cap,
ifferent campalgn strategy would become optimal.

escrlbed herein was kept simple, so as to

“answering the search-for-water question, the study would

‘benefit from improvements in a number of other areas. First,

the form of water should be taken into account; subsurface
1§e would be more valuable than hydrous minerals. Second,

:/a number of other mission concepts are possible and should

be evaluated. Finally, the value of other technology
investment (besides Rover range) should be considered.

Applicability to other Campaigns

6. CONCLUSIONS

Through the example of a robotic campaign to search for
exploitable equatorial water on Mars, this paper
demonstrated the benefits of decision analysis techniques to
space program planning. The example is illustrative both of
the additional work required beyond traditional space
mission design, and of the benefits that can be gained from
that work,

Applying decision analysis to space exploration campaigns
presents opportunities to improve both space program
planning and decision analysis theory.



Traditional space program planning deals primarily with
requirements definition and cost estimation on a one-
mission-at-a-time basis. These tools are insufficient when
planning a discovery-driven space campaign, where future
missions depend on the uncertain results of initial missions.
With Influence Diagrams, the decision analytic approach
forces the study team to explicitly formulate the campaign
design problem in terms of decisions, alternatives, and
uncertainties. This problem formulation step already
generates valuable insights. ID solving tools or Decision
Tree analysis then provide a tool to solve the decision
problem in terms of an optimal strategy. Only initial
estimates of mission information and uncertainties are
required for the first round of analysis. Extensive sensitivity
analysis helps eliminate a large portion of the trade space,
and guide future studies. It identifies the pieces of mission
information, and the parts of the uncertainty model that
matter most to the campaign decisions. It also provides a
basis to determine the required level of resolution for each
model.

Decision Analysis is most applicable for high-impact
decisions involving significant investment, high complexity
and elements of uncertainty.
applying the decision analysis to
campaigns, we are opening up a very large opportunity to
apply and improve decision analysis. Probably more than

any other application, space exploration campaigns push th’é:_ /
-'[ID_citationsJ- ohn Diffenbach. “Influence Diagrams for

limits of current decision analysis’theory in two directions.
First, in the valuation method, With the chal!eri;_,t.s of valuing
mission outcomes were mlsswn are primarily
Second, space exploratlon campdl;,ns oﬁer complex
problcms were there is a Iars.,e uncertamly about every sm;,le
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