
Deductive Glue Code Synthesis for Embedded Software Systems
Based on Code Patterns

Jian ~ i u ' , Jicheng FU', Yansheng hang', Farokh ~astani ' , I-Ling yen'

Ann ~ a i ' , Savio Chau3

Abstract

Automated code synthesis is a constructive process that
can be used to generate programs from specifications. It can,
thus, greatly reduce the software development cost and time.
The use of formal code synthesis approach for software
generation further increases the dependability of the system.
Though code synthesis has many potential benefits, the
synthesis techniques are still limited. Meanwhile,
components are widely used in embedded system
development. Applying code synthesis to component based
software development (CBSD) process can greatly enhance
the capability of code synthesis while reducing the
component composition efforts. In this paper, we discuss the
issues and techniques for applying deductive code synthesis
techniques to CBSD. For deductive synthesis in CBSD, a
rule base is the key for inferring appropriate component
composition. We use the code patterns to guide the
development of rules. Code patterns have been proposed to
capture the typical usages of the components. Several
general composition operations have been identified to
facilitate systematic composition. We present the technique
for rule development and automated generation of new
patterns fiom existing code patterns. A case study of using
this method in building a real-time control system is also
presented.
Keywords: Real-time system, Code patterns, Automated
code synthesis, Deductive code synthesis

1 Introduction

In recent years, dramatic advances in technology have
made it possible to envision and develop highly critical
embedded systems, including high-consequence real-time
distributed applications such as on-board control systems,
manufacturing systems, multi-robot control systems, etc.
These embedded systems are becoming increasingly
sophisticated and complex. Furthermore, due to the rapidly
changing technology and intense globat competition,
industry must be able to develop these systems quickly,
dependably, and at a low cost.

To deal with these challenges, industry is rapidly shifting
away from low-level programming issues to systematic
integration of systems from components. Software

components have already been widely used in modem
software development to reduce costs, risks, and time [I].
Based on previously verified or tested components, software
that is built by assembling the components according to user
requirements can result in high reliability and dependability.

The component-based software development process still
requires further improvement. To effectively compose
software components into a system, developers generally
must have a thorough understanding of the components. This
includes understanding the circumstances that the
components can be used for, the ways the components can
be composed together, and all constraints on the usages of
the components. In the embedded systems domain, the
problems are more severe. Also, due to stringent
nonfunctional constraints and recluirements, to understand
embedded components and their usage can require a steep
learning curve since many of these components are highly
domain-specific.

Automated code synthesis is another direction that has
been investigated and applied to software production to
reduce development time and cost and to increase software
quality. Commonly used automated code synthesis
paradigms include transformational paradigm, composition-
based paradigm, schema-based paradigms and deductive
paradigm etc. Transformational paradigm begins with an
abstract specification which is repeatedly transformed
through a series of more concrete forms until a program in
the target language has been produced [2][3]. Most of the
transformation systems are experimental and the problems
that they are capable of coping with are still limited.
Composition-based paradigm employs step-wise refinement
to develop complex programs fiom simple programs by
incrementally adding features [13] [14]. The weakness of
this paradigm is that the inheritance hierarchy could be very
deep in a large domain with many features, and global
dependencies and global reorganizations are either not very
effective or tend to reduce the optimality of fit [15].

Schema-based synthesis uses AS technologies to
recursively apply schemas to gradually refine a specification
into executable code. Schema is a representation of reusable
computational knowledge. It can take various forms,
including high-level algorithm templates, code optimizations,
data type refinements, or architectural information. A core
engine applies schemas on the initial problem specification,

' Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083
IA Tech, Inc., Los Angeles, CA 90024
Jet Propulsion Laboratory, Pasadena, CA 91 109

and then uses the output of those schemas as the input for
other schemas, until the fulI implementation is generated
[41[51.

Deductive paradigm is very attractive because all the
synthesized programs are guaranteed correct-by-construction.
Deductive synthesis systems, such as Amphion [7] and
KIDS [12], enable programs to be synthesized as a
byproduct of theorem proving from an application domain
theory [6] . kmphion is a domain independent code synthesis
system which can be used in specific domains. Meta-
Amphion is designed and developed to enable domain
experts to develop and maintain their own Amphion
applications [lo]. Amphion/NAV made some improvements
over original Amphion system. It has been extended to
generate iterative search programs [9]. But in general,
Amphion is lack of the ability for generating conditional or
loop statements [a]. KIDS improves the synthesis capability
by requiring developers to understand and fine tune the
software synthesis process to achieve automation [12].

It is generally difficult to achieve code synthesis from
scratch. An alternate way is to apply the deductive synthesis
technique to component-based development (CBSD)
process. By doing so, deductions can be made at the
component composition level and, hence, effectively
automate or semi-automate the composition process. This
combined approach leverage the existing component based
technologies and code synthesis techniques to achieve
greatly reduced development time and improved software
quality. However, how to deduce the composition of
components is an issue that needs to be investigated.

Generally, deductive synthesis is built upon a knowledge
base that includes specific domain theories. The key to
achieve synthesis of composition glue code is to establish
the domain specific knowledge base to conduct a proof,
which begins with a formal specification and proves the
existence of an object meeting the specified constraints. In
our approach, we use code pattern technique proposed in
[18][19] to facilitate the construction of synthesis rules. A
code pattem captures the typical usages of the corresponding
components to facilitate the composition process, either
manual or automated compositions. It defines the correct
ways of using a given set of components, especially the legal
calling sequences of their methods [It?]. Deductive synthesis
techniques can be used to deduce the composition of
components and generation of the system. Code patterns can
be used to effectively guide the deductive process.
Essentially, code pattem specifications are converted to
predicates and used in the knowledge base for deductive
synthesis. Also, pattern composition operations are formally
defined as axioms for the deductive system to find feasible
solutions. Given that the code patterns and their
specifications are correct, the program generated by using
deductive synthesis is provably correct.

We have applied the pattern based code synthesis
techniques for building a multi-robot control system. Our
goal is to demonstrate a comprehensive method of combing
deductive synthesis and code patterns to generate
dependable code for embedded software systems.

The rest of this paper is organized as follows: In Section 2,
we briefly discuss the definition of code pattern, its
specification, the composition operations, and the deductive
synthesis method for automated code generation. In Section
3, we present how deductive synthesis can be used with code
patterns in real-time system generation. We discuss how the
knowledge-base is constructed and what axioms are used for
deductive inference. Section 4 describes a case study of
using this method in developing a real-time robot control
system. The code patterns used in building the system are
briefly described and some experimental results are
presented. Section 5 concludes the paper and identifies some
future research directions.

2 Background

In the following two subsections, we introduce the
background information about code patterns and deductive
synthesis techniques.

2.1 Code Patterns

Code pattern is a named functional unit that captures the
typical usages of software components and the interactions
among them, i.e., it is a proven solution to a recurring
problem. We use three parts to specify a code pattern,
including the informal description, the formal code template
specification, and the inverse pattern specification.

The informal description specifies the name of the pattern,
the problem the pattern can solve, the context under which
the pattern can be used, and a brief description of the
solution contained in the pattem. A code template is used to
formally specify the pattem. It consists of three sections,
namely, pattern interface, pattern body, and the constraints
on the pattem. Pattern parameters are specified in the pattern
interface. The pattern body defines a typical way of using
and composing the components. The pattern constraints
specify the functionality of the pattern using pre- and post-
conditions based on UML, Object Constraint Language
(OCL). The inverse pattern part defines the inverse patterns
(if any) of the pattern and the constraints about how to use
them. An inverse pattern is a pattern that performs the
converse function of the original pattem. For example, a
"delete" pattern is an inverse of a "create" pattern.

Definition 1 (Code Pattern) A code pattern cp is a named
functional unit that captures the typical structure and
composition of a set of components. cp can be represented
by a triple cp = (i, b, c), where cp is the pattern name, i is the
interface, b is the body, and c is a pair of pre- and post-
conditions {P, R). The functionality of a pattern p can be
represented as {P)cp {R) .

Six composition operations, including one instantiation
operation, three functional operations, and two non-
functional operations, are defined for glue code generation.
For the purpose of this paper, only three of these operations
will be discussed, namely, map, concatenate, and invert. For
information regarding the other operations, please refer to
[IS] and [19].

The instantiation operation, map, is used to instantiate a
pattern for finally using it in a program. The map operation
assigns a value to each parameter of the pattern based on the
pre-conditions. The result of the map operation is a partially
mapped pattern (if only some of the parameters are
instantiated) or a final code segment that can be directly
used (if the parameters are instantiated).

The concatenate operation is used to connect two code
patterns together sequentially to form a flow of data or
actions. Patterns are concatenated together using parameter
binding i.e., the parameters of one pattern are bound to those
of the other one. Once the post-condition of the first pattern
is consistent with the pre-condition of the second pattern,
and the types of the parameters match with each other, the
concatenate operation can be used to generate a composite
pattern.

Definition 2 (Concatenate Operation) Given two code
patterns cp, and C P ~ , {PI)CPI(RI) and (P~)cPz(R~I, CPI and
cp2 can be connected together Con(cp,, cpz) by using the
concatenate operation if the following condition hoIds:

(VS)IRI(S)JP~(S)
The pattern resulting from the concatenation operation

(Con(cp1, ~ ~ 2 1) is cp = {P1)cpCRr).
In algebra, inverse operations are used to solve equations.

Inverse operations undo the effect of each other. In code
pattern based software development, we define the inverse
operation so as to create the converse code of a code pattern.
Converse code means that the output pattern performs the
inverse operation of the input pattern. As mentioned before,
in the specification of code patterns, we have predefined
inverse code patterns and the corresponding conditions for
them to be used. Given a code pattern, the invert operation
can be used to find its inverse pattern.

Definition 3 (Invert Operation) Given two code patterns
cp and cp':

cp: (Vs> ff'(s)Icp(R(s))
cp': (~s)liP'(s)3cp7{R'(s)J
if the following conditions hold:
(Ys)l R(s) o P'(s) A (Vs)(R'(s) P(s)

then cp and cp' are inverse patterns, and both of them are
invertible: Invertible(cp) A Invertible(cp').

The invert operation is defined to find the inverse pattern
of the given invertible pattern:

cp' = Invert(cp) A cp = Invert(cpt)
The invert operation has the following property:
lnvert(Invert(cp)) = cp
A sequence of pattern compositions using the

composition operations can be expressed by function
composition notation. For example, cp = Con(Invert(a),
Con(lnvert(b), c)) implies cp is the composite pattern by
concatenating the inverse pattern of Q with the concatenation
of the inverse pattern of b and pattern c.

2.2 Deductive Code Synthesis
Program synthesis comprises a range of technologies for

the automated generation of executable computer programs
from high-level specifications of their behavior. It is
especially amenable to deductive techniques. The prospect

of constructing a suitabIe computer program automatically,
based on specifications and automated deduction, was an
exciting dream in the early years of AI. Success in this
domain can eliminate the need for program verification since
the code will be correct by construction. However, the task
proved overwhelming in the early A1 years, and progress in
this area was slower than anticipated [16]. Recently,
combining pure deductive techniques with powerful
heuristics, and limiting their application to specific domains
has led to some successes in deductive code synthesis.

In [6], a specification for deductive code synthesis is
generally defined as:

Aa) finds such that P[a, z].

The theorem corresponding to this specification is
(Ya)(gz) p[a, zl
That is, the specification for f is that for every input a,

there exists an output z that satisfies the input-output relation
P[a, z]. The proof is restricted to be sufficiently constructive
to indicate a method for finding z in terms of a. That method
is expressed by a single term t[a], which can be extracted
from the proof. The term indicates which substitutions were
made for z to allow the proof to go through. Then the
program produced is

J(a) = tEa1
A deductive synthesis system typically consists of two

parts: a deduction system and a domain theory. Program
generation begins with a problem specification. A problem
specification is a description of the purpose or expected
behavior of the desired program. To construct a program
meeting the given specification, deductive program synthesis
constructs a proof based on the domain theory and proves
the existence of an object meeting the specified constraints
(if there is any) [6] .

Theorem prover SNARK [S][ll], the SRl's automated
reasoning kit, is chosen as the deductive engine for our
system. It is designed to be especially suitable for program
synthesis and other applications in artificial intelligence and
software engineering.

3 Code Pattern-Based Deductive Program
Synthesis for Embedded Systems

Deductive synthesis can automatically generate
executable computer programs from high-level behavioral
specifications. The code generated by deductive synthesis is
provably correct because the code generation process is
constructive. But it cannot generate complex program
structures (such as loops) and are typically domain specific.
Code patterns can formally specify typical usages of a set of
components and their compositions. By combining
deductive techniques with pattem techniques, we can
establish an automated constructive process for synthesizing
the glue code for component composition. The technique can
be used effectively in developing embedded systems.

In the pattern based synthesis process, the system
specification is taken as the input. It is specified using pre-
and post-conditions. A problem Pr with pre-condition A and
post-condition Z is specified as: { A) Pr(Z). Given (A) Pr(Z),

pattern-based deductive synthesis can compose components
by (1) Identifying suitable patterns from the code pattern
library according to the application specification and (2)
Composing new patterns by employing pattern operations,
such as concatenate and invert operations.

The domain theory for deductive synthesis is the basis of
the deduction and has the biggest impact on the deductive
efficiency. The domain theory of our pattern-based
deductive system consists of two parts, namely, the pattern
specifications and the deduction rules for using the
composition operations.

For each individual code pattern, the following axiomatic
expression is used to formally specify them in the domain
theory:

Pattern(P, CP: R) = P A Execute (CP) 3 R

where P is the precondition and R is the post-condition of
pattern CP. A pattern is specified as a predicate of a function
unit that can be used in composition. As P and R are already
included in the pattern specification, the theory can be easily
constructed.

Based on pattern specified, compositions can be derived
by issuing a proof request to SNARK. The definition of the
pseudo proof request is as follows.

(prove existence of a program p such that
(Pattern initial-state ?p goal-state))

Given the initial-state and the goal-state of the system, the
deductive synthesis system should be able to prove whether
there exists some pattern, such that its precondition is the
initial state and the post-condition is the goal state. The
result can be an existing pattern or a composition of the
existing patterns by using pattern conlposition operations.

Two pattern composition operations are amenable to
automation via the process of specification decomposition,
pattern matching, pattern instantiation and pattern
composition. They are the concatenate and invert operations.

As discussed in Section 2, two (or more) code patterns
may be sequentiaIly connected together by using the
concatenate operation. Based on the definition, if the
following conditions hold, two code patterns can be
concatenated together (cp= Con(cp,, cp2)) to solve a problem
(P)Pr{R]:

Conditionl: (VS)~ P(s) 3 Pl(s),
Condition2: (VS)~ Rl(s) 3 P~(s),
Condition3: (Vs)] R,(s) R(s),

where s is the set of inputs to the code pattern; P(s) is the
pre-condition of the problem and R(s) is its post-condition.
P, is the pre-condition for code pattern cp, and R, is the post-
condition for cp, (I = 1, 2). The concatenate operation (Con
(Patternl, Pattern2)) is defined by the following axiom in
the domain theory.

(forall ((?PI) (?P2)(?R1) (?R2)(?CPl) (?CP2))
(implies (A (Pattern ?P1 ?CPI ?RI)
(Pattern ?P2 ?CP2 ?R2) (implies ?R1 ?P2))
(Pattern ?PI (Con ?CPI ?CP2) ?R2)))

The invert operation is used to create the converse code of
a code pattern. Given a problem {P)Pr{R) and a code
pattern (Pc)CP{Rc), if Invertibie(CP)r\(R~Pc)~(P3Rc) is
true, then we can use the invert operation to invert CP,
which gives the solution for problem Pr.

The hnction Invert(CP) is defined by the following
axiom in the domain theory.

{forall ((?P) (?CP) (?R))
(implies (A (Pattern ?P ?CP ?R) (Invertible ?CP))

(A (Pattern ?R (Invert ?CP) ?P)
(Invertible (Invert ?CP)))))

The predicate Invertible(CP) indicates whether a pattern
is invertible or not.

Because of the special property that the invert operation
(Section 2), there are cases where the theorem prover may
run into infinite derivation:

Pattern(a. cp, b) 3 Pattem(b, invert(cp), a) 3
Pattern(% invert (invert (cp)), bj 3
Pattem(b, invert (invert (invert (cp))), a) 3 ...

To avoid this, an auxiliary rule is added to the domain
theory:

(forall ?p (= (Invert (Invert ?p)) ?p)j

which ensures that the invert operation will not repeatedly be
used on the same pattern.

A system, pattern-based deductive synthesis system
(PBDSS), is built to support this approach. PBDSS consists
of six modules: the pattern repository, pattern parser, pattern
composer, composition rules, the SNARK theorem prover,
and the domain theory for the prover.

Figure 1 illustrates the structure of PBDSS. A pattern
library/repository stores all the patterns as well as their
relations, for example, individual patterns, composite
patterns, and inverse pattern relations. The deductive system
takes the problem specification as the input and uses the
domain theory to find a composite pattern for solving the
problem. If within a time period a solution is found, the
expression of the composite pattern is passed to the pattern
composer. Based on the composition expression, the pattern
composer retrieves individual patterns from the pattern
repository for composition. Each retrieved pattern is
processed by the pattern parser before participating in the
composition. The parser checks the syntax of the pattern and
adds additional annotations for the composition. Finally, the
generated annotated syntax-error-free patterns are composed
together by the composer based on the composition
expression obtained from the deductive system and the
composition rules. The output of the composer is either a
composite pattern that can be added into the pattern
repository for reuse, or the synthesized final code that can be
used in the program.

There is no guarantee that a solution to a given the
problem will be found by the system. The efficiency of the

system depends heaviIy on the pattern repository. The more
patterns that collectively cover most of the usage scenarios
of the components are defined, the more likely a solution
will be found for a given problem. Deductive theorem
provers that are logically complete for first-order logic or
more expressive logics have an inherent weakness that, if
they run on for longer than expected, generally, we cannot
determine if no solution can be found or if we simply have
not given it enough time [Il l . The reason for this weakness
is due to the exponential growth during the search for
finding a solution. The usual methods of mitigating the
problem fall into three categories: (1) providing general
theorem proving strategies, tactics, and heuristics; (2)
reformulation of axioms in the domain theory; (3)
incorporating new inference rules and special purpose
reasoning mechanisms [17]. In PBDSS, we try to overcome
the weakness by restricting attention to a specific sub-
domain, e.g. file operations, to significantly reduce the
complexity.

Panern -
parser

Compos~te Pattern

Figure 1: Architecture of PBDSS

4 Case Study

In order to evaluate the code-pattern based program
synthesis method, we have developed a case study in
building a multi-robot control system.

4.1 System Specification
The case study consists of multiple robots that

collectively emulate a rigid vehicle that can move a load
(e.g., a log) from one place to another place. The system
operator controls the "vehicle" via a car-like steering wheel
and a pedal system. The operator can (a) move the vehicle
at varying speeds along a straight line; (b) set the direction
of motion to be in the forward or backward direction, and (c)
turn the vehicle so that one point stays fixed while the other
points move along a circular trajectory. The vehicle must
react to the operator's actions in real-time and must maintain
its shape (rigid body constraint).

To address mechanical-related problems with physical
real robots that we have met during the case study, we have
developed a system that simulates a consistent and
controllable behavior for each of the robots and enables
placement of sensors at various points to monitor the state of
the system.

Figure 2 shows our experimental environment in the case
study, consisting of a User Interface Device (UID) and the

Simulator interface. The left side of Figure 2 is the joystick,
a wheel and pedal, which can control the robots to move
along a specified direction at a specified speed. This passive
device's data is periodically poIled by the connecting host
and sent to the client. The right side is the robot simulator
that runs on the client machine. The simulator has two parts,
namely, the status display and a default control interface.

The status display shows the area that the robots must
cooperatively navigate through while holding the log. Each
circle on the right-top portion of Figure 2 represents a robot.
The direction of the line within each robot represents the
direction of motion of the robot. Each robot can be
controlled separately. Each one of them can move linearly or
rotate around its center. Hence, the robots in the simulator
behave exactly in the same way as the real robots. The line
connecting the circles (i.e., robots) represents the rigid body
and the load.

Figure 2: User Interface Device and Simulator

The default control interface can be used to manually
control each individual robot by setting the speeds of its left
and right wheels. This is for testing purposes since the actual
control system resides on a different machine that interfaces
with the Momo Force Feedback Wheel that serves as the
user interface device (UID) for the system.

The system has five major requirements:
The robots as a whole should be controlled by the
user with the joystick directly.
The robot simulator and the control program should
run on different machines connected by the local
network.
All the system configurations, including machine IP
addresses and physical parameters of the robots
should be stored in one file to facilitate
reconfiguration of the system.
The planning should support waypoint and sliding
autonomy ways of control.
The entire control program should be developed
using C or C++.

4.2 Program Structure
The overall software control system consists of four

modules (Figure 3). Among them, UID control, planning,
and file operation reside on the same server computer. They
are designed for keeping track of the motion of each robot
and issuing commands to them to achieve the control

objective. The robot control sub-system resides on the same
computer together with the simulators. It retrieves control
commands from the control server, controls the robots based
on the commands, and feeds back the status of robots to the
planning server. The communication between the planning
module and the robot control sub-system is based on TCP/IP
connection.

The UID control sub-system is responsible for reading the
system operator's command from UIDs and translating the
data into a global command, for example, "move forward
or "move backward" at a specific speed. Since the entire
system configuration is stored in a system property file, the
file operation module is needed for retrieving the network
connection settings, robot related properties, joystick
information, and plan related settings fiom the file. The
planning module is responsible for decomposing the global
command obtained from the UID control module based on
the requirements and issuing the commands to the individual
robots though the connection channel. The functionality of
the module is application-specific because its
implementation depends completely on the requirement
specification of how the commands should be decomposed
and how to plan the individual robot movement based on the
decomposition.

Figure 3: Software system architecture

4.3 Pattern-Based Deductive Code Synthesis
As discussed in Section 3, for deductive synthesis,

domain theory tuning is a time-consuming process.
Restricting attention to specific sub-domains, for example,
user interaction, or communication, can significantly reduce
the complexity of the synthesis process. This can also
mitigate the exponential growth in the search for a solution
during a proof. In the pattern repository, patterns are
organized based on domains. This also suggests that a sub-
system can be formalized as a solution of a problem in a
specific sub-domain by following the process discussed in
Section 3. In cases where not all the sub-systems can be
automatically generated by PBDSS, giving the entire
problem specification as a single input to PBDSS could
affect its applicability if it can effectively generate solutions
for most sub-problems.

Based on these facts, PBDSS takes a domain-dependent
approach for generating programs. The programs for a given
sub-domain are generated independently by PBDSS. For
example, in developing the robot control system, we try to

apply PBDSS to generate each individual sub-system in
Figure 3 independently.

Four sub-problems are identified based on the system
design. Each module of the system is treated as a sub-
problem and their functional requirements are formally
specified. The specifications are then fed to PBDSS one by
one as the inputs to find the correct solutions. The process is
to first automatically synthesize the code for each sub-
system by using pattern-based deductive synthesis and then
glue the generated code segments together to construct the
whole system.

The pattern repository of PBDSS contains patterns for
various domains (i.e., user interaction, communication,
concurrency, user interface, etc.) and different kinds of
components (Java components, C++ components,
JFreeChart, etc.). Among them, 18 code patterns are used by
PBDSS in building the control system. Based on the system
architecture (Figure 31, these patterns fall into four domains,
namely, patterns for using the UID, for network
communication, for operating the robots, and for file
operations. Some of these patterns are listed in Table 1
together with their pre- and post-conditions.

The UID patterns capture the typical ways of using
DirectX APIs for handling the UID. For example, the
InitJoystick pattern is used to initialize the UID using
DirectX. It documents the five steps for setting up the UID.
Communication patterns can be used to set up a server or a
client for sending or receiving data through a TCPIIP
connection. Robotic control patterns define the ways for
activating the robots, driving the robots, obtaining feedback
from the robots, and so on. File operation patterns define
ways for reading, writing, and appending data fiom or to the
files. These patterns define the typical and most useful ways
of using DirectX, C++ networking, C++ file, and the robot
control components.

Table 1: Part of the patterns used in building the system

As an example, we show the generation of the solution for
part of one sub-problem, namely, the UID control problem.
Solutions for other sub-problems are generated following the
same process.

Three patterns, namely "InitJoystick", "AcquireJoystick
and "ReadJoystick", are defined in the PBDSS repository for
specifying the typical ways of using DirectX components
and joystick APIs to use the joystick in sending and
receiving commands. The pattern "InitJoystick" is used to
initialize the UID using DirectX. The "AcquireJoystick"

pattern utilizes a given Joystick-handle. The "ReadJoystick"
pattern reads user commands from the device.

The following axioms for these patterns are added to the
PBDSS domain theory:

InitJoy stick Pattern:
(A (Pattern (ready-to-use-joystick) InitJoystick

(joystick-handle-acquired))
(T (Invertible InitJoystick)))

AcquireJoystick Pattem:
(A (Pattern (A (ready-to-use-joystick)

Cjoystick-handle-acquired))
AcquireJoystick (joy stick-locked))

(7 (Invertible Acquirejoystick)))

Readloystick Pattern:
(A (Pattern (A (ready-to-use-joystick) (joystick-locked))

ReadJoystick (joystick-cmd-read))
(, (Invertible ReadJoystick)))

The basic functional requirement for the UID control
module is to initialize the control devices and read
commands from them once the operators try to use the
devices to control the robots. We issue a proof request to
SNARK to obtain the composition of actions to achieve the
goal. The pseudo request is as follows.

(prove existence of a program p such that
(Pattem ready-to-use-joystick ?p joystick-cmd-read))

The specification is then given to PBDSS to find a
composition solution. The proof resulting is

p = (con InitJoystick (con AcquireJoystick ReadJoystick)).

The result suggests that the solution program can be
derived by concatenating patterns "InitJoystick",
"AcquireJoystick", and "ReadJoystick". The generated
solution is provably correct because of the constructive
process used by PBDSS. Also, the generated code has
clearly defined interfaces and behaviors so that it can be
easily composed with other sub-problem solutions.

Following the same process, we have generated the
solutions for three other sub-problems for different sub-
domains, which include the data communication, the control
of the robots, and the file operations.

Patterns are provided based on domains and the
components in the domains. Each pattern is defined for
using the components in certain domain, or the interactions
of components in multiple domains. However, not all
application domains have valid patterns defined in the
pattern repository. For the planning sub-problem of the
control system, there is no component or pattern available in
PBDSS for solving it because this module is application-
specific, which also means it normally will not be reused in
building other systems. In cases where no patterns are
available, or the PBDSS is not able to find a solution for the
sub-problem, application-specific code has to be written to

solve the problem. Currently, we are investigating methods
that can be used for generating the solutions for application-
specific sub-problems for which no patterns are defined,
which could significantly enhance the applicability of
PBDSS.

We generate the program based on the problem
decomposition in terms of sub-domains. In some cases, the
programs generated for solving the sub-domain specific
problems can be directly composed together because there is
no application-specific issue to be solved for integrating
them (i.e., integrating UID and networking). In other cases,
additional glue code is needed to compose them together, for
example, the program main method is needed to define the
system flow. Since the planning sub-problem is application-
specific, the code for supporting it is currently written
manually. The entire control program consists of about 2200
lines of code, where 1350 lines are automatically generated
by PBDSS and about 800 lines are manually written, among
which, 550 lines are for handling the command planning
sub-problem.

The generated program has been tested on our simulation
environment and meets all the five system requirements. We
have also tested some other variations, especially on the
application-specific planning module, such as sliding
autonomy, in which the solutions of the other sub-problems
are reused in building the system.

5 Conclusion and Future Research

Component-based software development is one possible
method of creating dependable complex real-time systems.
Component composition plays a central role in component-
based development. Understanding and learning how to use
the components is often difficult and time-consuming. Code
pattern is proposed to capture the typical usage of the
components and their interactions. Composition operations
are defined for composing code patterns to synthesize the
glue code. Deductive synthesis [6j is a method for
automatically finding a solution for a problem based on the
domain knowledge. By combining deductive synthesis with
pattern-based code generation, we obtain a systematic way
not only for enabling programmers to automatically generate
the code for solving a problem but also to ensure that the
code is provable correct and, hence, eliminate the need for
program verification. The method has been successfully
applied to generate code for a real-time robot control system.

Six operations have been defined for generating programs
based on code patterns. Two of these have already been
integrated into the deductive system. We are looking for
ways to add the other operations, especially the splice
operation into the system. Currently, code patterns are not
suitable for domain-specific code generation, for example,
the problem of synchronizing the movement of the robots.
We are also investigating methods that could help us to
formally decompose the problem so that application-specific
requirements could be identified and be solved by other
suitable techniques. QoS is critical for the real-time systems.
The QoS of the whole system could be deduced based on

that of the patterns and the composition rules. We are
exploring methods that can facilitate analysis of the QoS of
the generated program based on the pattern composition
process.

6 Acknowledlgement
Part of the research described in this paper was carried out

at the University of Texas at Dallas, IA Tech Inc., and Jet
Propulsion Laboratory, California Institute of Technology,
under an STTR contract with the National Aeronautics and
Space Administration.

7 References

[I] S. S. Yau, N. Dong, "Integration in Component-based
Software Development Using Design Patterns", The
Twenty-Fourth Annual International Computer
Software and Applications Conference, COMPSAC
2000, Taipei, Taiwan, October 2000, pp: 369.

[2] Lucas, J.-Y., Dormoy, J.-L., Ginoux, B., Jimenez-
Dominguez, C., Pierre, L, "How to Reconcile Formal
Specifications and Automatic Programming: The
Descartes System", Software Engineering Conference,
1998. Proceedings. 1998 Asia Pacific, 2-4 Dec. 1998 pp:
38-45

[3] D. Barstow, "Automatic programming for streams 11:
transformational implementation", Proceedings of the
10th international conference on Soif2ware engineering,
1988, pp: 439-447

[4] J. Whittle, J. Schumann: "Automating the
implementation of Kalman filter algorithms," ACM
Transactions on Mathematical Soffware, Vol. 30, No. 4,
Dec. 2004, pp. 434-453

[5] T. Bures, E. Denney, B. Fischer, and E. C. Nistor, "The
role of ontologies in schema-based program synthesis",
Workshop on Ontologies as SofDiare Engineering
Artifacts, Vancouver. Canada, 2004

[6] Z. Manna and R. Waldinger, "Fundamentals of
Deductive Program Synthesis", IEEE Transactions on
Sof iare Engineering, (1 8) 8, August 1992, pp. 674-704.

[7] Lowry, M., Philpot, A., Pressburger, T., Underwood, I.,
"A Formal Approach to Domain-Oriented Software
Design Environments", Proc. 9th Knowledge-Based
Software Engineering Conference, Monterey, CA, Sept.
20-23, 1994, pp. 48-57

[8] Mark Stickel, Richard Waldinger, Michael Lowry, Tom
Pressburger, and Ian Underwood, "Deductive
Composition of Astronomical Software from Subroutine
Libraries", Proceedings 12th International Confirenee
on Automated Deduction (CADE-12), Nancy France,
June 26-July 1, 1994.

[9] Jon Whittle,. Jeffrey Van Baalen, Johann Schumann,
Peter Robinson, Tom Pressburger, John Penix, Phil Oh,
Michael Lowry, Guillaume Brat, "Amphion/NAV:
Deductive Synthesis of State Estimation Software",
Proc. 16th lEEE Conference on Automated SoJhYare
Engineering, San Diego, California, November 26-29,
2001, pp. 395-399

[lo] S Roach, J Van Baalen, M Lowry, "Meta-Amphion:
Scaling up High Assurance Deductive Program
Synthesis", Proceedings of the IEEE High Integrity
Software Conference, New Mexico, October 1997

[IllMark E. Stickel Richard J. Waldinger Vinay K.
Chaudhri, "A Guide to SNARK",
http:111vww. ai.sri colrz/snarWtutorial/tutorial. html (Oct
14,2005)

[12]Douglas R. Smith, "KIDS: A Semiauomatic Program
Development System". IEEE Transactions On Software
Engineering. VOL. 16, NO. 9. 1990

[13] Don S. Batory, Jacob-Neal-Sarvela, Axel-Rauschmayer,
"Scaling Step-Wise Refinement", IEEE Trans. Software
Eng, 30(6): 355-371,2004

[14]Batory, D. 2004. "Feature-Oriented Programming and
the AHEAD Tool Suite". In Proceedings of the 26th
international Conference on Software Engiheering
(May 23-28, 2004). International Conference on
Software Engineering. TEEE Computer Society,
Washington, DC, 702-703.

[lSIBiggerstaff, T.J, "Reuse Technologies and Their
Niches", Software Engineering, Proceedings of the
1999 International Conference on, LA. CA, USA, 16-
22 May 1999 pp: 613-614

[16] Loveland, D. W., "Automated deduction: achievements
and future directions", Commun. ACM, 43, I les (Nov.
2000), 10.

[17]Roach, S. and Van Baalen, J., "Automated Procedure
Construction for Deductive Synthesis", Automated
Software Engineering Springer Science+Business Media,
VOL. 12, NO. 4, October 2005, pp: 393-414

[I81 J Liu, F. B. Bastani, and I. Yen, "Code Pattern: An
Approach for Component-Based Code Synthesis",
Proceeding of the 7th World Multiconference on
Systemics, Cybernetics and Informatics, Orlando, FL,
July 2003, pp. 330-336.

[19] Jian Liu, Farokh B. Bastani, and I-Ling Yen, "A Formal
Foundation of the Operations on Code Patterns", The
International Conference on Soif2wai-e Engzneering and
Knowledge Engineering, Taipei, Taiwan, Republic of
China, July 2005.

