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Abstract-Under its Vision for Space Exploration, N - BACKGROUND 

xibility to respond to uncertainty 

es have rarely been used for NASA missions, 
ty after launch is limited. But under the new 

uncertainties is critical. This 
Decision Analysis tec 
evaluation. Important 

exploitable equatorial 

missions based on earlier outcomes, and on the resolution of 
technological and programmatic uncertainties. 

Shortcoming of the traditional approach 

The traditional approach to space program planning has 
several shortcomings for campaign evaluation. 

3. PROBLEM ITB INFLUENCE First, even when designing a series of missions, the typical 
approach optimizes one mission at a time. This ignores the 
fact that the optimal choice for the first mission depends on 

5 .  PROBLEM SOLVING the options available for subsequent missions. 
6. CONCLUSIONS Second, the approach typically uses one of two comparison 
7 .  REFERENCES techniques: either setting requirements and comparing the 
8. ACKNO\rl”EDGEMENTS cost of various design options; or setting a cost cap, and 
9. BIOGRAPHIES comparing the performance of various mission options. But 

even when designed to meet the same requirements, several 
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mission options often have different performance 
characteristics. More importantly, they often open up 
different options for the next mission in the campaign (for 
example, through technology feed-forward). 
Finally, the traditional approach does not explicitly take 
uncertainty into account. When considering design options 
for the second mission in the campaign, it assumes a 
deterministic set of results from the first mission. In reality 
however, the results of each mission are probabilistic. The 
mission could fail; it could be moderately successful; it 
could discover the unexpected, etc. What the decision maker 
needs to select is not one option for the subsequent mission, 
but instead a strategy, i.e. a mission option for each possible 
outcome of the first mission. The probability of each of 
these possible outcomes should influence the decision. 

Effective methods for designing space missions and 
estimating their cost have been used for years [teamx]. 
Recent improvements in concurrent engineering are 
expanding point designs into sizing models that capture the 
local trade space, making possible the rapid generation of 
cost/performance curves on a mission-permission basis 
[morsel. In order to properly evaluate alternate n 

Figure 1. Conceptual een Traditional (a> and 

Launch mass from Earth is a 
ver when designing a human 
of in-situ resource utilization 

elivered at Mars, thus reducing the 

design options, three elements need to be added to th 

metrics instead of cost alone, (2) taking uncerta 
account and (3) considering strategies for whole 

Benejts ofa Decision-Ana 

In order to address thes 
pp]. Water is already thought to exist at the poles, in 
m of water ice. But equatorial water would be 
arIy interesting, as other engineering considerations 

xtensive sensitivity 
ness of our results, 
rmation. The first 

benefit of this approach i it explicitly incorporates 
uncertainty, rather than as that certain results will 
happen, or using averages. This allows for a we11 developed 
solution to the problem and helps to avoid surprises. The 
second benefit is that it allows us to incorporate the value of 
flexibility [Dixit-Pyndyck]. Finally, it helps define which 
information requires further study, thus saving significant 
study time and money. 

favor equatorial landing for the first human mission, 
Knowledge of the presence, form, and amount of any 
exploitable equatorial water would therefore have significant 
value when designing a human mission to Mars. 

What is the best way to develop this knowledge? While 
remote sensing missions offer coverage, in-situ 
measurements provide the only unambiguous proof of the 
presence of water. Intermediate options include aerial 
platforms, rovers, and networks of small probes. To 
maximize returns, a several-mission approach might be 
interesting. What combination of missions would maximize 
the probability of finding exploitable water, while 
minimizing total cost? 

Typical answer with the traditional approach 

The traditional approach to mission optimization would 
select a few deterministic series of missions, and compare 
their cost and performance. In this case, the candidates for 
comparison would likely include one stationary Lander 
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concept and one Rover concept, with the possibility to 
precede either mission with a remote-sensing Orbiter. The 
decision would be driven by one key constraint coming ffom 
above, such as cost or schedule. A logical conclusion would 
be as follows: 

If only one mission opportunity is allowed to search for 
water and the budget is low, only one stationary Lander 
is possible. 
If only one opportunity is allowed, but the budget 
makes it possible, send a Rover to take advantage of the 
additional range, improving the likelihood of a find and 
a characterization of the water extent. 
If two opportunities are available, send first a remote- 
sensing Orbiter, so as to improve the site selection for 
the in-situ mission. Then choose the in-situ mission 
(Lander or Rover) based on the available budget (as 
above). 
If three opportunities are available, with sufficient 
budget, send an Orbiter first, then refine the search with 
a long-range Rover. Finally send a stationary Lander 
equipped with an in-situ research utilization (ISRU) 
technology demonstration, at the site where &e most 

constraints, and figures of merit, i.e. the ultimate parameters 
of interest to the decision makers. The second and most 
important step is the formulation of the problem in terms of 
uncertainties, decisions, and relationships between them. 
Influence Diagrams (IDS) are usefid tools in this problem 
formulation. Once formulated, the problem needs to be 
quantified. Mission studies, databases, or expert knowledge 
provide ranges of estimates for all required mission 

provides the basis for 
influence diagram, once 

rmation and uncertainties 

solves for the optimal 
ut values. Sensitivity 

r I 

resource was found. Define with Customer: Formulate Problem: 

Limitations of the traditional approach 

This approach has the advantage 
but it does not answer all the dec 

how many mission oppo 

their Relationships 

value of the ra 
Decision Tree Decision Tree 

TH INFLUENCE 

DIAGRAMS 
A decision-analytic appr ses the shortfalls of the 
traditional approach. To sq& this point, this section will 
describe the proposed decision-analytic framework, 
illustrating the concepts at each step with their application to 
the search-for-water campaign. 

General approach sumrnaiy 

Figure 2 summarizes the decision analysis process as this 
paper proposes to apply it to campaign architecture. The 
process starts with a definition of the campaign goals, 

I 

Figure 2. General Campaign Analysis Approach 

Defining campaign goals 

Campaign goals- It is important to start the analysis with a 
clear understanding of the campaign goals, against which 
alternative strategies wilt be evaluated. A campaign can 
have primary and secondary goals. 
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In this case, the primary goal is to locate near-surface 
(within the upper 5-m) water in the equatorial regions of 
Mars (+/- 30 deg latitude), and characterize its form and 
extent (3 -dimensional concentration maps). Other human 
precursor measurements can constitute secondary goals. 

Campaign constraints- When they exist, strict constraints on 
the campaign design must be identified upfi-ont. 

The search for water on Mars would be subject to a 
constraint on total budget, yearly budget, total schedule, 
and/or number of mission disasters, Only campaign 
strategies that meet all constraints will be considered in the 
analysis. The analysis below does not include numerical 
values for these constraints, which were unknown for the 
study; instead, these constraints were kept for sensitivity 
analysis. 

Formulating the problem 

Once the goals are clear, three key elements define any 
decision problem: values, alternatives, and uncertainties. 

Time to Complete (in months) 
Number of Mission Disasters 
Likelihood of “H’ find at the site level 
Likelihood of “M” find at the site level 

-10 
-1000 
10,000 
1000 

Likelihood of “H” find at the area level 10 

es for the FoM weights 
c. The weights can 
ed to the outcome. 

o save more 

to Likelihood of “H” $nd ut the site 

Likelihood of “M” find at the area level 

DM would be willing to pay up to 
certain to find “H’ at the area Figures of Merit- Figures of Merit (FoMs), or 

what the decision maker (DM) uses to determi 

e actions that the DM can 
availability of future alternatives to 

ion of uncertainties is what defines a 
and inaction” [keeney]. They m 
campaign meets its goals and c 

In the search for water 
xample, the alternatives are mission options for each 

ry-driven program, where the 
ach mission is be dependent on the results of the 

firther funds for 

In order to determine a 
it is necessary to aggre 

egy for the campaign, 
OMS into one “value” 
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metric. This aggregation ca an equation of any form. For 
simplicity, in this study the aggregate value was taken as the 
weighted sum of all FoMs. The choice of weights is highly 
dependent on the decision maker. Sensitivity analysis with 
respect to FoM weights is important. Table 1 lists the FoMs 
and their baseline weight as used in the study. 

Table 1. Baseline FoM Weights 
1 FoM I Weight 1 
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previous mission. This can be achieved either by spacing the 
missions sufficiently so as to allow for development time 
(i.e., launch a mission to Mars every other opportunity), or 
by developing several mission options in parallel (thus being 
able to launch at every opportunity). The former approach 
will be assumed in the paper as a baseline. The two 
approaches are easy to compare using the framework 
proposed herein. 

Information- Information is what connects alternatives to 
values. Some information is well known, or can be known 
with varying levels of accuracy by carrying out studies at 
various levels of detail. This is the case, for example, of 
mission cost, or likelihood of a mission disaster. For the 
sake of the study, this information can be considered 
deterministic. If studies have not yet estimated the 
information with accuracy, a range of values can be used; 
sensitivity analysis wiIl determine the importance of refining 
the estimate. 



But other key information in often unknown, and cannot be 
known before exercising one of the alternatives available in 
the decision problem. This is the case, in our example, of the 
distribution of water on Mars, and of the amount of water 
that a given mission will find. These pieces of information 
correspond to the key uncertainties of the problem. 

Uncertainties- Some of the uncertainties will get resolved as 
the campaign progresses, and their resolution will influence 
future decisions. Each uncertainty has a tist of possible 
outcomes. For example one uncertainty is “What is the 
highest concentration of water within a given area on 
Mars?”. The possible outcomes range from 0% to 100%. 

Influence Diagrams 

Influence Diagrams (IDS) are useful tools in formulating 
decision problems [ID-citations]. Influence Diagrams are a 
visual representation of a decision problem. They me 
“graphic representations of formal mathematical models” 
[owens shacter nease], which lay out the relationships 
between decisions, uncertainties and values. 

as diamonds; alternatives as squares; and uncertainties as 
ovals. Each node is associated with tables or trees of 
information. For example, each decision is associated with 
its alternatives. For this exampIe, the alternatives in Mission 
1 are Orbiter, Aerial, Lander, Network, and Rover. Each 
uncertainty is associated with a list of outcomes, and the 
probabilities over those outcomes. The final node (“FoMs”) 
represents the aggregate value of the campaign. It aggregates 
all the FoMs into one ic, and aggregates all values 
for each possible out mpaign. 

Arcs- The other ts in IDS are the arrows or arcs. 
s elements in the decision 

conditionally’ dent, given all other relationships on 
after the first mission does not Figure 3 illustrates the Influence Diagram 

campaign. In one simple drawing, the influence 
summarizes all the relationships between th 
make in the campaign, the uncertainties that wil 
resolved over time, and ho 
campaign values. For this r 
problem formulation, as well 

Boxes- The three key el 
represented in Influence Dia 

arly, an arrow going from an 
a decision node implies that the 

de will be known before the 
our diagram indicates that we 

t implement mission 2 until the results of mission 1 

Figure 3. Influence Diagram for the Water-Search Campaign 
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are known. Figure 4. Initial State of Knowledge Iwater-rapp] 

As illustrated on Figure 3, the search for water on Mars is 
driven by a key uncertainty: the distribution of near-surface 
equatorial water on Mars. This distribution, which is highly 
uncertain at the beginning of the campaign, influences the 
outcomes of each mission. In turn, after each mission we can 
update the state of knowledge about the water distribution 
using Bayesian updating (discussed in detail in the next 
section). Each mission also increases the total campaign cost 
and time to complete, and influences all other FoMs. The 
final campaign value is a function of these aggregate mission 
FoMs, together with the final state of knowledge on the 
water distribution. 

Geographical extents- The relationship between the water 
distribution and the range of exploration of various mission 
platforms can be captured by defining several “geographical 
extents”. The chosen definitions are summarized in Table 2. 

4. MODELS FOR DECISION ANALYSIS INPUTS 

Once the problem formulation has been laid out, quantitative 
estimates of uncertainties and alternatives must be 
developed as numerical inputs to the decision analysis 
problem. The required amount of modeling is very 
dependent on the campaign problem. As an illustrative case, 
this section will describe the models used for the se 
water case. 

Modering uncertainties 

distribution of equatorial 

(MGS) orbiters, full c 
concentration, induced 
top 1-m of the surface aver 

tion already found; and the percentage of the planet 

resolution (such is the case at the “area” and “site” level 
at the beginning of the campaign), 

have low water concentration, 
“M” if at least one pixel has been found with medium 
concentration, but none with high concentration (such is 
the case at the ‘.region” level at the beginning of the 

6 and “H’ if at least one pixel with high water 
concentration was found. 

The coverage parameter is a matrix of size 3 x 3 per the 
number of geographical extents. Element (ij) in the matrix 
is the percentage of all pixels of size (i) on the planet that 
have been explored already, with resolution 0). At the 
beginning of the campaign, the whole planet has been 
explored at the “region” level. 
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Water distribution- Once the average water concentration is 
known over a pixel, the distribution of water within the pixel 
can be modeled as a probability density knction; this is a 
convenient way to capture the likelihood that a randomly 
chosen %nail pixel” within the “large pixel” wouId have a 
certain water concentration. In this study, a beta distribution 
was chosen to model water distribution. This distribution has 
the benefits of allowing only values between 0% and 100%; 
and of taking m y  possible shape by changing its parameters. 
With a beta distribution, the water distribution is 
characterized by the average and the standard deviation of 
the water concentration. The reference average values 
chosen for each level (L, M, H) are summarized in Table 2. 
The standard deviation is an unknown of the problem. 
Therefore, standard deviation must be one of the 
uncertainties captured in the state of knowledge. Figure 5 
illustrates 3 representative water distributions, 
corresponding to 3 representative standard deviations of the 
water concentration. Lacking further information, baseline 
inputs assume these there distributions have equal 
likelihood. 

Correlation- Another important parameter to esti 

by a correlation factor behvee igh standard deviation 

correlated than regions. 

Mission outcomes- Each mission has four possible 
outcomes: disaster (no science return), “L” (over the 
resolution searched, only pixels with low concentration are 
found), “My (at least one pixel with medium concentration) 
and “H’ (at least one pixel with high concentration). Given 
no mission disaster the likelihood of “L”, “My and “H” is 
calculated in three steps. 
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The first step calculates the Iikelihood of each outcome at 
the first pixel explored as a hnction of the average water 
concentration over the region explored, the standard 
deviation of this water concentration, and the percentage of 
the region that has already been explored (assuming that we 
don’t go twice to the same area). The average water 
concentration and its standard deviation determine the 
number of “L”, “M”, and “H’ pixels over the region 
explored by the mission, by using the beta distribution. The 
likelihood of each find is therefore simply a “find 1 out of 
N” problem. 

The second step takes correlation into account to determine 
the likelihood of each find at each following pixel. A 
Markov chain provides a good model of this problem, as 
Figure 7 illustrates. In this figure, Pc is the correlation 
factor, and Pi is the likelihood that any random site has a 
concentration i (where i is L, M or H). 

evaluating the next mission, as it will diminish the value of 
mobility and favor stationary platforms. In order to update 
the probability diskibution over the distribution of water on 
Mars, Bayes’ rule is used. Denoting Pc as the correlation 
factor, S the standard deviation, j the index of each possible 
standard deviationicorrelation pair, and K the outcome 
observed, and noting that P(x1y) means the probability of 
outcome x given outeom 

where the a-priori of outcome K was, as 
P(Sj, Pcj IIO )*P(Sj,Pcj) / P(K) 

values, and the number of 
certainty model described in the 

arch” campaign. The same model 
consider searching for resources 

goal, such as emplacing a power and 

require the development of new and different 

each pair given the 

value” of each outcome pro 

Bayesiun updating 

A key component of uncertainty modeling for “search” 
campaigns is to update the state of knowledge based on each 
mission find. For example, if an Orbiter mission finds all 
sites to be “medium”, this suggests that the standard 
deviation of the water distribution is lower than initially 
expected; this needs to be taken into account before 

In a campaign problem, the alternatives are various mission 
options. There are three components in modeling the 
alternatives: (1) defining the set of available options, (2) 
defining the information required on each mission option 
and (3) filling out the matrix of mission information for each 
option with numerical values. 

Defining options- The set of mission options is typically 
determined by expert knowledge, consultation of mission 
study databases, or brainstorming sessions. In order to keep 
the problem manageable and to understand the results, the 
initial set of options should be small. If necessary, options 
can be initially grouped in families. 

In this case, we define five initial families: Orbiter, Lander, 
Rover, AeriaI (platform) and Network (of small landers). 
Only those families that will prove interesting after a first 
round of analysis will be worth breaking down into several 
design options. 
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Table 6. Initial Mission Information (cost not shown) 

uch as the number of 
rements in this case. 

eful consideration of the 
the other hand. 

rams for problem formulation 
Decision trees are another 

coverage and resolution (for campaign coverage problems. They are a 
f a11 the possible realizations 

measurements. hey provide a straightforward 

trees iIlustrate a sequence of 
s, presented in the tree in the order the likelihood of a missio 

units explored (a measur 
ion analysis uses the same conventions for the nodes in 

tree that in the influence diagram: squares represent 

One 

is to 
Decision nodes- The branches extending from a decision 
node represent each of the alternatives available at that 

Network, or Rover. Each alternative may be associated with 
a value. In this case, each alternative mission is associated 

name of the alternative. We use variables rather than fixed 
values to increase the flexibility of the tree. Thus, below 

The initial mission 
campaign is summarize (except for the 

lies to the baseline 

(division) bounds of the “error bar”. In some cases, such as 
the aerial platform, the error bar is a-priori very large. This 
reflects a new concept, for which no detailed desi@ study 
has been carried out yet. 

This set of mission information is typical of any campaign. 
Cost, time to complete, and probability of mission disaster 
will always be important. In addition, every campaign Will 

Uncerfainty nodes- The branches from an 
uncertainty node represent the possible outcomes of the 
uncertainty. For example, in Figure 8, there are four possible 
outcomes resulting from sending an orbiter: Disaster, Low, 
Medium, and High. Each outcome has a which 
is placed below the of the outcome. Again, the 
probabilities are represented as variables here, with 
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P-Dis-Orbiter representing the probability of a disaster with 
an orbiter. 

Terminal nodes- At the end of each terminal branch there is 
a terminal value node. Here the aggregate value is equal to 
the value of the amount of water that has been found minus 
the sum of the costs of all missions that have been 
performed to get to that point. For example, the value 
associated with the second terminaI node is equal to  the 
value of finding a Low site minus the cost of the orbiter 
minus the cost of the lander. In this figure, the formula has 
been shortened for display clarity. The real value includes 
all the FoMs with their associated weights as summarized in 
Tabla 1. 

Note that the Bayesian updating and other probabiliUy 
calculations take place outside the tree. The probability that 
a Lander finds a high site depends on the current set of 
probabilities over the distribution of water, as well as on the 
mission information on resolution and coverage. 

Given the number of possible mission options 
number of possible outcomes for each option, the 

illustration, Figure 7 shows only a small extract 
decision tree for our case study. 

Rolling back ihe tree: general 

A basic Decision Anal 
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A-F Disaster -Cost_Orbiterl-Cost-La~den 

-Cost_Orbiterl-Cost-Lander1 +Value-LowSite 

Cost-Lahd ... 
Medium 

-Cost-Drbi t e r l  -Cosi-Lan der1 +Valu e-Med Sit e 
P-M2_La ... 

4 -Cost_Orbiterl-~ost-Landerl+Value_HighSite 

Disaster ,,-? -Cost-Orbiterl-Cosl-Networkl 

-Cost-0rbilerl-Cost-Networkl +Value-LowSite 

Medium 
-Cost-Orbiter1 -Cost-Network1 +Value-MedSite 

-Cost-Orbitefl -Cost-Network1 +Value-HighSite 
P-HI -Net... 

Disaster 
-Cost-Orbiterl-Cost-Roverl 

-Cost-Orbiterl-Cost-Rover1 +Value_LowSite 

Disaster Network 
~ 

P-Dis-0 h... C @*-Neblo ... 

P-L1-Row.. . 

-Cost-Orbiterl-Cost-Rover1 +Value-MedSiie 

-Cost_Orbilerl-Cost-Roverl+Value-HighSite 

Rover 
Cast-R o w . .  . 

etc ... 

Medium 
First Mission P-MI-Or ... p 

etc ... 

etc.. . 

etc.. . 

etc ... 
Rover 

Figure 7. Decision Tree Extract 



Calculating Expected Outcomes- The first step calculates 
the expected values at each of the uncertainty nodes that 
precede the terminal value nodes. The expected value after 
each uncertainty node is caIcuIated by taking the product of 
the probability of an outcome with the aggregated value for 
that outcome, and then summing these products over all 
outcomes of the uncertainty node. For example, the expected 
value of the Lander following an Orbiter disaster is 0.8*(-2) 
+ 0.2"s) = 0. The expected values are shown in the shaded 
boxes below the probabilities. 

Choosing best decisions- The next step is to choose the best 
alternative at each decision node preceding the uncertainty 
nodes. For example, following an Orbiter Disaster, we 
would choose the alternative (Lander, Network, or Rover) 
with the highest expected value - in this example, we would 
choose Rover with an expected value of 2. This value 
becomes the expected value of a Disaster. The tree can then 
be rolled back another level, For example, the expected 
value over all the outcomes of  the initial Orbiter mission 
equals 0.2*2+ ... +0.1*14=7.1. 

Identzfiing the best strategy- The rolling back c 

Lander p p=O.8 -2 
) 

p=o.2 8 

-2 

8 

-2 

8 

-I- 

\ High 

p=o. 1 

until we end up with a single strategy. The strategy will 
consist of a first decision, and then later decisions for each 
possible outcome. An example strategy is presented in 
Figure 8b. In this strategy an Orbiter is followed by a 
Network if it does not find a medium or high water site. The 
program stops after the network, except in one case. If the 
Orbiter has a disaster and the Network finds low water, then 
a Rover is sent (these examples are for illustrative value; 
results of the actual stud 

".s 

put parameters, manual 

I d StOD 
L~~ Network 

P 

Orbiter stop 

Medium Stop 
stop 

High 
0 stop 

Figure 8. Example of "Rolling back" a DT: (a) Tree (b) Optimal Strategy 
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1. 

2. 

3.  

4. 

5. 

6 

Max numberof 

Roll Back Tree 

and programmatic constraints (such as maximum ac 
number of mission disasters, or whether the same 

probability of each mission 
previous missions flown and the 

to happen after each missi 

if different from this case, the 
e campaign FoMs based on 

es the baseline results. Several conclusions 

r of mission opportunities- The first conclusion is 
e overall value of the campaign increases as the 

er of mission opportunities increases. For the baseline 
weights, the increased likelihood of a find, together 

ome, create an 

mission outcome b the previous state of 
knowledge, and the n performance information 
(as described in the u 
For each mission outcome, read mission information to 
update the campaign FoMs and use Bayesian updating 
to calculate the new state of knowledge. 
Repeat for next mission opporhmity, using the new 
values of campaign FoMs and state of knowledge as a 
start. 
When no mission is available based on the tree building 
rules, start rolling back the tree. 

ty modeling section). 

with the increased coverage, are worth the increased cost 
and time. 

Ending the search- The second concIusion is that the search 
should end as soon as a site with high water concentration is 
found. The additional coverage alone is not worth additional 
missions at that point. Compared to a traditional planning 
approach, which would assume a set number of missions, the 
decision-analytic approach thus saves the cost of a 3d 
mission for some cases, increasing the total value of the 
campaign. This reflects the value of the “option to launch or 
not launch a third mission”, 

Table 7. Baseline Results 

Rover 

find “H’ Worst ex for last mission: 1510 
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Best: 9185 (39% chance, lSt finds) 

Worst: -440 (2 disasters) 
Best: 9185 (39% chance, lSt finds) 

3 Rover until Expected: 53 17 
find “H” 

Dominating mission- The third conclusion is that for the 
baseline set of information and FoM weights, the Rover 
concept dominates all other missions. No matter what the 
number of mission opportunities, the optimal strategy is to 
send a Rover until a high-water-concentration site is found. 
Given that regions exist with an average medium water 
concentration, and given the range of a Rover, the likelihood 
that at least one of the sites visited by the Rover will be “H’ 
is 39%. This is sufficient to outweigh the value of remote 
sensing for site seIection. 

Importance of sensitivity anaEysis 

Sensitivity analysis is always important to understand the 
context of the results, as well as their robustness. In the case 
of campaign design, sensitivity analysis with respect to all 
mission information “with error bars” is particularly 

results suggest that there might be value in developing 
designs and technologies for such a mission. 

Aerial versus Rover- Figure 11 shows the results of 

for the Aerial pIatform and the Rover concepts, for the case 
of 3 mission opportunities. The figure represents the space 
of Rover information irn ent versus Aerial platform 
information improve xample, +loo% on the 

where all Rover metrics 
were increased b or bar, i.e. the “best” end 

cept, For a11 points 

important. If the conclusions of the analysis ch 
varying parameters within their error bar, then the an 
inconclusive; smaller error bars are required. 

igure 11 also shows how this 
epts changes when the FoM 
dashed “FOMs xl0” curve 
weights that favor an aerial 
are multiplied by 10, and 

a Rover (site find, disaster) divided by 10. 
close to the baseline curve, showing that 

uence on the conclusion. In 
se, the decision maker preferences influence the 

iess than the mission cost and performance 

compares the value of the camp 

is made thereafter (in thi 

Y 

-1000 I I 2 I 3 4- 
“2000 .I.___._- - - - .” 

The figure shows how the value of the Rover relative to the 
other alternatives diminishes with increasing number of 
mission opportunities. The closest contender to the Rover 
mission appears to be the Aerial platform, closely followed 
by the Orbiter. This suggests that the value of remote 
sensing as a first mission might depend on the numerical 
assumptions. While the Aerial platform is a new concept, the 

50% 

100% 
I 

I 

Rover Improvement 

Figure 11. Aerial vs Rover: Information Space. Each axis 
represents changes from the baseline within the error bar of 

mission information. Curves represent the points above 
which an Aerial platform would dominate as lst mission. 

Sensitivity to initial knowledge- To conclude the Rover 
versus AeriaI platform comparison, Figure 12 compares the 
effect of various inputs on the conclusion. The plot 
compares the total value of a 3-opportunity campaign 
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starting with an Aerial platform to that starting with a Rover, 
under different conditions. The “bound of mission data” 
conditions correspond to the “best” end of the Aerial 

water distribution” conditions correspond to a case where 

platform mission information error bar, and the “worst” end 
of the Rover mission information error bar. The “bound of 

areas are known to be highly uncorrelated, but sites are 

platform is very valuable to pinpoint the right area before Out of this list of st 
re 12 breaks down 
smaller error bars: 

Rover, the 2-Rover 
ge, and an increased 

the comparison. While the water distribution is unknown, its 

study or expert interview that would make possible a refined 
model of water distribution would therefore have significant 
value. 

over an RPS rover. For the 
r distribution, the additional 

over is not worth its additional 

one or two mission opportunities are 
solar Rover sent to a different area 

the cost. But if three or more mission opportunities Model refinement 

Sensitivity analysis result 
determine where 

Coverage 2.1% 2.1% 6.9% 

Error Factor 2 2 2 

Error Factor 1.5 1.5 1.5 

Time(months) 52  52 78 

(each) 

P(disaster) 10% 10% 15% 

Adda’ Meas. 3 3 3 

After the first missio ver mission is always the 
might be value in refining best strategy. Therefo 

the selection of possible Rover designs. 

Explores 

Resolution 
#platforms 

Table 8. Refinement of Rover options (cost missing) 
1 Mission I 1 solar I 2 Solar I lRPS I 

Rover Rovers Rover 
Area Area Area 

1 2 1 
Site Site Site 

Iast mission opportunity does it become worthwhile sending 
a 2-Rover mission. 

Table 9. Baseline Results 
# Best strategy 

1 2 solar 
Rovers 

2 2 solar 
Rovers until 

find “H’ 

missions 

1 SolarRover 
until find 
“H”, or 2 

solar Rovers 
for last 

Value ($M-eq.) 

Expected: 4 182 

Expected: 6142 
Worst exp for last mission: 

2232 
Best: 9185 (42% chance, 1” 

finds) 
Expected: 7163 

Worst: 845 (2 disasters) 
Best: 9635 (36% chance, 1” 

finds) 
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Non-trivial strategies- For 100% improvement in the Aerial 
platform information, the Aerial platform is the optimal first 
mission. In this case, the optimal strategy becomes 
interesting. The model results recommend repeating Aerial 
platforms until a high-concentration area is found, then send 
1 solar Rover to that area. If no high-concentration area is 
found before the last mission opportunity, then 2 solar 
Rovers should be sent to the highest-concentration area 
found so far. As in the baseline results, the added value of 
the second Rover is worth the cost only in some 
circumstances. The ease with which such conclusions can be 
reached and quantified shows the power of a decision- 
analytic approach. 

Understand design drivers- Figure ** shows the total 
campaign value as a function of number of mission 
opportunities, and as a function of the mission chosen for the 
first opportunity (solar Rovers being optimal thereafter). 
The figure shows that the value of the three Rover concepts 
is actually very close. This suggests the importance of 
sensitivity analysis with respect to Rover informati 
to understand the drivers of Rover value. Also, 

correlation. From this plot, it becomes apparent that 
additional Rover range offers diminishing returns beyond 
15-20 km. This explains the relative value of solar Rovers 
compared to the RPS Rover concept. The plots also show 
that this threshold range is insensitive to number of Rovers, 
and to level of site correlation. FinaIly, the figure illustrates 
the value of “breaking down the range)’ between two 
separate Rovers, instead of increasing the range of one 
Rover. For the same t 2-Rover concept always 
offers a better likelih water, because it visits 
two different are 

ign value. For each 
lue as a fbnction of 

baseline values, it appears that sending 2 Solar Rov sult, there is a range beyond 
first mission is robust to the number of becomes optimaI: the added 
opportunities: it is not the optimal first choice if ther er does not justify its cost. This 
three opportunities, but the Val about 100% improvement in Rover 
of the optimal. Thus, if there value of this capability increase is 
number of mission o en the baseline FoM weights and the 

8500 w 
7500 

p 6500 

QI 4500 
I 

2 2500 
Z 1500 > 

500 
-500 

- 
-g 5500 

2 3500 

-1 500 

[7 1 Sohr Rover 
0 2 Solar Rovers 

I Mssion Opportunities 

Impact of Range on Perfa&ance- As an example study of 
design features that drive mission value, Figure 14 shows the 
impact of Rover range. Based on the probability mode1 
described in Section 3, the first plot shows how the 
probability of a “high” find varies with Rover range 
capability. Several curves compare a 1-Rover concept with a 
2-Rover concept where each Rover would have only ?4 the 
range (same total range). Dashed curves show how the 
results change when sites have, respectively, low or high 

80% 

80% 

70% 

$ 60% 
f 50% 

40% 

90% 

20% 

10% 

0% 

r 

71 

- 

0.0 2.5 5.9 75 10.0 12.5 15.0 17.5 20.0 

Range of each Rover [kml 
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Sensitivity to Rover Range Capability 
Annn , 

- c r k  

5500 

5000 - 1  RPS Rover .1 

- .... _ _ _  __  -= . 2 Solar Rovers 

50s6 100% 150% 200% 

Tech Improvement in Rover Range 

Figure 14. Effect o f  Rover Range (a) on tikelihood of find, 
(b) on campaign value 

S i u 4  Conclusions 

Direcr conclusium- Even with limited availabte information 
and large error bars on mission information, the decision- 
analytic approach helped gain a number o f  insights into the 
search for water on Mars. In particular, the following 
conclusions can be reached without further studv: i-.. 

a 

a 

out, so as to conclude on the consensus "likelihood" of 
each model. This is a particularly interesting insight, as 
uncertainty models are not a part of traditional space 
program planning. This analysis shows that they should 
be, since they drive the optimal exploration strategy. 
Mission information for Rovers (both solar and RPS 
concepts) and for Aerial platform are worth refinement. 
Together with a better, water distribution model, they 
would help conclud e optimal mission strategy. 

onclude on the value of 

ady achieve a valuable 

ults suggest that it is worth spending 

rammatic and Cost constraints 
es. These constraints need ta 

a smaller cost or schedule cap, 
egy would become optimal. 

If the water find is valuable, it is worth spending 

Rovers on one opponuniry. 
Depending ( 1 )  on the dispa cribed herein was kept simple, so as to 

s concepts of decision analysis. Before 
h-for-water question, the study would 
ments in a number o f  other areas. First, 

of water should be taken into account; subsurface 
d be more valuable than hydrous minerals. Second, 

ssion concepts are possible and should 

e distribution o 

pinpointing the locati 
Rover mission. 
Other missions are dorninat 

n ificantly increases 

15-20 km. There 
increase solar rov 

logy development to 

Fucusing fuiure siudies- Fufthermore, this high-tevel study 
helps reach non-trivial conclusions as to what information is 
worth more work. Fully detailing all possible mission 
concepts, and accurately estimating their cost and 
performance, would be a daunting task. Instead, the results 
help focus future work towards the following areas: 

Refined models are needed for the possible water 
distributions over different geographical scales. For 
each model, a thorough cxpen survey should be carried 

be evaluated. Finally, the value of  other technology 
investment (besides Rover range) should be considered. 

Applicubili(y io  other Campaigns 

6. CONCLUSIONS 
Through the example of a robotic campaign to search for 
exploitable equatorial water on Mars, this paper 
demonstrated the benefits o f  decision analysis techniques to 
space program planning. The example is illustrative both of 
the additional work required beyond traditional space 
mission design, and of the benefits that can be gained from 
that work. 

Applying decision analysis to space explorarion campaigns 
presents opportunities to improve both space program 
planning and decision analysis theory. 
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Traditional space program planning deals primarily with 
requirements definition and cost estimation on a one- 
mission-at-a-time basis. These tools are insufficient when 
planning a discovery-driven space campaign, where future 
missions depend on the uncertain results of initial missions. 
With Influence Diagrams, the decision analytic approach 
forces the study team to explicitly formulate the campaign 
design problem in terms of decisions, alternatives, and 
uncertainties. This problem formulation step already 
generates valuable insights. ID solving tools or Decision 
Tree analysis then provide a tool to sotve the decision 
problem in terms of an optimal sirategy. Only initial 
estimates of mission information and uncertainties are 
required for the first round of analysis. Extensive sensitivity 
analysis helps eliminate a large portion o f  the trade space, 
and guide future studies. It identifies the pieces of mission 
information, and the parts o f  the uncertainty model that 
matter most to the campaign decisions. It also provides a 
basis to determine the required level of resolution for each 
model. 

Decision Analysis is most applicable for higb-impact 
decisions involving significant investment, high co&hity 
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