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Abstruct- We describe novel interleaver and deinterleaver 
architectures that support bandwidth efficient memory access for 
decoders of turbo-like codes that are used in conjunction with 
high order modulations. The presentation focuses on a decoder 
for serially concatenated pulse-position modulation (SCPPM), 
which is a forward-error-correction code designed by NASA to 
support laser communications from Mars at more than 50 mega- 
bits-per-second (Mbps). For 64-ary PPM, the new architectures 
effectively triple the fan-in of the interleaver and fan-out of the 
deinterleaver, enabling parallelization that doubles the overall 
throughput. The techniques described here can be readily mod- 
ified for other PPM orders. 

I. INTRODUCTION 
The legacy error-correcting code (ECC) scheme for NASA 

missions consists of the concatenation of an inner convo- 
lutional code and an outer Reed-Solomon (RS) code. For 
example, the Mars Spirit and Opportunity Rovers mission uses 
this concatenated coding scheme over radio-frequency links 
to achieve data rates to Earth of 256 Kbps. NASA is con- 
sidering employing laser communications in order to increase 
these transmission rates to mega-bits-per-second (Mbps) and 
beyond. An efficient ECC design for the deep-space opti- 
cal channel, proposed in [l], is the serial concatenation of 
an inner modulation code and an outer convolutional code. 
This so called serially concatenated pulse-position modulation 
(SCPPM) code would operate in some scenarios less than 
one dB from the Shannon capacity. A version of the SCPPM 
decoder has been implemented on a Xilinx Virtex-I1 8000 
field-programmable gate array (FPGA) - details can be found 
in [2]. Capacity calculations for an optical channel employing 
PPM and a photon counting detector are presented in [3]. 
An integral part of the SCPPM decoder is a bit interleaver. 
In this paper we describe a hardware implementation of the 
interleaver proposed for this NASA code. 

This work is organized as follows: in Section 11, we describe 
the SCPPM encoder and decoder. In Section 111, we describe 
hardware implementations of the interleaver and deinterleaver 
that allow efficient memory accesses. In Section IV, we show 
how the next interleaved memory location can be calculated 
from the current location without the need for multiplications. 
In Section V, we describe methods to implement the inter- 
leaver with a window-based decoding algorithm. This allows 
one to operate the decoder at a higher throughput (doubling 
the speed relative to a straightforward implementation with 64 
PPM). 

11. THE SCPPM ENCODER AND DECODER 

The SCPPM encoder, shown in Fig. l(a), consists of an 
outer (5,7) convolutional code, a polynomial interleaver, and 

accumulate PPM 
1 I 

inner code 

(a) SCPPM encoder 

C 

Fig. 1. The SCPPM (a) encoder and (b) decoder. 

an inner accumulate PPM (APPM) code. The SCPPM decoder, 
shown in Fig. l(b), includes an inner decoder that works on 
the M-order PPM trellis and an outer decoder that works 
on the (5,7) convolutional trellis. The inner trellis consists 
of 2 states and M/2 parallel branches between connecting 
states. Therefore, the decoding complexity increases with the 
PPM order. For each code trellis, the Bahl-Cocke-Jelinek- 
Raviv (BCJR) algorithm [4] is used to compute the a-posteriori 
log-likelihood ratios (LLRs) from a-priori LLRs by traversing 
the trellis in forward and backward directions. Extrinsic in- 
formation (the difference between the a-posteriori and a-priori 
LLRs) is exchanged in iteration rather than the a-posteriori 
LLRs to reduce undesired feedback. 

111. THE POLYNOMIAL INTERLEAVER 
Let the SCPPM interleaver length be N bits. The interleaver 

is characterized by a second order polynomial f ( j )  = rcj + 
! j2 .  We use this polynomial to map the interleaver input bit 
position f ( j )  mod N to output bit position j ,  i.e., 

xf(j) = a?, xi = af-l(i). 

In our design, we assign N = 15120 = 24 .33 .5.7.  Candidate 
interleavers for this N are of the form f ( j )  = rcj + 210Xj2 
[5], where X is a positive integer and rc does not have 2,3,5 
or 7 as a factor. Among this class we have observed good 
performance with the polynomial f ( j )  = llj  + 210j2. Note 
that an inverse polynomial is calculated in [l] and given as 
f - l  (i) = 7331.1 + 7770i2. Barron and Robinson showed’ 
that the next interleaved position f ( j  + 1) can be recursively 
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calculated from the current position f ( j ) .  That is 

f ( j + 1 )  = ( ~ ( j + l ) + C ( j + l ) ’ )  m o d N  

= ( ( ~ j  + C j ’ )  + ( K  + l + 2Cj) )  mod N 

= ( f ( j )  + g ( j ) )  mod N 

where g ( j )  = ( K  + C + 2 l j )  mod N .  Expanding g ( j )  simi- 
larly yields g ( j  + 1) = (g ( j )  + 2 l )  mod N .  

To support the SCPPM decoder as shown in Fig. l(a), 
the interleaver memory is partitioned into six modules. Each 
module is implemented using Xilinx dual-ported block random 
access memory (BRAM) as shown in Fig. 2. The input 
position into the inner decoder j is determined from the 
output position f ( j )  of the outer decoder, that is PaI [ j ]  e 
PxO [f ( j )  mod N ] .  At each clock, the outer decoder pro- 
duces two LLRs and these are written in permuted order 
into the BRAMs simultaneously. The address permutation 
to memory location mapping for the interleaver is given in 
Table I. The first column consists of the output position 
f ( j )  mod N of the outer decoder in sequential order. The 
second column consists of the corresponding input position j 
into the inner decoder. The third column and fourth column 
are the memory module index ( j  mod 6) and address ( l j / 6 ] )  
in which the corresponding outer decoder output position is 
stored. The fifth column indicates the trellis stage and the sixth 
column marks the BCJR window number (for the window- 
based SCPPM decoder). For example, the 221st LLR, starting 
from zero, produced by the outer decoder corresponds to the 
first LLR input for the inner decoder. This LLR is stored in 
address zero of memory module one. This LLR is calculated 
at the 110th outer code trellis stage (0-7559) and belongs to 
the zeroth window segment (out of three). 

The outer decoder writes to the interleaver BRAMs in 
permuted order using the mapping of Table I. As we march 
down the table entries, we see that there will be no write 
conflicts at any time because the period of memory module 
writes is six and only two LLRs are produced by the outer 
decoder each clock. During interleaver reads, the inner decoder 
accesses the BRAM entries in sequential order. That is, at the 
first clock, the inner decoder reads the first entry (address 0) 
of each of the six memory modules and increases the address 
pointers by one. The six LLRs read correspond to PaI[O] 
through PaI[5] and are highlighted by bold face fonts in Table 
I. At the next clock, the inner decoder reads the second entry 
(address 1) of each memory module and again updates the 
address pointer. These six LLRs read correspond to PaI[6] 
through PaI[1 I] and so on. 

The deinterleaver is implemented as one big chunk of 
memory as illustrated in Fig. 3. The output LLRs generated 
by the inner decoder is written sequentially six at a time into 
“one row” of the dual-ported BRAM. The outer decoder then 
reads the LLRs in permuted order two at a time from the 
deinterleaver. The address permutation table for the deinter- 
leaver is the same as that of the interleaver given in Table I, 
with the exception that the header corresponds to that of the 
second row. For example, PxI[862], the 862nd LLR (starting 

Fig. 2. Interleaver implementation 
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Fig. 3. Deinterleaver implementation. 

from zero) input to the outer decoder should be read from the 
second column zeroth row of the deinterleaver BRAM. The 
control logic reads the desired two rows and then selects the 
correct entry out of each row. One can see from the table that 
there are no read conflicts. 

With the above interleaver and deinterleaver design, the 
LLRs produced or required by a stage of trellis decoding can 
be written to or read from memory in one clock cycle. 

IV. ALGORITHMIC INTERLEAVER 

We can avoid the need to store Table I in memory by 
computing the memory module and address for a specific 
interleaved position on-the-fly. The interleaver is partitioned 
into m distinct memory blocks each with n = $ entries for 
fast read and write access. Each interleaver position f ( j )  is 
then mapped to a corresponding index pair (r;,q;) where 
r; 4 f ( j )  mod m indexes into one of the m memory 
partitions and q; 4 indexes into an address entry 
of the selected memory. Because the modulo and division 
operations are costly to implement in hardware, we describe a 
procedure that calculates the indexing pair for the next inter- 
leaved position (rF1, q:fl) from the current one with only 
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ADDRESS PERMUTATION TABLE FOR THE INTERLEAVER (TOP HEADER) 

A N D  DEINTERLEAVER (BOTTOM HEADER). 

a combination of 18 addition, subtraction, and comparison 
operations. 

A. Calculation of the Modulus 

Proposition 1: If m I N ,  then (f ( j )  mod N )  mod m is 
equivalent to f ( j )  mod m. 

Proof: A nonnegative number f modulo m can be ob- 
tained by continuously subtracting m from f until f becomes 
less than m. If m I N ,  the number f modulo N can be 
obtained by subtracting n = E multiples of m from f .  
Therefore, (f mod N )  mod m is equivalent to f mod m. 
We can then write 

.j+l a - f ( j + 1 )  mod m 
= ((f ( j )  + 9  ( j ) )  mod N )  mod 

(f ( j )  + g ( j ) )  mod m = 
= 

= (r; + r i )  mod m. 
(f ( j )  mod m + g ( j )  mod m) mod m 

This calculation can be repeated for r;+', that is, 

rj+' 9 A g ( j + l )  modm 
= 

= 

= 

((9 ( j )  + 2 4  mod N )  mod m 
(g ( j )  mod m + 2 C  mod m) mod m 
(ri  + r2e) mod m. 

The term r2e 
calculated. 

2 C  mod m is a constant that can be pre- 

B. Calculation of the Quotients 

where r;,rze < m. We compute 
Let g ( j )  mod N qim+r; and 2 C  mod N q2em+rze 

= is a constant and Ind = 1 if qi + 42e + 
2 n and Ind = 0 otherwise. 

Let f ( j )  mod N A qifm + r:, where rif < m. Similarly, 

(rif + rjg ) 
= , i f + , : +  1 -1nd.n 

where Ind = 1 if qif + qi + 2 n and lad = 0 
otherwise. 

C. An Algorithm to Compute the Memory Locations 
Using the derivations, we give an algorithm that finds 

the memory partition and address entry to store the next 
interleaved position from the current position. This procedure 
starts with a set of initializations and recursively computes the 
index pair (.?I, q?'). 

Initialization: q! = 0,  ry = 0, 
4 9 - 1  o - b + e )  m mod N 1 ,  r i = ( K + C )  modm,  
q2e = 121 , and r2e = 2 C  mod m. 

Step 1. Compute the next quotient qT1 
if (r; + r i )  2 m,  o f f s e t  = 1, 

else o f f s e t  = 0; q F 1 =  q: + q; + o f f s e t ;  
if qF' 2 n, q F 1  = q + + l -  n. 
Step 2. Compute the next quotient q;+' 
if (r;+rze> > m ,  o f f s e t = I ,  
else o f f s e t  = 0; qi+1 = qi  + 42e + o f f s e t ;  

49 
Step 3. Compute the next modulo 7-7' 
, j + l  - j . 
f y r f  + T i ;  
if r;+l > m ,  rj f" =ryl - m .  
Step 4. Compute the next modulo ri+' 

For x = O  to ~ z N - 2  do: 

if q;+1 2 n, q i f l  1 3 + 1 -  n. 

rj+l = j 

if ri+1 > m,  rj+l = j + l  - m .  
rg + r2e; 

9 rg 
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Fig. 4. Window-based SCPPM decoder for M = 64 PPM. 

v .  MODIFIED IMPLEMENTATION TO ACCOMMODATE 
OUTER CODE WINDOWING 

Each PPM symbol is log,M bits. The inner trellis consists 
of N/log,M stages and the outer trellis consists of N/2 
stages. The ratio of outer to inner trellis length is log,M/2. 
For M = 64 PPM, the outer trellis is three times the length 
of the inner trellis. If each trellis stage takes one clock cycle 
to decode, the outer decoder will take three times as long as 
the inner decoder to complete a codeword iteration. To reduce 
this latency, we can apply a window-based BCJR algorithm 
[6] to the outer code, dividing the outer code trellis into 
three sections and using three soft-in soft-out (SISO) decoder 
modules to process the three stages in parallel as shown in 
Fig. 4. In doing so, we will obtain an overall speedup of a 
factor of two because the original decoder takes four (one 
inner and three outer) time units to decode where as the 
windowed decoder will take only two (one inner and one outer) 
time units to decode. However, the implementation described 
in Section I11 does not have enough bandwidth to support 
window-based BCJR. Partitioning the outer code trellis into 
three and applying window-based BCJR will require an input 
and output of six LLRs per clock for both the interleaver and 
deinterleaver as shown in Fig. 4. The scheme in Section I11 
only allows two deinterleaver reads and two interleaver writes 
at the same time. We propose two solutions to increase this 
bandwidth and avoid read and write conflicts. 
A. Modifying the Decoder State Machine 

The start time of the three outer SISO decoders can be 
staggered by one clock each to allow simultaneous reads of 
the deinterleaver and writes to the interleaver memories. More 
specifically, the decoder state machine can start outer SISO 
one in the first clock period, outer SISO two in the second 
clock period, and outer SISO three in the third clock period. 
Because, as seen in Table I, memory module accesses have a 
period of six each SISO will be rotating through the modules 
(0,5),(4,3) and ( 2 , l )  in sequence. If the access sequence of 
the SISOs are staggered by one, then there will be no conflict. 
The interleaver requires no change. However, the deinterleaver 
shown in Fig. 3 has to be divided into six modules. That is, 
each of the six columns will have to be partitioned as one 
memory module for this scheme to work. 
B .  Repartitioning the Deinterleaver and Interleaver Memories 

To accommodate outer code windowing, the deinterleaver 
has to be repartitioned into at least six modules where each 

Fig. 5. Repartitioning the deinterleaver to allow outer code windowing 

column is one memory module. If we chose not to stagger 
the operations of the three outer decoders, we need to further 
divide each column memory module into three segments, as 
illustrated in Fig. 5 ,  in order to avoid access conflicts. The 
total number of partitions becomes 18 and the location of 
a memory access will consist of three coordinates: (module, 
segment, and row). For example, when N = 15120 and 
m = 6, the new coordinates can be calculated from the old 
address: segment = l%] and row = mod(addr, 840). The 
interleaver also has to be repartitioned similar to that of the 
deinterleaver. Each of the six B U M  modules in Fig. 2 has 
to be further partitioned into three segments for a total of 18 
memory modules. 

VI. SUMMARY 
We presented an efficient hardware implementation of the 

polynomial interleaver and deinterleaver for the SCPPM de- 
coder. To avoid storing the interleaver mapping in memory, 
we showed how the next memory location can be calculated 
from the current one without the need for multiplication and 
divisions. The SCPPM decoder has been implemented on a 
Xilinx Virtex-I18000 FF’GA and its performance and resource 
usage can be found in [2] .  Our interleaver design techniques 
can be applied to any turbo-like iterative decoders. 
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