
An Interleaver Implementation for the Serially
Concatenated Pulse-Position Modulation Decoder

Michael K. Cheng, Bruce E. Moision, Jon Hamkins, and Michael A. Nakashima
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91 109-8099

Abstruct- We describe novel interleaver and deinterleaver
architectures that support bandwidth efficient memory access for
decoders of turbo-like codes that are used in conjunction with
high order modulations. The presentation focuses on a decoder
for serially concatenated pulse-position modulation (SCPPM),
which is a forward-error-correction code designed by NASA to
support laser communications from Mars at more than 50 mega-
bits-per-second (Mbps). For 64-ary PPM, the new architectures
effectively triple the fan-in of the interleaver and fan-out of the
deinterleaver, enabling parallelization that doubles the overall
throughput. The techniques described here can be readily mod-
ified for other PPM orders.

I. INTRODUCTION
The legacy error-correcting code (ECC) scheme for NASA

missions consists of the concatenation of an inner convo-
lutional code and an outer Reed-Solomon (RS) code. For
example, the Mars Spirit and Opportunity Rovers mission uses
this concatenated coding scheme over radio-frequency links
to achieve data rates to Earth of 256 Kbps. NASA is con-
sidering employing laser communications in order to increase
these transmission rates to mega-bits-per-second (Mbps) and
beyond. An efficient ECC design for the deep-space opti-
cal channel, proposed in [l], is the serial concatenation of
an inner modulation code and an outer convolutional code.
This so called serially concatenated pulse-position modulation
(SCPPM) code would operate in some scenarios less than
one dB from the Shannon capacity. A version of the SCPPM
decoder has been implemented on a Xilinx Virtex-I1 8000
field-programmable gate array (FPGA) - details can be found
in [2]. Capacity calculations for an optical channel employing
PPM and a photon counting detector are presented in [3].
An integral part of the SCPPM decoder is a bit interleaver.
In this paper we describe a hardware implementation of the
interleaver proposed for this NASA code.

This work is organized as follows: in Section 11, we describe
the SCPPM encoder and decoder. In Section 111, we describe
hardware implementations of the interleaver and deinterleaver
that allow efficient memory accesses. In Section IV, we show
how the next interleaved memory location can be calculated
from the current location without the need for multiplications.
In Section V, we describe methods to implement the inter-
leaver with a window-based decoding algorithm. This allows
one to operate the decoder at a higher throughput (doubling
the speed relative to a straightforward implementation with 64
PPM).

11. THE SCPPM ENCODER AND DECODER

The SCPPM encoder, shown in Fig. l(a), consists of an
outer (5,7) convolutional code, a polynomial interleaver, and

accumulate PPM
1 I

inner code

(a) SCPPM encoder

C

Fig. 1. The SCPPM (a) encoder and (b) decoder.

an inner accumulate PPM (APPM) code. The SCPPM decoder,
shown in Fig. l(b), includes an inner decoder that works on
the M-order PPM trellis and an outer decoder that works
on the (5,7) convolutional trellis. The inner trellis consists
of 2 states and M/2 parallel branches between connecting
states. Therefore, the decoding complexity increases with the
PPM order. For each code trellis, the Bahl-Cocke-Jelinek-
Raviv (BCJR) algorithm [4] is used to compute the a-posteriori
log-likelihood ratios (LLRs) from a-priori LLRs by traversing
the trellis in forward and backward directions. Extrinsic in-
formation (the difference between the a-posteriori and a-priori
LLRs) is exchanged in iteration rather than the a-posteriori
LLRs to reduce undesired feedback.

111. THE POLYNOMIAL INTERLEAVER
Let the SCPPM interleaver length be N bits. The interleaver

is characterized by a second order polynomial f (j) = rcj +
! j2 . We use this polynomial to map the interleaver input bit
position f (j) mod N to output bit position j , i.e.,

xf(j) = a?, xi = af-l(i).

In our design, we assign N = 15120 = 24 .33 .5.7. Candidate
interleavers for this N are of the form f (j) = rcj + 210Xj2
[5], where X is a positive integer and rc does not have 2,3,5
or 7 as a factor. Among this class we have observed good
performance with the polynomial f (j) = llj + 210j2. Note
that an inverse polynomial is calculated in [l] and given as
f - l (i) = 7331.1 + 7770i2. Barron and Robinson showed’
that the next interleaved position f (j + 1) can be recursively

‘R. J. Barron and B. Robinson, “Recursive Polynomial Interleaver Algo-
rithm,’’ MLCD Project Memorandum (internal document), Lincoln Laboratory,
Massachusetts Institute of Technology, Lexington, Massachusetts, September
2004.

calculated from the current position f (j) . That is

f (j + 1) = (~ (j + l) + C (j + l) ’) m o d N

= ((~ j + C j ’) + (K + l + 2Cj)) mod N

= (f (j) + g (j)) mod N

where g (j) = (K + C + 2 l j) mod N . Expanding g (j) simi-
larly yields g (j + 1) = (g (j) + 2 l) mod N .

To support the SCPPM decoder as shown in Fig. l(a),
the interleaver memory is partitioned into six modules. Each
module is implemented using Xilinx dual-ported block random
access memory (BRAM) as shown in Fig. 2. The input
position into the inner decoder j is determined from the
output position f (j) of the outer decoder, that is PaI [j] e
PxO [f (j) mod N] . At each clock, the outer decoder pro-
duces two LLRs and these are written in permuted order
into the BRAMs simultaneously. The address permutation
to memory location mapping for the interleaver is given in
Table I. The first column consists of the output position
f (j) mod N of the outer decoder in sequential order. The
second column consists of the corresponding input position j
into the inner decoder. The third column and fourth column
are the memory module index (j mod 6) and address (l j / 6])
in which the corresponding outer decoder output position is
stored. The fifth column indicates the trellis stage and the sixth
column marks the BCJR window number (for the window-
based SCPPM decoder). For example, the 221st LLR, starting
from zero, produced by the outer decoder corresponds to the
first LLR input for the inner decoder. This LLR is stored in
address zero of memory module one. This LLR is calculated
at the 110th outer code trellis stage (0-7559) and belongs to
the zeroth window segment (out of three).

The outer decoder writes to the interleaver BRAMs in
permuted order using the mapping of Table I. As we march
down the table entries, we see that there will be no write
conflicts at any time because the period of memory module
writes is six and only two LLRs are produced by the outer
decoder each clock. During interleaver reads, the inner decoder
accesses the BRAM entries in sequential order. That is, at the
first clock, the inner decoder reads the first entry (address 0)
of each of the six memory modules and increases the address
pointers by one. The six LLRs read correspond to PaI[O]
through PaI[5] and are highlighted by bold face fonts in Table
I. At the next clock, the inner decoder reads the second entry
(address 1) of each memory module and again updates the
address pointer. These six LLRs read correspond to PaI[6]
through PaI[1 I] and so on.

The deinterleaver is implemented as one big chunk of
memory as illustrated in Fig. 3. The output LLRs generated
by the inner decoder is written sequentially six at a time into
“one row” of the dual-ported BRAM. The outer decoder then
reads the LLRs in permuted order two at a time from the
deinterleaver. The address permutation table for the deinter-
leaver is the same as that of the interleaver given in Table I,
with the exception that the header corresponds to that of the
second row. For example, PxI[862], the 862nd LLR (starting

Fig. 2. Interleaver implementation

columns

Fig. 3. Deinterleaver implementation.

from zero) input to the outer decoder should be read from the
second column zeroth row of the deinterleaver BRAM. The
control logic reads the desired two rows and then selects the
correct entry out of each row. One can see from the table that
there are no read conflicts.

With the above interleaver and deinterleaver design, the
LLRs produced or required by a stage of trellis decoding can
be written to or read from memory in one clock cycle.

IV. ALGORITHMIC INTERLEAVER

We can avoid the need to store Table I in memory by
computing the memory module and address for a specific
interleaved position on-the-fly. The interleaver is partitioned
into m distinct memory blocks each with n = $ entries for
fast read and write access. Each interleaver position f (j) is
then mapped to a corresponding index pair (r;,q;) where
r; 4 f (j) mod m indexes into one of the m memory
partitions and q; 4 indexes into an address entry
of the selected memory. Because the modulo and division
operations are costly to implement in hardware, we describe a
procedure that calculates the indexing pair for the next inter-
leaved position (rF1, q:fl) from the current one with only

X f (j) : f (j) I aj: j I module 1 addr I stage I window
xi: i I a,-, ,:,: f - l (i) I column I row I stage I window

I I 1 - 1 I

TABLE I
ADDRESS PERMUTATION TABLE FOR THE INTERLEAVER (TOP HEADER)

A N D DEINTERLEAVER (BOTTOM HEADER).

a combination of 18 addition, subtraction, and comparison
operations.

A. Calculation of the Modulus

Proposition 1: If m I N , then (f (j) mod N) mod m is
equivalent to f (j) mod m.

Proof: A nonnegative number f modulo m can be ob-
tained by continuously subtracting m from f until f becomes
less than m. If m I N , the number f modulo N can be
obtained by subtracting n = E multiples of m from f .
Therefore, (f mod N) mod m is equivalent to f mod m.
We can then write

.j+l a - f (j + 1) mod m
= ((f (j) + 9 (j)) mod N) mod

(f (j) + g (j)) mod m =
=

= (r; + r i) mod m.
(f (j) mod m + g (j) mod m) mod m

This calculation can be repeated for r;+', that is,

rj+' 9 A g (j + l) modm
=

=

=

((9 (j) + 2 4 mod N) mod m
(g (j) mod m + 2 C mod m) mod m
(ri + r2e) mod m.

The term r2e
calculated.

2 C mod m is a constant that can be pre-

B. Calculation of the Quotients

where r;,rze < m. We compute
Let g (j) mod N qim+r; and 2 C mod N q2em+rze

= is a constant and Ind = 1 if qi + 42e +
2 n and Ind = 0 otherwise.

Let f (j) mod N A qifm + r:, where rif < m. Similarly,

(rif + rjg)
= , i f + , : + 1 -1nd.n

where Ind = 1 if qif + qi + 2 n and lad = 0
otherwise.

C. An Algorithm to Compute the Memory Locations
Using the derivations, we give an algorithm that finds

the memory partition and address entry to store the next
interleaved position from the current position. This procedure
starts with a set of initializations and recursively computes the
index pair (.?I, q?').

Initialization: q! = 0, ry = 0,
4 9 - 1 o - b + e) m mod N 1 , r i = (K + C) modm,
q2e = 121 , and r2e = 2 C mod m.

Step 1. Compute the next quotient qT1
if (r; + r i) 2 m, o f f s e t = 1,

else o f f s e t = 0; q F 1 = q: + q; + o f f s e t ;
if qF' 2 n, q F 1 = q + + l - n.
Step 2. Compute the next quotient q;+'
if (r;+rze> > m , o f f s e t = I ,
else o f f s e t = 0; qi+1 = qi + 42e + o f f s e t ;

49
Step 3. Compute the next modulo 7-7'
, j + l - j .
f y r f + T i ;
if r;+l > m , rj f" =ryl - m .
Step 4. Compute the next modulo ri+'

For x = O to ~ z N - 2 do:

if q;+1 2 n, q i f l 1 3 + 1 - n.

rj+l = j

if ri+1 > m, rj+l = j + l - m .
rg + r2e;

9 rg

memory module
0 1 2 3 4 5

segment 0 Segment = 840

ow = rnod(addr 840)

Fig. 4. Window-based SCPPM decoder for M = 64 PPM.

v . MODIFIED IMPLEMENTATION TO ACCOMMODATE
OUTER CODE WINDOWING

Each PPM symbol is log,M bits. The inner trellis consists
of N/log,M stages and the outer trellis consists of N/2
stages. The ratio of outer to inner trellis length is log,M/2.
For M = 64 PPM, the outer trellis is three times the length
of the inner trellis. If each trellis stage takes one clock cycle
to decode, the outer decoder will take three times as long as
the inner decoder to complete a codeword iteration. To reduce
this latency, we can apply a window-based BCJR algorithm
[6] to the outer code, dividing the outer code trellis into
three sections and using three soft-in soft-out (SISO) decoder
modules to process the three stages in parallel as shown in
Fig. 4. In doing so, we will obtain an overall speedup of a
factor of two because the original decoder takes four (one
inner and three outer) time units to decode where as the
windowed decoder will take only two (one inner and one outer)
time units to decode. However, the implementation described
in Section I11 does not have enough bandwidth to support
window-based BCJR. Partitioning the outer code trellis into
three and applying window-based BCJR will require an input
and output of six LLRs per clock for both the interleaver and
deinterleaver as shown in Fig. 4. The scheme in Section I11
only allows two deinterleaver reads and two interleaver writes
at the same time. We propose two solutions to increase this
bandwidth and avoid read and write conflicts.
A. Modifying the Decoder State Machine

The start time of the three outer SISO decoders can be
staggered by one clock each to allow simultaneous reads of
the deinterleaver and writes to the interleaver memories. More
specifically, the decoder state machine can start outer SISO
one in the first clock period, outer SISO two in the second
clock period, and outer SISO three in the third clock period.
Because, as seen in Table I, memory module accesses have a
period of six each SISO will be rotating through the modules
(0,5),(4,3) and (2 , l) in sequence. If the access sequence of
the SISOs are staggered by one, then there will be no conflict.
The interleaver requires no change. However, the deinterleaver
shown in Fig. 3 has to be divided into six modules. That is,
each of the six columns will have to be partitioned as one
memory module for this scheme to work.
B . Repartitioning the Deinterleaver and Interleaver Memories

To accommodate outer code windowing, the deinterleaver
has to be repartitioned into at least six modules where each

Fig. 5. Repartitioning the deinterleaver to allow outer code windowing

column is one memory module. If we chose not to stagger
the operations of the three outer decoders, we need to further
divide each column memory module into three segments, as
illustrated in Fig. 5 , in order to avoid access conflicts. The
total number of partitions becomes 18 and the location of
a memory access will consist of three coordinates: (module,
segment, and row). For example, when N = 15120 and
m = 6, the new coordinates can be calculated from the old
address: segment = l%] and row = mod(addr, 840). The
interleaver also has to be repartitioned similar to that of the
deinterleaver. Each of the six B U M modules in Fig. 2 has
to be further partitioned into three segments for a total of 18
memory modules.

VI. SUMMARY
We presented an efficient hardware implementation of the

polynomial interleaver and deinterleaver for the SCPPM de-
coder. To avoid storing the interleaver mapping in memory,
we showed how the next memory location can be calculated
from the current one without the need for multiplication and
divisions. The SCPPM decoder has been implemented on a
Xilinx Virtex-I18000 FF’GA and its performance and resource
usage can be found in [2] . Our interleaver design techniques
can be applied to any turbo-like iterative decoders.

REFERENCES
B. Moision and J. Hamkins, “Coded modulation for the deep space
optical channel: serially concatenated PPM,” JPL Interplanetary Network
Progress Report, vol. 42-161, May 2005.
M. Cheng, M. Nakashima, J. Hamkins, B. Moision, and M. Barsoum, “A
field-programmable gate array implementation of the serially concate-
nated pulse-position modulation decoder,” JPL Interplanetary Network
Progress Report, vol. 42-161, May 2005.
B. Moision and J. Hamkins, “Deep-space optical communications
downlink budget: modulation and coding,” JPL Interplanetary Network
Progress Report, vol. 42-154, Aug. 2003.
L. R. Bahl, J. Cocke, E Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory,
vol. 20, pp. 284-287, March 1974.
J. Sun and 0. Y. Takeshita, “Interleavers for turbo codes using permuta-
tion polynomials over integer rings,” IEEE Trans. Inform. Theory, vol. 51,
pp. 101-119, Jan. 2005.
R. Akella and J. K. Wolf, “On the parallel MAP algorithm,“ in IEEE
fourth workshop on multimedia signal processing, pp. 371-376, IEEE,
Oct. 2001.

