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Abstract 

Automated code synthesis is a constructive process that 
can be used to generate programs from specifications. It can, 
thus, greatly reduce the software development cost and time. 
The use of formal code synthesis approach for software 
generation further increases the dependability of the system. 
Though code synthesis has many potential benefits, the 
synthesis techniques are still limited. Meanwhile, 
components are widely used in embedded system 
development. Applying code synthesis to component based 
software development (CBSD) process can greatly enhance 
the capability of code synthesis while reducing the 
component composition efforts. In this paper, we discuss the 
issues and techniques for applying deductive code synthesis 
techniques to CBSD. For deductive synthesis in CBSD, a 
rule base is the key for inferring appropriate component 
composition. We use the code patterns to guide the 
development of rules. Code patterns have been proposed to 
capture the typical usages of the components. Several 
general composition operations have been identified to 
facilitate systematic composition. We present the technique 
for rule development and automated generation of new 
patterns fiom existing code patterns. A case study of using 
this method in building a real-time control system is also 
presented. 
Keywords: Real-time system, Code patterns, Automated 
code synthesis, Deductive code synthesis 

1 Introduction 

In recent years, dramatic advances in technology have 
made it possible to envision and develop highly critical 
embedded systems, including high-consequence real-time 
distributed applications such as on-board control systems, 
manufacturing systems, multi-robot control systems, etc. 
These embedded systems are becoming increasingly 
sophisticated and complex. Furthermore, due to the rapidly 
changing technology and intense globat competition, 
industry must be able to develop these systems quickly, 
dependably, and at a low cost. 

To deal with these challenges, industry is rapidly shifting 
away from low-level programming issues to systematic 
integration of systems from components. Software 

components have already been widely used in modem 
software development to reduce costs, risks, and time [I]. 
Based on previously verified or tested components, software 
that is built by assembling the components according to user 
requirements can result in high reliability and dependability. 

The component-based software development process still 
requires further improvement. To effectively compose 
software components into a system, developers generally 
must have a thorough understanding of the components. This 
includes understanding the circumstances that the 
components can be used for, the ways the components can 
be composed together, and all constraints on the usages of 
the components. In the embedded systems domain, the 
problems are more severe. Also, due to stringent 
nonfunctional constraints and recluirements, to understand 
embedded components and their usage can require a steep 
learning curve since many of these components are highly 
domain-specific. 

Automated code synthesis is another direction that has 
been investigated and applied to software production to 
reduce development time and cost and to increase software 
quality. Commonly used automated code synthesis 
paradigms include transformational paradigm, composition- 
based paradigm, schema-based paradigms and deductive 
paradigm etc. Transformational paradigm begins with an 
abstract specification which is repeatedly transformed 
through a series of more concrete forms until a program in 
the target language has been produced [2][3]. Most of the 
transformation systems are experimental and the problems 
that they are capable of coping with are still limited. 
Composition-based paradigm employs step-wise refinement 
to develop complex programs fiom simple programs by 
incrementally adding features [13] [14]. The weakness of 
this paradigm is that the inheritance hierarchy could be very 
deep in a large domain with many features, and global 
dependencies and global reorganizations are either not very 
effective or tend to reduce the optimality of fit [15]. 

Schema-based synthesis uses AS technologies to 
recursively apply schemas to gradually refine a specification 
into executable code. Schema is a representation of reusable 
computational knowledge. It can take various forms, 
including high-level algorithm templates, code optimizations, 
data type refinements, or architectural information. A core 
engine applies schemas on the initial problem specification, 
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and then uses the output of those schemas as the input for 
other schemas, until the fulI implementation is generated 
[41[51. 

Deductive paradigm is very attractive because all the 
synthesized programs are guaranteed correct-by-construction. 
Deductive synthesis systems, such as Amphion [7] and 
KIDS [12], enable programs to be synthesized as a 
byproduct of theorem proving from an application domain 
theory [6] .  kmphion is a domain independent code synthesis 
system which can be used in specific domains. Meta- 
Amphion is designed and developed to enable domain 
experts to develop and maintain their own Amphion 
applications [lo]. Amphion/NAV made some improvements 
over original Amphion system. It has been extended to 
generate iterative search programs [9]. But in general, 
Amphion is lack of the ability for generating conditional or 
loop statements [a]. KIDS improves the synthesis capability 
by requiring developers to understand and fine tune the 
software synthesis process to achieve automation [12]. 

It is generally difficult to achieve code synthesis from 
scratch. An alternate way is to apply the deductive synthesis 
technique to component-based development (CBSD) 
process. By doing so, deductions can be made at the 
component composition level and, hence, effectively 
automate or semi-automate the composition process. This 
combined approach leverage the existing component based 
technologies and code synthesis techniques to achieve 
greatly reduced development time and improved software 
quality. However, how to deduce the composition of 
components is an issue that needs to be investigated. 

Generally, deductive synthesis is built upon a knowledge 
base that includes specific domain theories. The key to 
achieve synthesis of composition glue code is to establish 
the domain specific knowledge base to conduct a proof, 
which begins with a formal specification and proves the 
existence of an object meeting the specified constraints. In 
our approach, we use code pattern technique proposed in 
[18][19] to facilitate the construction of synthesis rules. A 
code pattem captures the typical usages of the corresponding 
components to facilitate the composition process, either 
manual or automated compositions. It defines the correct 
ways of using a given set of components, especially the legal 
calling sequences of their methods [It?]. Deductive synthesis 
techniques can be used to deduce the composition of 
components and generation of the system. Code patterns can 
be used to effectively guide the deductive process. 
Essentially, code pattem specifications are converted to 
predicates and used in the knowledge base for deductive 
synthesis. Also, pattern composition operations are formally 
defined as axioms for the deductive system to find feasible 
solutions. Given that the code patterns and their 
specifications are correct, the program generated by using 
deductive synthesis is provably correct. 

We have applied the pattern based code synthesis 
techniques for building a multi-robot control system. Our 
goal is to demonstrate a comprehensive method of combing 
deductive synthesis and code patterns to generate 
dependable code for embedded software systems. 

The rest of this paper is organized as follows: In Section 2, 
we briefly discuss the definition of code pattern, its 
specification, the composition operations, and the deductive 
synthesis method for automated code generation. In Section 
3, we present how deductive synthesis can be used with code 
patterns in real-time system generation. We discuss how the 
knowledge-base is constructed and what axioms are used for 
deductive inference. Section 4 describes a case study of 
using this method in developing a real-time robot control 
system. The code patterns used in building the system are 
briefly described and some experimental results are 
presented. Section 5 concludes the paper and identifies some 
future research directions. 

2 Background 

In the following two subsections, we introduce the 
background information about code patterns and deductive 
synthesis techniques. 

2.1 Code Patterns 

Code pattern is a named functional unit that captures the 
typical usages of software components and the interactions 
among them, i.e., it is a proven solution to a recurring 
problem. We use three parts to specify a code pattern, 
including the informal description, the formal code template 
specification, and the inverse pattern specification. 

The informal description specifies the name of the pattern, 
the problem the pattern can solve, the context under which 
the pattern can be used, and a brief description of the 
solution contained in the pattem. A code template is used to 
formally specify the pattem. It consists of three sections, 
namely, pattern interface, pattern body, and the constraints 
on the pattem. Pattern parameters are specified in the pattern 
interface. The pattern body defines a typical way of using 
and composing the components. The pattern constraints 
specify the functionality of the pattern using pre- and post- 
conditions based on UML, Object Constraint Language 
(OCL). The inverse pattern part defines the inverse patterns 
(if any) of the pattern and the constraints about how to use 
them. An inverse pattern is a pattern that performs the 
converse function of the original pattem. For example, a 
"delete" pattern is an inverse of a "create" pattern. 

Definition 1 (Code Pattern) A code pattern cp is a named 
functional unit that captures the typical structure and 
composition of a set of components. cp can be represented 
by a triple cp = (i, b, c), where cp is the pattern name, i is the 
interface, b is the body, and c is a pair of pre- and post- 
conditions {P, R). The functionality of a pattern p can be 
represented as {P )cp {R) .  

Six composition operations, including one instantiation 
operation, three functional operations, and two non- 
functional operations, are defined for glue code generation. 
For the purpose of this paper, only three of these operations 
will be discussed, namely, map, concatenate, and invert. For 
information regarding the other operations, please refer to 
[ IS]  and [19]. 



The instantiation operation, map, is used to instantiate a 
pattern for finally using it in a program. The map operation 
assigns a value to each parameter of the pattern based on the 
pre-conditions. The result of the map operation is a partially 
mapped pattern (if only some of the parameters are 
instantiated) or a final code segment that can be directly 
used (if the parameters are instantiated). 

The concatenate operation is used to connect two code 
patterns together sequentially to form a flow of data or 
actions. Patterns are concatenated together using parameter 
binding i.e., the parameters of one pattern are bound to those 
of the other one. Once the post-condition of the first pattern 
is consistent with the pre-condition of the second pattern, 
and the types of the parameters match with each other, the 
concatenate operation can be used to generate a composite 
pattern. 

Definition 2 (Concatenate Operation) Given two code 
patterns cp, and C P ~ ,  {PI )CPI(RI) and (P~)cPz(R~I,  CPI and 
cp2 can be connected together Con(cp,, cpz) by using the 
concatenate operation if the following condition hoIds: 

(VS)IRI(S)JP~(S) 
The pattern resulting from the concatenation operation 

(Con(cp1, ~ ~ 2 1 )  is cp = {P1)cpCRr). 
In algebra, inverse operations are used to solve equations. 

Inverse operations undo the effect of each other. In code 
pattern based software development, we define the inverse 
operation so as to create the converse code of a code pattern. 
Converse code means that the output pattern performs the 
inverse operation of the input pattern. As mentioned before, 
in the specification of code patterns, we have predefined 
inverse code patterns and the corresponding conditions for 
them to be used. Given a code pattern, the invert operation 
can be used to find its inverse pattern. 

Definition 3 (Invert Operation) Given two code patterns 
cp and cp': 

cp: (Vs> ff'(s)Icp(R(s)) 
cp': (~s)liP'(s)3cp7{R'(s)J 
if the following conditions hold: 
(Ys)l R(s) o P'(s) A (Vs)( R'(s) P(s) 

then cp and cp' are inverse patterns, and both of them are 
invertible: Invertible(cp) A Invertible(cp'). 

The invert operation is defined to find the inverse pattern 
of the given invertible pattern: 

cp' = Invert(cp) A cp = Invert(cpt) 
The invert operation has the following property: 
lnvert(Invert(cp)) = cp 
A sequence of pattern compositions using the 

composition operations can be expressed by function 
composition notation. For example, cp = Con(Invert(a), 
Con(lnvert(b), c)) implies cp is the composite pattern by 
concatenating the inverse pattern of Q with the concatenation 
of the inverse pattern of b and pattern c. 

2.2 Deductive Code Synthesis 
Program synthesis comprises a range of technologies for 

the automated generation of executable computer programs 
from high-level specifications of their behavior. It is 
especially amenable to deductive techniques. The prospect 

of constructing a suitabIe computer program automatically, 
based on specifications and automated deduction, was an 
exciting dream in the early years of AI. Success in this 
domain can eliminate the need for program verification since 
the code will be correct by construction. However, the task 
proved overwhelming in the early A1 years, and progress in 
this area was slower than anticipated [16]. Recently, 
combining pure deductive techniques with powerful 
heuristics, and limiting their application to specific domains 
has led to some successes in deductive code synthesis. 

In [6], a specification for deductive code synthesis is 
generally defined as: 

Aa) finds such that P[a, z]. 

The theorem corresponding to this specification is 
(Ya)(gz) p[a, zl 
That is, the specification for f is that for every input a, 

there exists an output z that satisfies the input-output relation 
P[a, z]. The proof is restricted to be sufficiently constructive 
to indicate a method for finding z in terms of a. That method 
is expressed by a single term t[a], which can be extracted 
from the proof. The term indicates which substitutions were 
made for z to allow the proof to go through. Then the 
program produced is 

J(a) = tEa1 
A deductive synthesis system typically consists of two 

parts: a deduction system and a domain theory. Program 
generation begins with a problem specification. A problem 
specification is a description of the purpose or expected 
behavior of the desired program. To construct a program 
meeting the given specification, deductive program synthesis 
constructs a proof based on the domain theory and proves 
the existence of an object meeting the specified constraints 
(if there is any) [6 ] .  

Theorem prover SNARK [S][ll], the SRl's automated 
reasoning kit, is chosen as the deductive engine for our 
system. It is designed to be especially suitable for program 
synthesis and other applications in artificial intelligence and 
software engineering. 

3 Code Pattern-Based Deductive Program 
Synthesis for Embedded Systems 

Deductive synthesis can automatically generate 
executable computer programs from high-level behavioral 
specifications. The code generated by deductive synthesis is 
provably correct because the code generation process is 
constructive. But it cannot generate complex program 
structures (such as loops) and are typically domain specific. 
Code patterns can formally specify typical usages of a set of 
components and their compositions. By combining 
deductive techniques with pattem techniques, we can 
establish an automated constructive process for synthesizing 
the glue code for component composition. The technique can 
be used effectively in developing embedded systems. 

In the pattern based synthesis process, the system 
specification is taken as the input. It is specified using pre- 
and post-conditions. A problem Pr with pre-condition A and 
post-condition Z is specified as: { A )  Pr(Z). Given ( A )  Pr(Z), 



pattern-based deductive synthesis can compose components 
by (1) Identifying suitable patterns from the code pattern 
library according to the application specification and (2) 
Composing new patterns by employing pattern operations, 
such as concatenate and invert operations. 

The domain theory for deductive synthesis is the basis of 
the deduction and has the biggest impact on the deductive 
efficiency. The domain theory of our pattern-based 
deductive system consists of two parts, namely, the pattern 
specifications and the deduction rules for using the 
composition operations. 

For each individual code pattern, the following axiomatic 
expression is used to formally specify them in the domain 
theory: 

Pattern(P, CP: R) = P A Execute (CP) 3 R 

where P is the precondition and R is the post-condition of 
pattern CP. A pattern is specified as a predicate of a function 
unit that can be used in composition. As P and R are already 
included in the pattern specification, the theory can be easily 
constructed. 

Based on pattern specified, compositions can be derived 
by issuing a proof request to SNARK. The definition of the 
pseudo proof request is as follows. 

(prove existence of a program p such that 
(Pattern initial-state ?p goal-state) ) 

Given the initial-state and the goal-state of the system, the 
deductive synthesis system should be able to prove whether 
there exists some pattern, such that its precondition is the 
initial state and the post-condition is the goal state. The 
result can be an existing pattern or a composition of the 
existing patterns by using pattern conlposition operations. 

Two pattern composition operations are amenable to 
automation via the process of specification decomposition, 
pattern matching, pattern instantiation and pattern 
composition. They are the concatenate and invert operations. 

As discussed in Section 2, two (or more) code patterns 
may be sequentiaIly connected together by using the 
concatenate operation. Based on the definition, if the 
following conditions hold, two code patterns can be 
concatenated together (cp= Con(cp,, cp2)) to solve a problem 
(P)Pr{R]: 

Conditionl: (VS)~ P(s) 3 Pl(s), 
Condition2: (VS)~ Rl(s) 3 P~(s), 
Condition3: (Vs)] R,(s) R(s), 

where s is the set of inputs to the code pattern; P(s) is the 
pre-condition of the problem and R(s) is its post-condition. 
P, is the pre-condition for code pattern cp, and R, is the post- 
condition for cp, (I = 1, 2). The concatenate operation (Con 
(Patternl, Pattern2)) is defined by the following axiom in 
the domain theory. 

(forall ((?PI) (?P2)(?R1) (?R2)(?CPl) (?CP2)) 
(implies (A (Pattern ?P1 ?CPI ?RI) 
(Pattern ?P2 ?CP2 ?R2) (implies ?R1 ?P2)) 
(Pattern ?PI (Con ?CPI ?CP2) ?R2)) ) 

The invert operation is used to create the converse code of 
a code pattern. Given a problem {P)Pr{R) and a code 
pattern (Pc)CP{Rc), if Invertibie(CP)r\(R~Pc)~(P3Rc) is 
true, then we can use the invert operation to invert CP, 
which gives the solution for problem Pr. 

The hnction Invert(CP) is defined by the following 
axiom in the domain theory. 

{forall ((?P) (?CP) (?R)) 
(implies (A (Pattern ?P ?CP ?R) (Invertible ?CP) ) 

(A (Pattern ?R (Invert ?CP) ?P) 
(Invertible (Invert ?CP)) ) ) ) 

The predicate Invertible(CP) indicates whether a pattern 
is invertible or not. 

Because of the special property that the invert operation 
(Section 2), there are cases where the theorem prover may 
run into infinite derivation: 

Pattern(a. cp, b) 3 Pattem(b, invert(cp), a) 3 
Pattern(% invert (invert (cp)), bj 3 
Pattem(b, invert (invert (invert (cp))), a) 3 ... 

To avoid this, an auxiliary rule is added to the domain 
theory: 

(forall ?p (= (Invert (Invert ?p)) ?p)j 

which ensures that the invert operation will not repeatedly be 
used on the same pattern. 

A system, pattern-based deductive synthesis system 
(PBDSS), is built to support this approach. PBDSS consists 
of six modules: the pattern repository, pattern parser, pattern 
composer, composition rules, the SNARK theorem prover, 
and the domain theory for the prover. 

Figure 1 illustrates the structure of PBDSS. A pattern 
library/repository stores all the patterns as well as their 
relations, for example, individual patterns, composite 
patterns, and inverse pattern relations. The deductive system 
takes the problem specification as the input and uses the 
domain theory to find a composite pattern for solving the 
problem. If within a time period a solution is found, the 
expression of the composite pattern is passed to the pattern 
composer. Based on the composition expression, the pattern 
composer retrieves individual patterns from the pattern 
repository for composition. Each retrieved pattern is 
processed by the pattern parser before participating in the 
composition. The parser checks the syntax of the pattern and 
adds additional annotations for the composition. Finally, the 
generated annotated syntax-error-free patterns are composed 
together by the composer based on the composition 
expression obtained from the deductive system and the 
composition rules. The output of the composer is either a 
composite pattern that can be added into the pattern 
repository for reuse, or the synthesized final code that can be 
used in the program. 

There is no guarantee that a solution to a given the 
problem will be found by the system. The efficiency of the 



system depends heaviIy on the pattern repository. The more 
patterns that collectively cover most of the usage scenarios 
of the components are defined, the more likely a solution 
will be found for a given problem. Deductive theorem 
provers that are logically complete for first-order logic or 
more expressive logics have an inherent weakness that, if 
they run on for longer than expected, generally, we cannot 
determine if no solution can be found or if we simply have 
not given it enough time [Il l .  The reason for this weakness 
is due to the exponential growth during the search for 
finding a solution. The usual methods of mitigating the 
problem fall into three categories: (1) providing general 
theorem proving strategies, tactics, and heuristics; (2) 
reformulation of axioms in the domain theory; (3) 
incorporating new inference rules and special purpose 
reasoning mechanisms [17]. In PBDSS, we try to overcome 
the weakness by restricting attention to a specific sub- 
domain, e.g. file operations, to significantly reduce the 
complexity. 

Panern - 
parser 

Compos~te Pattern 

Figure 1: Architecture of PBDSS 

4 Case Study 

In order to evaluate the code-pattern based program 
synthesis method, we have developed a case study in 
building a multi-robot control system. 

4.1 System Specification 
The case study consists of multiple robots that 

collectively emulate a rigid vehicle that can move a load 
(e.g., a log) from one place to another place. The system 
operator controls the "vehicle" via a car-like steering wheel 
and a pedal system. The operator can (a) move the vehicle 
at varying speeds along a straight line; (b) set the direction 
of motion to be in the forward or backward direction, and (c) 
turn the vehicle so that one point stays fixed while the other 
points move along a circular trajectory. The vehicle must 
react to the operator's actions in real-time and must maintain 
its shape (rigid body constraint). 

To address mechanical-related problems with physical 
real robots that we have met during the case study, we have 
developed a system that simulates a consistent and 
controllable behavior for each of the robots and enables 
placement of sensors at various points to monitor the state of 
the system. 

Figure 2 shows our experimental environment in the case 
study, consisting of a User Interface Device (UID) and the 

Simulator interface. The left side of Figure 2 is the joystick, 
a wheel and pedal, which can control the robots to move 
along a specified direction at a specified speed. This passive 
device's data is periodically poIled by the connecting host 
and sent to the client. The right side is the robot simulator 
that runs on the client machine. The simulator has two parts, 
namely, the status display and a default control interface. 

The status display shows the area that the robots must 
cooperatively navigate through while holding the log. Each 
circle on the right-top portion of Figure 2 represents a robot. 
The direction of the line within each robot represents the 
direction of motion of the robot. Each robot can be 
controlled separately. Each one of them can move linearly or 
rotate around its center. Hence, the robots in the simulator 
behave exactly in the same way as the real robots. The line 
connecting the circles (i.e., robots) represents the rigid body 
and the load. 

Figure 2: User Interface Device and Simulator 

The default control interface can be used to manually 
control each individual robot by setting the speeds of its left 
and right wheels. This is for testing purposes since the actual 
control system resides on a different machine that interfaces 
with the Momo Force Feedback Wheel that serves as the 
user interface device (UID) for the system. 

The system has five major requirements: 
The robots as a whole should be controlled by the 
user with the joystick directly. 
The robot simulator and the control program should 
run on different machines connected by the local 
network. 
All the system configurations, including machine IP 
addresses and physical parameters of the robots 
should be stored in one file to facilitate 
reconfiguration of the system. 
The planning should support waypoint and sliding 
autonomy ways of control. 
The entire control program should be developed 
using C or C++. 

4.2 Program Structure 
The overall software control system consists of four 

modules (Figure 3). Among them, UID control, planning, 
and file operation reside on the same server computer. They 
are designed for keeping track of the motion of each robot 
and issuing commands to them to achieve the control 



objective. The robot control sub-system resides on the same 
computer together with the simulators. It retrieves control 
commands from the control server, controls the robots based 
on the commands, and feeds back the status of robots to the 
planning server. The communication between the planning 
module and the robot control sub-system is based on TCP/IP 
connection. 

The UID control sub-system is responsible for reading the 
system operator's command from UIDs and translating the 
data into a global command, for example, "move forward 
or "move backward" at a specific speed. Since the entire 
system configuration is stored in a system property file, the 
file operation module is needed for retrieving the network 
connection settings, robot related properties, joystick 
information, and plan related settings fiom the file. The 
planning module is responsible for decomposing the global 
command obtained from the UID control module based on 
the requirements and issuing the commands to the individual 
robots though the connection channel. The functionality of 
the module is application-specific because its 
implementation depends completely on the requirement 
specification of how the commands should be decomposed 
and how to plan the individual robot movement based on the 
decomposition. 

Figure 3: Software system architecture 

4.3 Pattern-Based Deductive Code Synthesis 
As discussed in Section 3, for deductive synthesis, 

domain theory tuning is a time-consuming process. 
Restricting attention to specific sub-domains, for example, 
user interaction, or communication, can significantly reduce 
the complexity of the synthesis process. This can also 
mitigate the exponential growth in the search for a solution 
during a proof. In the pattern repository, patterns are 
organized based on domains. This also suggests that a sub- 
system can be formalized as a solution of a problem in a 
specific sub-domain by following the process discussed in 
Section 3. In cases where not all the sub-systems can be 
automatically generated by PBDSS, giving the entire 
problem specification as a single input to PBDSS could 
affect its applicability if it can effectively generate solutions 
for most sub-problems. 

Based on these facts, PBDSS takes a domain-dependent 
approach for generating programs. The programs for a given 
sub-domain are generated independently by PBDSS. For 
example, in developing the robot control system, we try to 

apply PBDSS to generate each individual sub-system in 
Figure 3 independently. 

Four sub-problems are identified based on the system 
design. Each module of the system is treated as a sub- 
problem and their functional requirements are formally 
specified. The specifications are then fed to PBDSS one by 
one as the inputs to find the correct solutions. The process is 
to first automatically synthesize the code for each sub- 
system by using pattern-based deductive synthesis and then 
glue the generated code segments together to construct the 
whole system. 

The pattern repository of PBDSS contains patterns for 
various domains (i.e., user interaction, communication, 
concurrency, user interface, etc.) and different kinds of 
components (Java components, C++ components, 
JFreeChart, etc.). Among them, 18 code patterns are used by 
PBDSS in building the control system. Based on the system 
architecture (Figure 31, these patterns fall into four domains, 
namely, patterns for using the UID, for network 
communication, for operating the robots, and for file 
operations. Some of these patterns are listed in Table 1 
together with their pre- and post-conditions. 

The UID patterns capture the typical ways of using 
DirectX APIs for handling the UID. For example, the 
InitJoystick pattern is used to initialize the UID using 
DirectX. It documents the five steps for setting up the UID. 
Communication patterns can be used to set up a server or a 
client for sending or receiving data through a TCPIIP 
connection. Robotic control patterns define the ways for 
activating the robots, driving the robots, obtaining feedback 
from the robots, and so on. File operation patterns define 
ways for reading, writing, and appending data fiom or to the 
files. These patterns define the typical and most useful ways 
of using DirectX, C++ networking, C++ file, and the robot 
control components. 

Table 1: Part of the patterns used in building the system 

As an example, we show the generation of the solution for 
part of one sub-problem, namely, the UID control problem. 
Solutions for other sub-problems are generated following the 
same process. 

Three patterns, namely "InitJoystick", "AcquireJoystick 
and "ReadJoystick", are defined in the PBDSS repository for 
specifying the typical ways of using DirectX components 
and joystick APIs to use the joystick in sending and 
receiving commands. The pattern "InitJoystick" is used to 
initialize the UID using DirectX. The "AcquireJoystick" 



pattern utilizes a given Joystick-handle. The "ReadJoystick" 
pattern reads user commands from the device. 

The following axioms for these patterns are added to the 
PBDSS domain theory: 

InitJoy stick Pattern: 
(A (Pattern (ready-to-use-joystick) InitJoystick 

(joystick-handle-acquired)) 
(T (Invertible InitJoystick))) 

AcquireJoystick Pattem: 
(A (Pattern (A (ready-to-use-joystick) 

Cjoystick-handle-acquired)) 
AcquireJoystick (joy stick-locked)) 

(7 (Invertible Acquirejoystick))) 

Readloystick Pattern: 
(A (Pattern (A (ready-to-use-joystick) (joystick-locked)) 

ReadJoystick (joystick-cmd-read)) 
(, (Invertible ReadJoystick))) 

The basic functional requirement for the UID control 
module is to initialize the control devices and read 
commands from them once the operators try to use the 
devices to control the robots. We issue a proof request to 
SNARK to obtain the composition of actions to achieve the 
goal. The pseudo request is as follows. 

(prove existence of a program p such that 
(Pattem ready-to-use-joystick ?p joystick-cmd-read)) 

The specification is then given to PBDSS to find a 
composition solution. The proof resulting is 

p = (con InitJoystick (con AcquireJoystick ReadJoystick)). 

The result suggests that the solution program can be 
derived by concatenating patterns "InitJoystick", 
"AcquireJoystick", and "ReadJoystick". The generated 
solution is provably correct because of the constructive 
process used by PBDSS. Also, the generated code has 
clearly defined interfaces and behaviors so that it can be 
easily composed with other sub-problem solutions. 

Following the same process, we have generated the 
solutions for three other sub-problems for different sub- 
domains, which include the data communication, the control 
of the robots, and the file operations. 

Patterns are provided based on domains and the 
components in the domains. Each pattern is defined for 
using the components in certain domain, or the interactions 
of components in multiple domains. However, not all 
application domains have valid patterns defined in the 
pattern repository. For the planning sub-problem of the 
control system, there is no component or pattern available in 
PBDSS for solving it because this module is application- 
specific, which also means it normally will not be reused in 
building other systems. In cases where no patterns are 
available, or the PBDSS is not able to find a solution for the 
sub-problem, application-specific code has to be written to 

solve the problem. Currently, we are investigating methods 
that can be used for generating the solutions for application- 
specific sub-problems for which no patterns are defined, 
which could significantly enhance the applicability of 
PBDSS. 

We generate the program based on the problem 
decomposition in terms of sub-domains. In some cases, the 
programs generated for solving the sub-domain specific 
problems can be directly composed together because there is 
no application-specific issue to be solved for integrating 
them (i.e., integrating UID and networking). In other cases, 
additional glue code is needed to compose them together, for 
example, the program main method is needed to define the 
system flow. Since the planning sub-problem is application- 
specific, the code for supporting it is currently written 
manually. The entire control program consists of about 2200 
lines of code, where 1350 lines are automatically generated 
by PBDSS and about 800 lines are manually written, among 
which, 550 lines are for handling the command planning 
sub-problem. 

The generated program has been tested on our simulation 
environment and meets all the five system requirements. We 
have also tested some other variations, especially on the 
application-specific planning module, such as sliding 
autonomy, in which the solutions of the other sub-problems 
are reused in building the system. 

5 Conclusion and Future Research 

Component-based software development is one possible 
method of creating dependable complex real-time systems. 
Component composition plays a central role in component- 
based development. Understanding and learning how to use 
the components is often difficult and time-consuming. Code 
pattern is proposed to capture the typical usage of the 
components and their interactions. Composition operations 
are defined for composing code patterns to synthesize the 
glue code. Deductive synthesis [6j is a method for 
automatically finding a solution for a problem based on the 
domain knowledge. By combining deductive synthesis with 
pattern-based code generation, we obtain a systematic way 
not only for enabling programmers to automatically generate 
the code for solving a problem but also to ensure that the 
code is provable correct and, hence, eliminate the need for 
program verification. The method has been successfully 
applied to generate code for a real-time robot control system. 

Six operations have been defined for generating programs 
based on code patterns. Two of these have already been 
integrated into the deductive system. We are looking for 
ways to add the other operations, especially the splice 
operation into the system. Currently, code patterns are not 
suitable for domain-specific code generation, for example, 
the problem of synchronizing the movement of the robots. 
We are also investigating methods that could help us to 
formally decompose the problem so that application-specific 
requirements could be identified and be solved by other 
suitable techniques. QoS is critical for the real-time systems. 
The QoS of the whole system could be deduced based on 



that of the patterns and the composition rules. We are 
exploring methods that can facilitate analysis of the QoS of 
the generated program based on the pattern composition 
process. 
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