
Development of New Modeling and Analysis Tools for Solar 
Sails 

Michael Lou* and Houfei Fang' 
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 911 09 

Bingen Yang 
University of Southern California, Los Angeles, CA 90089 

Existing finite-element-based structural analysis codes are ineffective in treating 
deployable gossamer space systems, including solar sails that are formed by long space- 
deployable booms and extremely large thin-film membrane apertures. Recognizing this, the 
NASA Space transportation Technology Program has initiated and sponsored a focused 
research effort to develop new and computationally efficient structural modeling and 
analysis tools for solar sails. The technical approach of this ongoing effort will be described. 
Two solution methods, the Distributed Transfer Function Method and the Parameter- 
Variation-Principle method, based on which the technical approach was formatted are also 
discussed. 

Nomenclature 
L =  
R =  
D =  
H =  
E =  
M =  
E1 = 
E =  

Length 
Radius 
Diameter 
Thickness 
Modulus of elasticity 
Poisson's ratio 
Bending stiffness 
Amplitude olf imperfection 

I. Introduction 
The typical 

architecture of these solar sails consists of long space-deployable booms and thin-film membrane apertures. Due to 
the effects of gravity and air damping, it is difficult and in some cases even impossible to verify in-space 
performance of a solar sail by ground testing. The development of a solar sail flight system must rely on effective 
computational capabilities. 

Compared to other large lightweight space-deployable structures, a solar sail that uses long booms to deploy and 
tension its thin-film membrane aperture is structurally unique in two major aspects. Firstly, the booms are very long 
(up to hundreds of meters in length) and cannot be efficiently treated by existing finite-element modeling (FEM) 
structural analysis codes. Secondly, the membrane aperture is made of a very thin film material (usually has less 
than a few microns in thickness) and extremely large (up to hundreds or even thousands of square meters). A thin 
membrane, by definition, has zero out-of-plane stiffness. It is only when the membrane being subjected to in-plane 
tension then some level of out-of-plane stiffness (known as differential stiffness) will present. Unless the distribution 
of its in-plane tension is absolutely uniform, which is impossible to acheve for most, if not all, space deployable 
solar sail designs, a membrane will wnnkle. Wrinkling of the membrane aperture can significantly affect static and 

Many of the future space exploration missions planned by NASA will employ solar sails. 
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dynamic performance of a solar sail. Although the 
formation of wrinkles and their effects on structural 
behaviors of large membranes have been studied by 
a number of re~earchersl-~, they remain to be 
paramount challenges that must be reckoned with in 
designing and developing all tensioned space 
membrane structures, including solar sails. At this 
point, no user-friendly computational capabilities are 
available to treat the wrinkle issue. 

This paper will discuss an ongoing effort, whch 
was initiated and sponsored by the NASA Space 
transportation Technology Program, to develop a 
new set of analysis modeling and analysis software 
tools that can potentially meet the above-mentioned 
challenges. This development effort is based on two 
innovative solution methodologies, the Distributed 
Transfer Function .Method (DTFM) and the Figure 1. A Typical Square Solar Sail Architecture 
Parameter-Variation-Principle (PVP) method. 
Results of previously conducted studies have successfully proven that the DTFM is computationally efficient to treat 
extremely long and slim booms that are with or without material and geometrical  imperfection^^-^. Similar studies 
have also shown that the PVP method can accurately predict wrinkle formation and patterns in tensioned thin-film 
membranes of various shapes and boundary  condition^^'^. Additionally, a discussion will also be included in this 
paper on the DTFM model synthesis approach for assembling system models to simulate in-space structural 
performance of solar sails. 

".:. 

11. Technical Approach 
The common practice at this time for predicting and analyzing structural and dynamic behavior of large space- 

deployable membrane structures, including solar sails, is to use commercially available, general-purpose structural 
analysis codes, such as NASTRAN, ANSYS, and ABAQUS. These finite-element codes were developed 
specifically for treating traditional structural systems that consist of relatively small and stiff building-block 
components (i.e,, composite and metallic plates, bars, beams, and trusses), and they have been proven to be very 
effective for these intended uses. However, they are neither efficient nor effective in dealing with large space- 
deployable membrane structures, such as solar sails, that are extremely large and flimsy, easy to wrinkle, and 
undergo large-displacement motions during in-space deployment. To advance the state of technology for square 
solar sails, structural modeling and analysis tools that employ new and innovative solution approaches must be 
developed that effectivdy account for the unique structural features and characteristics of the sails. 

The authors of this paper and their colleagues have in the last several years successfully developed two 
innovative solution methods. The first methods, the Distributed Transfer Function Method (DTFM), has been used 
to successfully treat control and structures problems, including local buckling of booms. The second method, the 
Parameter-Variation-Principle (PVP) method, was recently developed and applied to analyze membranes with 
wrinkling andlor slack ~regions',~. For the ongoing solar sail modeling and analysis tool development, we will build 
on the obtained results of our previous DTFM and PVP work and extend the application of these two solution 
methods specifically for long booms, wrinkled membranes, and sail system models. Briefly discussions on these 
specific DTFM and the PVP applications are given in the following sections. 

III. DTFM Modeling of Long Booms 
The Distributed Transfer Function Method (DTFM) is an innovative solution technique with unique capabilities 

for modeling and analysis that can greatly enhance the design and development of large ultra-lightweight space 
structural systems such as square solar sails. The DTFM was developed in the early 1990s to study control problems 
of one-dimensional elastic continua in the Laplace domain'o, and over the past few years, has been successfully 
applied to analyze general structures composed of one-dimensional components. 
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Strips 

Figure 2. A Shell Divided into Long Strips 
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The DTFM is as versatile in modeling multi-body 
structures of complex configuration as the finite 
element method (FEM). A major difference between 
the two modeling techniques, though, is that DTFM 
uses Distributed Transfer Functions to mathematically 
represent every component and FEM uses shape 
functions to represent every element. The 
combination of higher-level analytical formation and 
multi-body assembly capability makes the DTFM 
model synthesis approach unique and powerful in 
treating large structural systems such as the solar sails. 
No other existing approaches have such capability. 
Another advantage of using Distributed Transfer 
Functions is that it gives exact and closed-form 
solutions for both displacements and forces of one- 
dimensional components (semi-analytical solutions 
for two-dimensional components). Which enables 
DTFM to model a very long building block of a 
gossamer structure (e.g. a solar sail boom) with a 
single component without losing any accuracy. 
DTFM does not have any numerical approximations 
and, consequently, does not have any numerical 
instability. In contrast, FEM uses shape functions, 
which is a numerical approximation. As a result, 
numerous elements are required by FEM to model a 
single boom accurately. 

In order to quantitatively illustrate the difference 
between DTFM and FEM, a previously completed 
study is presented here as an example. This study is a 
buckling analysis of a short circular cylindrical shell 
as shown in Figure 2. In the DTFM, the shell is 
divided into a number of longitudinal strips. In the 
strip lateral (y) direction, the shell response is 
interpolated by polynomials. Along the strip 
longitudinal (x )  direction, the DTFM is applied to 
obtain closed-form analytical solutions. Figure 3 
compares the DTFM and FEM results on the buckling 
force of this example (L = D = 100, H = 1, E = 100, 
and m = 0.3). 

It can be concluded from this example that the 
DTFM modeling approach delivers a highly accurate 
semi-analytical solution by using only a very small 
number of strips while the FEM approach, even with 
a much larger number of elements, gives only an 

approximate solution. This example has clearly demonstrated the computationally efficiency and effectiveness of 
the DTFM for treating boom-type structures. 

One obvious advantage of the DTFM over the finite element method is that the DTFM requires far fewer 
unknowns in order to accurately describe a structure. It should be emphasized that DTFM strip modeling is totally 
different from the finite: strip method" in its closed-form analytical solution format and its capability for synthesis 
analysis of multi-body structures. These features also hstinguish the DTFM from other existing analytical methods, 
such as classical boundary value approach, Rayleigh-Ritz method, Fourier series expansion, and Levy solution 

In addition to our effort to develop solar sail modeling and analysis tools, NASA Space Transportation 
Technology Program has also initiated and sponsored a solar sail ground demonstration task. Two 20-meter class 
ground demonstration sails are currently being designed, fabricated, and assembled for ground testing. One of these 
sails, developed by AEC-Able, uses coilable multi-bay truss booms. The other sail, developed by L'Garde, uses 

I I 
Figure 3. DTFMI vs. NASTRAN FEM Results 
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inflatable thin-film boloms. Both of these two sails, will be subjected to a series of performake tests in the ground, 
including dynamic tests in NASNGRC’s 100-ft vacuum chamber at Plum Brook, Ohio. Since the test results from 
these 20-meter ground1 demonstration sails will be used to validate the software tools developed by our ongoing task, 
we will focus our boom modeling and analysis efforts on these AEC-Able and L’Garde designs. 

IV. Buckling of Booms with Initial Geometric and Materials Imperfections 
It was shown by a previously conducted research that the structural behaviors of a long boom with initial 

geometric and material imperfections could be investigated by the DTFM”. For instance, in a perturbation analysis, 
the displacements of a boom in the longitudinal, circumferential and transverse directions can be represented as 

for k = 1,2,3, where U0,k describe the initial geometric imperfections, and i i k  the perturbed buckling 
deformations. In buckling analysis, the perturbed differential equations governing the boom deformation are first 
cast into a spatial sta1:e f o q  with the coefficients being functions of U 0 . k .  The resulting state equation is then 
solved in closed form by the DTFM. 

Depending on the boom configuration, the equations 
for buckling deformation may take different forms. For 
instance, for single tubes, the buckling equations are 
similar to those of shells; and for booms made of isogrid 
trusses, a set of differential equations can be derived. In 
either case, the DTFM or DTF synthesis can be applied 
to determine boom buckling load and deformation. 

One obvious advantage of the DTFM over existing 
methods is that it can conveniently model both global 
and local boom imperkctions, including those caused by 
packaging and deployment. In FEM, those imperfections 
may be difficult to model and analyze, even with an 
extremely large number of elements. This special 
capability of the DTFM will be extremely useful in 
design of solar sail booms. 

As an example, consider a column with a localized 
imperfection w,,(x) ; see Figure 4. The column can be 
viewed as a component of an isogrid truss or coil-able 
boom. Let the column bending stiffness and length be EI 
= 25 and L = 4, respectively. By using the DTFM, the 
axial load-deflection cixves of the imperfect column at 
x = L / 2  are plotted for the imperfection amplitude 
E = 0.02, 0.05, 0.1 anld a = 0.1; see Figure 5,  which 
indxates that small initial imperfection can cause 
significant deflection of the column. 

In our development of modeling and analysis tools 
for long booms, we will follow similar perturbation 
approach to develop analysis processes that focus on 
studying the effects of geometrical and material 
imperfections to buckling of long booms. The loading 
and boundary conditions that represent typical square 
sail applications of long, booms will be considered. 

k >I L i 2  .i, L12 

Figure 4. A Column with Localized Imperfection 

V. PVP Wrinkling Analysis of Membranes 
Tensioned thmfilm membranes are basic elements of a variety of space structures, including solar sails. Thin- 

film membranes usually have little compression resistance capability, and hence are easy to wrinkle. Wrinkling 
eventually leads to out-of-plane deformation of membranes, and variations in in-plane stress distribution. 
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Membrane analysiis usually has three steps. The first step is making a model that does not have out-of-plane 
stiffness. The second step is pre-tensioning the membrane to get the out-of-plane stiffness, namely differential 
stiffness. Differential stiffness is a function of the in-plane stress distribution. The third step is applying external 
loads, such as solar pressure, on the membrane. This step only can be done after the differential stiffness is 
established. The second step, pre-tensioning a piece of membrane, introduces wrinkled and/or slack regions, which 
is a local membrane-buckling phenomenon. Slack regions may exist during the analysis process and may not exist 
when the solar pressure is applied. Using ordmary static analysis to analyze a process that involves buckling 
introduces numerical instable and divergent. 

In order to solve the membrane wrinkling and/or slack problem, an innovative method, namely Parametric 
Variational Principle (PVP) method, has been developed in the last several years*”. This method is the state-of-the- 
art for solving membrane pre-tensioning problems. It can predict the formation and distribution of wrinkled and 
slack regions and will be developed to calculate the out-of-plane deformations. The basic ideas are given as follows: 

Let the principal stresses of a membrane be 0, and 02, o, 2 0,. A particle point of the membrane is in one the 
following three states defined by principal stresses: 

(Sl) Taut state: a; > 0, o, > 0 
(S2) Wrinkled state: o, > 0, 
(S3) Slack state: u1 = 0, o2 = 0 
In the two-viable-parameter (2-VP) membrane model, material properties in the constitutive law are: 

0, = 0 

with A, and h, being non-negative viable parameters. The viable parameters can be adjusted such that the 
conditions of the membrane states (Sl, S2 and S3) are satisfied. It can be shown that: 

For taut state (Sl), h1 = 0, h, = 0 ; 
For w d d e d  state (S2) ,  A, = 0, h, > 0 ; 
For slack state (S3), h, > 0, h, > 0 . 
The significance of this is, with proper variation of parameters h, and A,, the three states of membranes can be 

For the 2-VP membrane model, the potential energy functional is then derived and the energy functional contains 
systematically described. 

the viable parameters I , ,  and A, : 

where { u }  is the vector of membrane displacements, Ilk indicates that the energy functional contains the viable 
parameters 1, and h,. 

The Parametric Var:iational Principle (PVP) has been developed for the 2-VP membrane model. According to the 
PVP, the exact displacement solution of the wrinkling problem renders the variation of the potential energy of the 
membrane equal to zero. This principle lays a foundation for a new numerical wrinkling analysis of membranes. 

Based on the 2-VP membrane model and the PVP, a parametric finite element method for numerical mudding 
analysis of membranes of arbitrary shape and boundary conditions has been developed. A membrane is divided into 
a number of elements. By standard finite element interpolation, the displacements of an element can be expressed as: 

where { qe ) represents unknown nodal displacements. Unlike conventional finite element formulation, the 

stresses { o} of the element contains two viable parameters A, and h, . 

5 
American Institute of Aeronautics and Astronautics 



By the PVP described previously, 

- 0  -- 
%I 

where {q} is the global nodal displacement vector. By Equation (5)  and the three membrane states (Sl, S2 and 
S3) defined by the principal stresses, the following two important results are obtained: 
(i) The nodal displacement vector { q} can be expressed by an explicit fimction of the viable parameters: 

where { A} is the vector of all viable parameters. 
(ii) The original wrinkling problem of the membrane is equivalent to the nonlinear complementarity problem (NCP) 
described by: 

This NCP can be solved by a smoothing Newton Method16. 
According to the above discussion, the PVP method for wrinkling analysis takes the following three steps: 

Step 1. Solve the NCP for viable parameters { h) . 
Step 2. With { h} obtained, compute the membrane hsplacements by Equations (4) and (6); and 

Step 3 .  With {A} and imembrane displacements, compute the stress distribution of the membrane, and determine the 
wrinkled and slack regions. 

The break through of the above solution procedure is that the solution of the NCP does not request numerical 
iterations, and has guaranteed convergence. Thus, the stress distribution of a membrane with wrinkled and slack 
regions can be accurately and efficiently determined. To test the validity of the PVP analysis approach, a 
preliminary attempt has been made to study the forming of wrinkles in a tensioned triangular membrane, as shown 
in Figure 6. 

Figure 6. A Tensioned Triangular Membrane 
Figure 7. Predicted Wrinkle Pattern 

The top comer of ithe membrane is fixed; the other corners are stretched by force P with angle 8, to the 
horizontal axis. The wrinkle pattern of the membrane predicted by the PVP finite element method is shown in Figure 
7, where a wrinkled element is marked with a dumbbell-like symbol with the bar orientation and length representing 
the direction and magnitude of the first principal stress ol. As the angle 8, approaches 90 degrees, a slack region 
appears near the mid bottom of the membrane, as observed in a preliminary experiment. In this case, conventional 
stress iteration with standard finite element modeling of the membrane becomes divergent, and fails to deliver any 
meaningful results. The PVP method, however, can predict the distribution of similar wrinkled and slack regions of 
the membrane, without any divergence problem in computation. 
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Solar sail membranes are extremely large and thin with very low in-plane stresses. They are naturally very easy 
to wrinkle and to have slack regions. All iteration-based methods used to treat solar sail membranes will likely 
experience numerical instability problems and have difficulties in convergence. The PVP method has been proven 
computationally efficient for analyzing thin-film membranes without worrying about convergence. Our membrane 
modeling starts from current start-of-the-art PVP technology. We will finish all equation derivations of the P W  
method and develop the analytical process for wrinkle and slack regions as well as their forming processes analyses. 
This will lead to a new method for predicting the out-of-plane deformation of wrinkled membranes. The key idea of 
this approach is to introduce the in-plane stresses in the compatible equation of strain components: 

where w is the transverse (out-of-plane) displacement of the membrane, and 4 is a known function of the in-plane 
stresses ox, o,,, zxy, In the literature, equations similar to Equation (8) are sometimes called nonlinear Monge- 
Ampere Equations, although they have never been used to study the currently considered wrinkled membrane 
problem. It can be shown that the solution of Equation (8) exists, and is unique”. Thus, unlike the conventional 
analysis methods based on platehhell models, the problem of numerical singularity can be avoided in the current 
method. In computing the out-of-plane deformation from Equation (8), knowledge of the in-plane stresses is 
essential. The in-plane stresses of a wrinkled membrane can be efficiently determined by the 2-VP model and 
parametric finite element method, which guarantees the feasibility of the proposed method. This research will 
develop numerical algorithms for solution of the compatibility Equation (8). Stiffness changes introduced by stress 
changing and membrane deformation will be calculated and superposed to the original stiffness matrices. Dynamic 
analyses of wrinkled membrane can thus be conducted. 

VI. Synthesis and Assembly of Sail System Models 
Our experience with the DTFM also has shown that the application of this solution approach is not limited to 

compopent-level analysis; it is also capable of modeling and analyzing a system of multiple structural components. 
This system-level application, referred to as the DTF synthesis6, takes the following three steps: 
(i) Decomposition: The structure under consideration is decomposed into a number of components or subsystems. 
For a solar sail, the major components are thin-film membranes and supporting booms. Also, other components such 
as beams, plate boxes and rigid bodies can be considered (for modeling the spacecraft attached to a solar sail, for 
instance). 
(ii) Component Representation: The response of a component (subsystem) is expressed by its distributed transfer 
functions in terms of unknown displacement parameters at the nodal points (boundary) of the component. This 
yields a nodal displacement representation of the response of the component 

where { u,} and { qe} are the nodal displacement and force vectors, and [K,] is the component dynamic stifhess 
matrix. The DTFM representation is valid for booms, as well as trusses, plates, beams, and elastic and rigid bodies. 
(iii) Assembly: The structure is assembled from its components by imposing force balance and displacement 
compatibility at the interconnecting nodal points of the components, leading to a global dynamic equilibrium 
equation 

where { u }  and { q} are the global displacement and force vectors, and [ Kg ] is the global stiffness matrix 

assembled from the component stiffness matrices [K,] . Solution of the global equation, Equation (lo), gives the 
staticldynamic response of the system at every point. 

Ths  combination of analytical solution format and multi-body assembly capability makes the DTFM unique and 
powerful in analysis of solar sails. No other existing approaches have such capability. Using nodal displacements, 
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the DTFM synthesis can efficiently deal with component stiffness matrices obtained by other techniques such as 
finite element methods. This feature enables the DTFM synthesis to obtain a complete model of solar sails by 
integrating the boom model that is derived based on the DTFM, with a membrane model that is derived by using the 
PVP. 

With its transfer function formulation, the DTFM is naturally and readily applicable to modeling and analysis of 
flexible space structures with integrated feedback controllers and embedded smart material layers. Control-structure 
interactions can be easily studied with the DTFM. Unlike FEM models, the DTFM formulation leads to closed-loop 
governing equations of much smaller order. Transient (time-domain) response can be obtained in closed form by a 
newly developed inverse Laplace transform technique. 

Following the above-described process, a solar sail system can be decomposed into its major structural 
components, i.e., booms, membranes, and spacecraft bus and appendages, for component-level modeling and 

I 1 Decomposition I Assembly 

Figure 8 DTFM Synthesis of A Square Sail 

analyses.- The component models can also be later 
assembled into a sail system model for system- 
level analyses. Figure 8 shows this 
decompositiodassembly process. 

On the other hand, the traditional finite 
element method discretizes individual components 
of the solar sail into small elements of near square 
and/or triangular shapes. This usually requires a 
very large number of elements for each 
component model. In contrast, the Distributed 
Transfer Function only requires decomposition of 
components. For example, the square sail shown 
in Figure 8 will be decomposed into four pieces of 
membrane components, four boom components, 
and a spacecraft as illustrated. That is, only nine 
“super” components are used by DTFM to model 
a solar sail to yield results that are equally or more 
accurate than that given by the FEM analysis. 
Therefore, DTFM synthesis is particularly suitable 
for assembling solar sail system models. 

VII. Concluding Remarks 
Effective treatment of some of the structural 

issues of large sails formed by long space- 
deployable booms and extremely large thin film 
membrane apertures. These include localized 
geometrical and material imperfections, formation 
and effects of wrinkles, deployment simulation, 
and nonlinear dynamics, are beyond the current 
state-of-the art of existing FEM-based 
computational capabilities. A focused research 
effort was initiated to overcome the identified 
shortcomings of existing FEM analysis codes in 

modeling and analyzing this particular type of space structures. This development effort is based on two proven 
solution methods, namely the DTFM and the PVP method. Successful development of these modeling and analysis 
tools will greatly enhance our capability to predict and analytically verify on-orbit performance of large square solar 
sails and other similar gossamer structural systems. The developed software will be made readily available to 
NASA engineers to he\p enable the implementation of several planned near-term solar sail missions. Additionally, 
many other NASA missions that have long deployable booms and tensioned thin-film membranes incorporated in 
their flight systems will also benefit from these new modeling, analysis, and synthesis capabilities. 

We recognize that no space missions, including solar sail missions, will be flown based on analytical prediction 
of on-orbit performance: alone. We envision that the modeling and analysis tools developed by our ongoing effort 
will be used to complenient ground testing of sail components (ie., boom and membrane aperture) and/or subscale 
models of a complete sail system. These tools can be used to guide test planning, to assist the interpretation and 
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analysis of test data, imd to help demonstrate scalability of the test models. They can also be used to evaluate and 
mitigate the effects on test results of gravity and air damping (if the test is not conducted in vacuum due to facility 
limitations). This combined test and analysis development approach is essential to advancing the flight readiness 
level of solar sail technology. 
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