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ABSTRACT 

The Space Interferometer Mission (SIM) flight instrument will not undergo a full performance, end-to-end system test on 
the ground due to a number of constraints. Thus, analysis and physics-based models will play a significant role in 
providing confidence that SIM will meet its science goals on orbit. The various models themselves are validated against 
the experimental results of several "picometer" testbeds. In this paper we describe a set of models that are used to 
predict the magnitude and functional form of a class of fielddependent systematic errors for the science and guide 
interferometers. This set of models is validated by comparing predictions with the experimental results obtained from 
the MicroArcsecond Metrology (MAM) testbed and the Diflktion testbed (Dm). The metric for validation is provided 
by the SIM astmmetric error budget. 
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1, INTRODUCTION 

1.1 Overview of SIM sensor systems 

The Space Interferometry Mission (SIM) instrument is being designed to make microarcsecond-level measurements of 
the position of stars [Ref. 11. SIM consists of four, white light Michelson stellar interferometers on a single structure. 
Two of the interferometers are identified as science with distinct baselines (only one is active at a time) and two 
interferometers are identified as guide and share a common baseline. All interferometer baselines are defined by the 
vertices of hollow comer cubes. The guide interferometers act as h e  guidance sensors, and give the pointing of the 
guide baseline in inertial space at the microarcsecond level. However, the objective is microarcsecond knowledge of the 
science baseline orientation. This is accomplished by determining the orientation of the science baseline relative to the 
guide baseline with an optical truss termed the external metrology system.' Thus, we may divide the SIM instrument 
into three optical sensor systems: (1) science interferometer, (2) guide interferometers, and (3) external metrology truss. 
These three sensors are assumed to be separable to fitst order and therefore may be characterized individually. To that 
end, several picometer-level2 testbeds have been developed to demonstrate the technology required for the sensor 
systems and, in some cases, substantial sub-assemblies of the sensor systems. 

The testbeds function in another capacity besi hnology demonstrations; they also generate data that can be used to - 
validate picometer-level modelsthatwill predict the flight system performance. The models, in turn, help 
elucidate the behavior of the testbeds; thi ed understanding can be utilized to improve the design of the SIM 
instrument. In this paper we will primarily be concerned with the MicroArcsecond Metrology (MAM) testbed and its 
application to the science and guide interferometer sensor systems. To a lesser extent, we will discuss the Diffi.action 
Testbed (Dm). 

In order to completely define the science baseline in inertial space a "roll" sensor is also required. 
Besides the obvious difference in precision, picometex- and nanometer-level have an additional meaning in the SIM instrument 

lexicon. Whereas nanometer phenomena are sensed and controlled, picometer phenomena are only sensed. 



1.2 Overview of the MAM testbed 

The observable quantity measured by the SIM science interometer is called the external delay which is illustrated in 
Fig. 1.  Knowledge of the external delay and the magnitude of the science baseline allows one to compute the angle 
between the line of sight to the observed object (star unit vector) and the science baseline. The external delay cannot be 
measured directly but can be deduced fiom two measurements of optical path difference (OPD). The first measurement 
is the OPD fiom the observed object to the interornometer beam splitter (see Fig. 1) via the two arms of the 
interferometer. This measurement is derived from the spectrally dispersed white light (starlight) fringe. The second 
measurement is the OPD between the beam splitter and the fiducials (i.e., corner cube vertices) defining the science 
baseline. This measurement comes from the internal metrology system. In an ideal system the internal metrology beams 
would precisely monitor changes in the starlight optical path in each arm of the interferometer. Deviations from this 
ideal behavior result h m  systematic biases and random noise. The purpose of the MAM testbed is to demonstrate that 
these bias and noise terms do not exceed a level specified by the SIM astrometric error budget [Ref. 21. 

A schematic layout of the MAh4 testbed is shown in Fig. 2. The testbed consists of two principal pieces, namely the 
light source termed the inverse interferometer pseudostar (IPS) and the test article (TA). The IPS is a surrogate for a 
stellar source while the TA simulates the science interferometer sensor. The key to success of the testbed is the use of 
metrology on the IPS side, as well as the TA side, to monitor changes in the starlight optical path. In fact, it is a general 
rule that in order to perform a picometer-level measurement, the entire noncommon starlight optical path must be 
monitored by a metrology beam; this allows one to remove fluctuations in the geometric path length due to dynamics and 
thermal effects by subtracting the phase changes of the two beams. 

The IlPS introduces external delay between its two arms by physically translating two optical assemblies, hereafter 
called towers, in two degrees of M o m  with respect to the IIPS beam splitter. The OPD in each arm, relative to the 
center of the field, is given by Eq. ( 1 ). 

where x and y are displacements parallel and perpendicular to the interferometer baseline and z is a fmed distance (800 
mm) from the final tower mirror to the baseline comer cubes. The translations x and y vary within a circle of radius 100 
mrn. From Eq. (1) it is clear that the path length difference between the two IPS  arms (i.e., the external delay) is 
precisely 2x giving a total one-way rnm. Note that the external delay is independent of y; this is useful 
when we want to remove certain bias te scribed in Sec. 1.3. 
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1.3 Field dependent bias terms 

The SIM instrument operates in two basic modes, so called wide angle (WA) and narrow angle (NA). The WA mode 
covers a patch of sky (called a tile) 15 degrees in diameter while the NA mode coverage is 1 degree in diameter. Both 
modes involve macro changes3 in the pointing of the science interferometer collecting optics (called siderostats) and 
adjustments to the optical path in one arm depending of the field point being obsewed. These m a m  configuration 
changes, resulting from a change in field angle, produce a class of systematic biases to the measurement of the external 
delay. Because these biases are explicit functions of field angle, they are termed field dependent (FD) biases. These 
biases can be classified in three categories: (1) diffhction, (2) beam walk, and (3) corner cube related phenomena. In 
this section we give a brief overview of the nature of these FD biases. In Sec. 2 we describe the models for each of these 
biases in detail. 

The diffraction bias term results from two facts: (1) the internal metrology and starlight beams have different 
wavelengths, beam geometries, and propagation lengths, and (2) the pathlength in one arm of the interferometer must be 
varied to compensate for changes in the external delay as the field point changes. The change in the average phase of the 

Macro changes to the system configuration can be thought of as intentional, or commanded, changes. This is to be contrasted with 
m i m  system configuration changes that, in general, are smaller in magnitude and result from thennal distortions and dynamic 
disturbances. 



metrolow and starlight beams can be thought of as composed of a geometric part and a diffraction part. Since the 
metrology and starlight beams travel the same path4 the geometric contribution to phase change is removed by the data 
processing leaving the difference of the difhction terms. Although the metrology and starlight beams have diierent 
wavelengths, beam geometries, and propagation path lengths, the parameter of interest when comparing differences in 
the difbction terms is the Fresnel number. The Fresnel number is a function of wavelength, beam geometry and 
propagation pathlength as indicated in Eq. (2) below. 

where w is half the characteristic dimension of the diffracting aperture (i.e., radius for a circle or half the side for a 
square), A is the wavelength, and z is the propagation distance. Beams that differ innvelength, geometry, and 
propagation length, but have the same Fresnel number, will have the same dimaction term Based C_ - 
The beam walk bias term refers to the path length change that results h m  the translation of a beam over the imperfect 
surface of an optical component such as a mirror. That is, there is a change in the average phase of the beam without any 
change in the position of the optic. The beam walk bias term is a function of the beam geometry, the rms surface figure 
error, the power spectral density (PSD) hct ion of the s h e  profile, and the beam translation distance. In order to 
model beam walk in a deterministic manner one would need to know the surface profile of each optic with high spatial 
resolution and the terminal points of the beam translation relative to the surfice profile. Rather than a deterministic 
calculation, our beam walk model relies on a statistical approach. Beam walk can result from both field independent (FI) 
and dependent processes. For example, misalignment of a mirror due to thermal gradients will produce FI beam walk on 
the downstream optics. On the other hand, axial translation of the delay line optic (a comer cube) on rails that are 
misaligned with respect to the beam propagation direction will produce a FD beam walk. 

The baselines of the four SIM interferometers are defmed by comer cubes as previously mentioned. The comer cubes 
are also the only components in the instrument that the intemal and extemal metrology beams have in common. For the 
science baselines, the comer cubes are embedded in the siderostat mirrors and thus articulate as the interferometer 
observes different stars in a particular tile. As the comer cubes articulate the internal and external metrology beams are 
incident on the cube facets at changing angles. As a result of varying angles of incidence there are changes in the 
average phase of the metrology beams due to changes in reflection phase shifts and dihedral errors. The design of the 
comer cube surfaces calls for coating with unprotected gold. Thus, the reflection phase shift is a hct ion of the 
polarization state of the incident field and varies continuously with angle of incidence. Dihedral errors refer to the fact 
that the comer cube facet normals are not exactly mutually perpendicular. This gives rise to geometric path length errors 
that depend on reflection sequence and point of incidence. 

There are three additional FD comer cube errors to consider: (1) comer cube vertedsiderostat offset, (2) non-common 
vertices, and (3) beam walk. The first effect refers to the fact that the corner cube vertex is offset from the surface of the 
siderostat mirror. This introduces a non-common optical path between the starlight and the intemal metrology that varies 
with field angle. The second item results from the need to accommodate both intemal and extemal metrology beams 
whose propagation directions exceed the field of view of a single comer cube. We have effectively extended the field of 
view of the comer cubes by utilizing assemblies that are multiple corner cubes. In theory these multiple comer cubes 
have a common vertex but in practice they do not due to fabrication limitations. The non-common vertex bias does not 
appear in MAM because there is no external metrology system; however, this error is important for the flight system so 
we mention it here for completeness. Finally, there are two types of beam walk to consider. The comer cube articulation 
axes will not pass through the vertex. The resulting translation of the comer cube fkets relative to the fured metrology 
beams will produce beam walk of the type described above. Another type of beam walk also occurs because the 
metrology beam footprints on the facets change shape as the comer cubes articulate. 

In this section we have provided an introduction to the nature of the FD biases encountered in the MAM testbed. In the 
next section we give the details concerning the modeling of these bias terms. 

4 The metrology propagates through the system in double pass but the change in its phase is multiplied by 0.5. This removes the 
geometric contribution when the difference between the metrology and starlight phase changes are subtracted. 



2. FIELD DEPENDENT MODELS 

The computer code used to model diffraction terms for the SIM flight system and testbeds was developed at the 
Luckheed Martin Advanced Technology Center by R. Benson [Ref. 31. In this section we briefly describe some of the 
physical principles and numerical techniques on which the code is based. The SIM diffraction code is a numerical 
implementation of the scalar, paraxial theory as described in Ref. 4. Diffraction calculations for S M  consist of a series 
of free-space propagations between various planes within the optical system. The Fresnel numbers for these 
propagations vary over a wide range of values implying that both near field and far field calculations are required.5 

The dii%action calculation can be formulated in a number of ways. Consider an aperture Z in the x-y plane. Let a field 
of wavelength A be incident on the aperture. We wish to calculate the field for an arbitrary observation point.po = 
(x,y,z). Following Ref. 4, we may write the complex field at po in two formulations6 

where k is the wave number %A, p, is in Z, rol is the distance from pl to po, f, = a& is the spatial frequency associated 
with the direction cosine a along the q axis, A is the Fourier transform of the field in the aperture Z. The expressions 
given in Eq. (3a) and (3b) may be called the point source, or direct method, and the angular spectrum method 
respectively. Although the two expressions are mathematically equivalent, there are computational advantages to having 
the capability of evaluating either expression depending on circumstances. The expressions in Eq. (3) are simplified by 
evoking the assumption that the propagation distance is much greater than the maximum linear dimension of either the 
aperture S or the region of interest in the observation plane. Expanding the appropriate square roots yields 

Substituting Eqs. (4) into (3) gives the following 

Inspection of Eq. (5) shows that for a fixed grid (e.g., NAx) size there is an exponential function within the integral of the 
direct method with an argument that is proportional to the Fresnel number; for the angular spectrum method the 
argument is inversely proportional to the Fresnel number. Therefore, the integrand for the direct method becomes more 
oscillatory with increasing Fresnel number while the integrand for the anguIar spectrum method becomes more 

Near and far field diffraction calculations are often r e f e d  to as Fresnel and Fraunhofer approximations of the diffraction problem 
respectively. Technically, the Fresnel approximation covers both the near and far field; that is, the Fraunhofer integral is a special 
case of the Fresnel integral. 

In Eq. (2) the obliquity factor has been approximated as unity in keeping with the paraxial assumption. 



oscillatory with decreasing Fresnel number. Following the aliasing argument presented by Dutta and Benson [Ref. 31, 
we can cast the choice between Eqs. (5a) and (5b) in terms of propagation length as follows 

Z 5 , angular spectrum method , (68) 
AN 

z a @!!!& , direct method . 
AN 

This trade in computational accuracy, as a function of Fresnel number, between the direct and angular spectrum methods 
was tested for a series of cases with closed-form solutions and demonstrated the need for both algorithms if a wide range 
of Fresnel numbers are required [Ref. 21. Thus, the difbdion code chooses the appropriate formulation based on the 
criteria given in Eq. (6). 

Both the direct and angular spectrum methods require numerical implementation of a two-dimensional Fourier transform 
that is usually called a discrete Fourier transform (Dm. A subset of DFT algorithms, called fast Fourier transforms 
(FFT), have been developed for high computational efficiency. However, FFTs come with certain restrictions on sample 
spacing in the two planes of interest. That is, selecting the sampling interval in one plane determines the sampling 
interval in the other plane. The general DFT does not contain this sampling restriction. Thus, what one sacrifices in 
computational speed is offset by the ability to tailor the sample spacing to the aperture of interest. However, one can 
improve the computational efficiency of the DFT by using the chirp z-transform (CZT) [Refs. 6, 71. The CZT algorithm 
allows one to formulate the DFT as a convolution that can then be evaluated by FFT thus improving the computational 
speed over the DFT while retaining the M o m  to choose the grid spacing in the transform plane. For the angular 
spectrum method, the diffraction code evaluates the Fourier transforms by a FFT. For the direct method, the code will 
use a FFT or the CZT depending on the user's choice for the grid spacing in the final plane. 

Perhaps the most crucial issue with regard to diffiction is the accuracy of the code. This is a two-part question, namely 
(1) what is the accuracy requirement for SIM, and (2) how does one test the code. The answer to the first part of the 
question comes fiom the SIM astrometric error budget that requires knowledge of certain types of diilktion effects at 
the few picometer level.' The second part of the question required a two-step answer. Step 1 consisted of a 
computational check using a case amenable to implementation by an independent calculation using Mathematica 
sohare. This step checked that the paraxial, scalar difEaction equations were correctly coded in the Fortran program 
and gave an indication of the accuracy as a function of sample spacing. To make the calculation tractable in 
Mathematica we chose a case with circular symmetry and calculated the average phase of the beam in the observation 
plane. The circular symmetry allowed us to replace two-dimensional DFTs with one-dimensional Fourier-Bessel 
transforms (also known as Hankel transform of zero order). The Mathematica calculation was carried out with a 
working precision of 34 digit$ and was taken as the "correct" answer. The difference in average phase, converted to 
path length (h = 1.319 pm), between the F o r m  diffraction code and the Mathematica calculation, as a function of 
sample spacing, is given in Table 1. Based on the convergence of the two methods at the picometer level, as a function 
of sample spacing, we concluded that the Fortran diffraction code algorithms were properly coded and had the necessary 
precision. 

Table 1 : Comparison of Fortran and Mathematica diilktion calculations 
I Grid size I Grid pts. I Sample I Average phase I 

' The metrology beam launchers have a requirement on an error called cyclic error that is 3 pm. 
A working precision of 34 is the precision used for internal calculations. We used the default setting for the precision of the final 

answer (precision goal parameter) which means the calculation strives for 10 digits less or 24 digits of precision. 

(mm) 
50 
25 

2048 
2048 

spacing (p) 
24.4 
12.2 

difference @m) 
16 
4 



The Fortran code and the Mathematics calculations embody the same paraxial, scalar approximations. Thus, step 2 of 
the verification process was to check the code against a set of measurements. A special testbed, dubbed the Diffraction 
Testbed (DTB), was designed and constructed at the Lockheed Martin Advanced Technology Center for this purpose 
[Ref. 81. The details of the configuration, operation, and data processing of the DTB are outside the scope of this paper 
but suffice it to say that the testbed was designed to operate with SJM-like starlight and metrology Fresnel numbers. 
There were several requirements levied on the agreement between the d i M o n  model and the DTB results but the 
most germane for our discussion is the following: The rms difference between the DTB and model OPD residuals 
(obtained by removing linear and quadtactic terms) shall be less than 75 pm over a 30-cm mechanical delay line stroke. 
The model and testbed rms difference was 43 pm and thus met this requirement with margin. This .was a truly 
impressive achievement for both the testbed and the model. It should also be noted that the DTB is the first successful 
SIM pico-level testbed. 

2.2 Beam walk 

The beam walk model is a statistical calculation. The quantity calculated is the standard deviation of a zero-mean 
distribution of path length changes that result fiom translation of a beam of given geometry by a distance over an 
ensemble of surfaces that are all characterized by a specified diameter, rms surface figure error, and PSD function for the 
surface error. The general expression for the variance of this path length change, 2, is given by the following 
expression. 

where x is the deviation of the surface height from the mean at position 3 ,  A is the area of the beam, and <...> 
represents an average over an ensemble of sur!kes. The beam walk calculation is based on a formalism used for random 
processes in atmospheric turbulence problems. The key concept is the representation of the optic surface in Eq. (7) by a 
stochastic Fourier Stieltjes integral as described in Appendix A of Ref. 9 and given in Eq. (8). The use of this integral 
representation for beam walk analysis was originally developed at JPL by M. Colavita. 

where f is the spatial frequency normalized to the mirror diameter and dw(f) is called the random amplitude. The 
random amplitude has the following property 

In order the carry out this calculation we make several assumptions that are listed here: 
The PSD function is radially symmetric; hence, the path length change only depends on the magnitude of the walk 

and not the direction. 
The PSD function is directly proportional to P. If PSD data are available we fit for the exponent p. If no data are 

available we usually assume p = -2.5. The minimum spatial frequency considered is 1 cyclelmirror diameters. 
One half of the surhce error power is contained in spatial fkequencies greater than 1 cycle/mirror diameter. 

Using Eqs. (7) - (9) and the assumptions listed above, the general form for the path length change variance can be 
written as an integral of spatial frequencies over the PSD function, normalized to half the wavefiont variance, multiplied 
by a transfer or filter function H. 



As an example, the filter function for a uniform circular beam of diameter d, normalized to the mirror diameter, is 

where Jo and J1 are Bessel functions of the first kind of order 0 and 1 respectively. 

We are often interested in a quantity called the beam walk sensitivity that is the first derivative of the path length change 
standard deviation with respect to beam translation. For a circular beam and typical beamfmirror dimensions, it can be 
easily shown that s is a linear function of s. Expanding Jo as a power series of its argument yields pef. 101 

Substituting Eqs. ( 1  1)  and (12) into (10) shows that s is directly proportional to s. Thus, for this case and many others, 
the beam walk sensitivity is independent of the magnitude of the beam translation. 

A secondary goal of the DTB was to validate the beam walk model described above. Note that it is difficult to assign a 
pasdfail criterion to this test due to the statistical nature of the model. The beam walk sensitivity results for the testbed 
and the model were 0.53 and 0.90 pm/pm respectively. Analysis of various model uncertainties showed that the model 
prediction could reasonably be 0.74 pmipm. It was concluded that the agreement between the testbed and the model was 
close enough that there is unlikely to be anything substantially incorrect about the model assumptions or computational 
techniques. A detail discussion of the beam walk test and model results can be found in Ref. 8. 

23 Corner cubes 

2.3.1 Dihedral errors 

The dihedral error between two comer cube facets is the difference of the angle between the surface normals and 90 
degrees. These errors result in two types of geometric path length changes as the corner cube articulates, namely OPDl 
within the comer cube and OPQ due to the fkct that a given ray exiting the corner cube is no longer propagating anti- 
parallel to the incident ray direction. An expression for the first type of OPD between two facets is easily derived. 
Consider the path length of a ray propagating between facet i and j. The facets are defined by their unit normals, Q and 
nj, and the comer cube vertex q. Let the ray of interest be incident on facet i at the point pi and propagate between 
surfaces i and j along the unit vector v. Then the propagation distance t between facets i and j is given by the following 
equation. 

where ~ , b >  is the inner product between vectors a and b. Let I) be the dihedral error between facets i and j. To first 
order in I) we may write n, = r + %Q where r is the unit normal to facet j with no dihedral error present. Substituting this 
expression for nj into Eq. (1 3) yields after some manipulation the following 

OPD, t - (4 - pi94 ( ' 9 3  

= -q (q-~ iVr) -  - ('4 ('d2 
We note that OPDl is directly proportional to the dihedral error and the distance between the ray intercept on facet i and 
the comer cube vertex. In addition, the proportionality constant is a function of the angle of incidence at facet i. 



To calculate OPD2 we need to know the propagation diuection of a ray exiting the comer cube compared to the incident 
ray direction, that is, the angle of deviation 9. It can be shown [Ref. 1 I ]  that 

where v is a unit vector in the incident propagation diredion and 2C, is a vector containing the three dihedral errors 
defmed as follows when the subscripts denote the reflection sequence. 

Using the expression in I3q. ( 1  5) for the propagation deviation angle, the value of OPD2 after propagating a distance L is 
given by 

Comparing Eqs. ( 1  4) ancl (1 7), it is clear that the OPD within the comer cube depends on the dihedral error to first order 
while the OPD resulting fiom misalignment is a second order effect. The implication of the above analysis is that each 
ray will have its particular OPD based on its reflection sequence and point of incidence. 

2.3.2 Reflection phase shifts 

Reflection phase shifts are a function of angle of incidence, wavelength, index of refraction of the reflecting surface, and 
polarization state. In the case of MAM only the articulation of the comer cubes at the siderostats will produce significant 
changes in the reflection phase shifts. The corner cubes are coated with unprotected gold and hence have a complex 
index of refraction. The reflection phase shifts are given by the well-known Fresnel equations. The only issue involves 
consistency between the Fresnel equations, the directions of the s and p polarization unit vectors before and after the 
reflection, the sign of the imaginary part of the complex index, and the sign of the spatial phase term for a wave 
propagating in free space. We have found several inconsistencies between these items in various texts and commercial 
optical design codes. A complete discussion of these issues can be found in Ref. 12. We can summarize our modeling 
conventions as follows: (1) The spatial part of the phase of a wave propagating in free space becomes more positive in 
the direction of propagation. (2) The complex index of refraction is given by 5 = n + ik where n and k are positive. (3) 
The positive (zero phase) directions of the incident and reflected ppolarization unit vector point are defmed by the cross 
product s x k where s is the unit vector in the positive s-polarization direction and k is the propagation vector. (4) 
Finally, the equations for the s- and ppolarization complex amplitude reflection coeflicients are given by 

where 8i and 8, and the angles of incidence and refraction respectively. 

2.3.3 Vertex offset 

The siderostat mirror articulates over the field of regard to reflect IIPS starlight, defined by the unit vector s, into the TA 
optical system in a direction specified by the unit vector e. If the comer cube vertex is separated h m  the siderostat front 
surface by a distance d along the mirror normal, the unmonitored geometric distance, b, is given by 

where <a,b> is the inner product between the vectors a and b. The unmonitored distance at the center of the field of 
regard represents a constant offset between starlight and metrology path lengths that can be lumped in with other 
constant offsets. However, b is a function of field angle; thus, we are really interested in the deviation of b fiom its value 



at the center of the field as a function of field angle. Although we can simp@ evaluate Eq. (1 9) for various field points, it 
is of interest to decompose this deviation into terms of increasing order of the field coordinates. 

In the MAM testbed, field angle is specified by the Cartesian coordinates x and y which are displacements from the 
center of the field along and perpendicular to the TA baseline respectively. Let 0 be the angle between the center of the 
field (x = y = 0) and the vector e. Then we can rewrite Eq. (19) as 

where C is the value of b and the center of the field and 

where 8 = x2 + J and R is the distance between the comer cube vertex and the x-y plane. Expanding the radical in Eq. 
(20) as a power series in K, we may write the deviation of b from its value at the center of the field as a sum of terms of 
increasing order of the field coordinates. 

C y3 ( sin9 \' + yr' sin9 cos9 sin9 
cubic term = - - - { -yr  -} - (224 

4R3 4 \ I  + cosel 2 (1 + ~ 0 ~ 0 ) ~  l+cos9 

3. COMPARISON OF MODELS AND MAM DATA 

In Section 2 we described the physical and mathematical bases of the various FD bias models. In some cases the model 
description applied to a single reflection or propagation path. These equations have been combined with a layout of the 
MAM testbed to produce system-level predictions. For computational reasons two system models have been developed, 
namely one for diffraction and one for comer cube phenomena. Beam walk calculations are not included in the results 
given below. 

When comparing the model predictions with MAM data it is convenient to expand the FD bias function, a, in terms of 
the low-order Zernike polynomials written in Cartesian coordinates as in Eq. (23). 

where x and y are the MAM field coordinates parallel and perpendicular to the baseline respectively. Generally, we 
evaluate c,, c2, and q. Under certain circumstances we evaluate c3 + c4 and c3 - c4 which are the coefficients of x2 and yZ 
respectively. It is important to note that post-processing of the SIM flight system data will remove terms c,, through c3. 
For model validation purposes we compare coefficients cl, c2, c3 + c4, and ~j - c4. 

Validation of the difhction model was successfblly carried out on the DTB. However, in the interest of understanding 
the behavior of the MAM testbed we compare the model and testbed data for the diffraction bias term. Model validation 
for the comer cube model is dependent on the comparison between model predictions and testbed data. There are two 
criteria of interest over the WA field of regard, one pertaining to unprocessed data and one to the residual after SIM-like 



post-processing. For the former, the aventge absolute value of the fractional difference between the model and the 
testbed data should be less than 20 percent. For the latter case, the rms difference should be less than TBD pm. 

In order to facilitate the comparison of the MAM models and experimental results the testbed has been operated in 
particular modes that isolate, to varying degrees, the various bias terms? To isolate the difliaction term the testbed was 
run in the TA and IPS retro modes that utilize only half of the testbed at a time. For example, in the TA retro mode the 
siderostats are oriented to retro-reflect a monochromatic starlight source that propagates with the internal metrology 
beam from the TA beam splitter. In this case the TA operates entirely without the IIPS. Because the starlight source has 
a long coherence length the TA can still produce fiinges for large path length diierences. Thus, the only macro 
configuration change in this mode is the path length in the TA arm with the delay line. For the corresponding mode on 
the IIPS side the siderostats are replaced with large comer cubes that return the metrology and starlight beams. The 
comer cubes articulate to give them a constant orientation with respect to the starlight and metrology beams and thus 
remove their FD effects. To isolate the corner cube effects we only examine the terms of the FD bias function for the 
IIPS plus TA configuration that depend on the coordinate perpendicular to the TA baseline. Motion in this direction 
maintains a constant path length difference thus producing a constant difflaction contribution. Another potential test of 
the comer cube model is the IIPS retro test where only the comer cubes articulate. In this case the path lengths in each 
arm are fured so that the difhdion term is a constant. At this time the dihedral errors for the comer cubes used in the 
IIPS retro test have not been measured with sufficient precision. Thus, comparison between the model and ZIPS test data 
will not be available until the tests have been completed, the large comer cubes removed and their dihedral errors re- 
measured. 

3.1 Diffraction results 

'Table 2 compares the model results with the testbed data for the two tests that were intended to isolate the difiaction 
terms for the TA and IIPS. The TA retro mode test generates a tme one-dimensional bias function in the field variable x 
because there is no other degree of fieedom. Thus, only the coefficients cl and c3 + c4 are meaningful. On the other 
hand, the IIPS retro test produces a two-dimensional bias function although it is weakly dependent on the y coordinate. 
Both the model and testbed data show that the diffraction in the IIPS dominates the difhction in the TA. 

1 c2 (pddeg) I NIA 1 NIA 1 0.8 1 60 1 

Table 2: Comparison of MAM data and model predictions for difhction terms 

c3 + c4 (pm/deg) 1 12 1 81 1 -2.6 ( 59 
c3 - c4 (pm/deg2) I NIA I NIA 1 -2.6 1 1.4 1 

Coefficient 
cl (pmldeg) 

3.2 Comer cube results 

The three comer cube phenomena described in some detail above have been integrated into a single model called the 
integrated model. However, it is possible to evaluate each term separately. As an example, one can determine the 
reflection phase shifts assuming no dihedral errors or vertex offset. Thus, the sum of the individual terms can be 
compared with the fully integrated model. This exercise has been carried out with results that differ at the few picometer 
level. We therefore conclude that the coupling between reflection phase shifts, dihedral errors, and vertex offset is 
negligible for the size errors of interest to MAM and SIM. In addition to demonstrating that coupling between different 
corner cube bias terms is small, the individual models give insight into which type of comer cube errors dominate the 
overall bias function. For example we have found that the reflection phase shifts h m  the two arms largely cancel each 
other producing a small net bias term. Table 3 presents the q and c3 - c4 coefficients derived from fits to the MAM 
measurements for the IIPS plus TA configuration dong with the model predictions. 

TA retro test 
Model I MAM data 
388 1 -659 

Note that all macro changes to the system configuration introduce beam walk which is not included in either the diffraction or comer 
cube models. 

IIPS retro test 
Model 1 MAM data 
-19741 -2184 



Table 3 : Comparison of MAM data and model predictions for terms 
I --- - a -  

Coefficient ( Model ) MAM data 

4. CONCLUSIONS 

We have compared modeling results and testbed data for three cases. For the two cases with large linear terms, the 
agreement between the linear terms is about 10 and 15 percent. For the case with a relative small linear term, the sign 
and magnitude do not agree. In addition, the testbed tends to measwe larger quadratic coefficients than the model 
predicts. Our conclusion is that the diffhction and comer cube models predict the correct overall behavior of the bias 
Wction when these terms dominate other error sources. For example, for the TA retro test the sign and magnitude of 
the measured linear terrn is known to fluctuate with metrology and starlight beam alignment. Model validation will 
proceed as the behavior of the MAM testbed becomes understood better and the measurements more stable. 
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Fig. 1 Schematic of a SIM-like interferometer. The external delay is a function 
of the angle between the stellar wavefront and the interferometer baseline. 

Fig. 2. Schematic of the MAM testbed. The dotted line indicates the 
boundary between the IIPS and the TA. The non-common paths 

extend from the IIPS beam splitter to the TA beam splitter. 



SHB-nanometer Ievel model validation of the SLM interferometer 

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA 91 109-8099 

ABSTRACT 

The Space Interferomettx Mission (SIM) flight instrument will not under30 a full performance, end-to-end system test on 
the ground due tu a number of constraints. Thus, analysis and physics-based modek will play a significant role in 
providing cofidence that SlhrI will meet its %science goals on orbit. The various models themselves are vdidated against 
the experimental resdts of several 'Cpicometef' testbeds. In thii paper we describe a set of models that are used to 
predict the magnitude md functional form of a class of field-dependent systematic errors for the science and guide 
interfmometers. This set of madeis is validated by comparing predictions with the experimental results obtained from 
the MicroArcsecond Metxalogy (Ma) testbsd and the Diffraction testbed @TB). The metric for validation is provided 
try the S M  astmmetric m r  budget. 

Keywords: SIM, MAM, interferometer, modeling, astrometry 

1.P Overview of SXM sensor systems 

The Space Inteserom&y Mission (Slha) instrument is being designed to make micmmsecond-level measurements of 
the position of stars Wf. Ij. SIM consists of four, white light Michelsotl stella int&ornebts on a single structure. 
Two of the interferometers ate identified as science with distinct baselines (cmIy one is active Ett a time) and two 
inteiferometers are ide~iified as guide and share a common baseline. All interferometer baselines are defined by the 
vertices of hollow corner cubes, The guide interferometers act as fme guidance sensors, and give the pointing of the 
guide baseline in inertial space at &e microarcsecond level. However, the objective is microarcsecond knowledge of the 
science baseline mienkition. This is accomplished by determining the orientation of the science baselhe relative to the 
guide baseline with an optical truss termed the external metrology system.' Thus, we may divide the SIM instrument 
into three optical sensor systems: (I)  science interferometer, (2) guide interferometers, and (3) external metrology truss. 
These three sensors are assumed to be separable to first order and therefore may be characterized individually. To that 
3 4 ,  several picornster-leve$ %stbeds have been developed to demonstrate the technology rquired far the sensai 
systems and, in some cases, substantiaI sub-assembties of the sensor systems. 

The testbeds hct ion in another capacity besides technology demonstrations; they dso generate data that can be used to 
vz1idat.e picameter-levei models that will be used to predict the flight system performance. The models, in tarn, heIp 
elucidate &e behavior of the testbe&, this increased understanding can be u t i i i  to improve the design of the SIM 
instrument. fn this papa we will primarily be concerned with the MicroArcsecond Metrology testbed and its 
application to the science and guide interfetamebr sensor systems. To a lesser extent, we wit1 discuss the Diffraction 
testbed @TB). 

I In order to completely de6 ne the science baseline in inertial space a "dl" sensor is also required. 
* 
.L -. amides the obvious cWerence in precisior?, picometer- and nanometer-level have ao a d d i t i d  meaning in the SUd instrument 
lexicon. Whereas nanometer phenamena are sensed and controUed, picometer phenomena are only sensed. 
*robert.ko~hoff@jpI.nasagov; phone 1 818 354-0083; fax 1 818 393-1916 http:ilwww.jpl.nasa.gov 



1.2 Overview of the MAM testbed 

The observable quantity measured by the SIM sciena interferometer is called the e x t d  delay which is illustrated in 
Fig. 1. Knowledge of the external. delay and the magnitude of the science baseline allows one to compute the angle 
between the line of sight to the observed object (star unit vector) and the science baseline. The external delay cannot be 
measured directly but oan be deduced from two measurements of optical path difference (OPD). The first measurement 
is the O'PD from the observed object to the interferometer beam splitter (see Fig. I) via the two arms of the 
interferometer. This measurement is derived fi-om the spectrally dispersed white light (starlight) fkinge. The second 
measurement k the OI'D between the beam splitter and the fiducials (i.e., comer cube vertices) defining the science 
baseline. This measurement comes from the infernal metrology system. In an ideal system the internal metrology beams 
would precisely monitor changes in the starlight optical path in each. arm of the inktferometer. Deviations from this 
ideal behavior result from systematic biases and random noise. The purpose of the MAM testbed is to demonstrate that 
these bias and noise tenns do not exceed a level specified by the SIM astrornetric ermr budget mef. 21. 

A schematic layout of the MAM testbed is shown in Fig. 2- The testbed consists of two principal pieces, namely the 
light source termed the invene interferometer pseudostar (IIPS) and the test artic!e (TA). The I@S is a surrogate for a 
skHar source while the T-4 simuIates the science interferometer sensor. 7 % ~  key to success of the testbed is the use of 
metrology tm the I P S  side, as well as the TA side, to monitor changes in the starlight optical path. In fact, it is a general 
rule that in order to perform a picometer-level measurement, the entire non-common starlight optical path must be 
monitored by a metrology beam; this allows one to remove fluctuations in the gwmetn'c p& length due to dynamics and 
thermal effects by subtrixting the phase changes of the two beams. 

The IPS intraduces e:ctenaI delay W e e n  its ma arms by physically translating two optical assemblies, hereafter 
called towers, in two degrees of freedom with respect to the IPS beam splitter. The OPD in each arm, relative to the 
center of the field, is given by Q. (I). 

2R 
(1) 

where x and y are displacements parallel and perpendicular to the interferometer baseline and R is a fixed distance (800 
mm) from the x-y pIanlt to tfie baseline comer cubes. The .tramstations x and y vary within a circle of radius 1100 mm. 
From Eq. (1) it is clear that the path length difference between the two IPS arms (i,e., the external delay) is precisely 2x 
giving a total one-way range of a200 mm. Note that the external delay is independent of y; this is usefiiI when we want 
to remove certain bias tt:ms that are described in Sec. 1.3. 

13 Fidd dependent b i : ~  terms 

The SIM instrument operates in two basic modes, so cdled wide angie (WA) and narrow angle 0. The WA mode 
covers a patch of sky (trilled a tile) 15 degrees in diameter while the NA mode coverage is 1 degree in diameter. Both 
modes involve macro c:fianges3 in the pointing of the science interfkrorneter collecting optics (cdfed siderostats) and 
adjustments to tbe optical path in one arm depending of the field point being observed. These macro configuration 
changes, resuIting from a change in field angle, produce a class of systematic biases to the measuremw-t ofthe external 
delay. Eecause these biases are expiicit hncrions of field angle, they u'e t m e d  fieId dependent {Frj) biases, These 
biases can be classified in three categories: (1) diffraction, (2) beam walk, and (3) corner cube related phenomena. In 
this section we give a brief overview of the nature of these m3 biases. In Sec.  2 we describe the models for each of these 
biases in detail. 

Tbe difkx-tion bits term results from two fkcts (1) the internal mekology and stsrlight beams have different 
wavelengths, beam geometries, and propagation Iengtkrs, and (2) the pathlength in one arm o f  the interferometer must be 

M a m  changes to the system confi,Won can be thought of as intentiorid, or commanded, changes. This is to be eonmted with 
micro system configuratic~n changes that, in pried, are smaller in magnitude and result from them& distor2ions and dynamic 
disturbances. 



varied to compensate fitr chmges in the external delay as the field point changes. The change in the average phase of the 
metrology and starlight beams can be thought of as composed of a geometric part and a difhction part. Since the 
metroIogy and starIight beams travel the same the geometric contribution to phase change is removed by the data 
processing leaving the difference; of the diffraction terns. Although the metrology and starlight beams have different 
waveImgths, beam geometries, and propagation path lengths, the parameter of interest when comparing differences in 
the difhction terns h the Fresnel number. The Fresnel number is a function of wavelength, beam geometry and 
propagation pathlength as indicated in Eq. (2) below. 

where w is half the characteristic dimension of the diffracting aperture ( i e . ,  radius for a cl-cb or half the side for a 
square), h is the wavc:lengttr, and z is the propagation distance. Beams that differ in w a ~ e t e n ~ ,  geometry, and 
propagation length, but have the same Fresnel number, will have the same diffraction term. 

The beam walk bias b ~ m  refers to the path len& change that results from the translation of a beam over the imperfect 
surEkce of an optical component such as a mirror. That is, there is a change in the average phase of the beam without my 
change in the position ofthe optic. The beam walk bias term is a Eunction of tbe beam geometry, the rms surface figure 
mor, the pourer spectral density (PSD) hct ion of the surface profile, and the beam aansiation distance. In order to 
model beam walk in a deterministic manner one would need to know the snrhce profile of each optic with high spatial 
resolution and the temtinal points of *e beam translation relative to the surface profile. Rather than a deterministic 
calculation, our beam walk model relies on a statistical approach. Beam walk can result from both field independent (FI) 
and dependent processes. For example, misalignment of a mirror due to thermal gradients wiU produce FI beam walk on 
the downstream optics. On the other hand, axial translation of the delay fine optic (a corner cube) on rails that are 
misaligned w2tii respect to the beam propagation direction wiII produce a FD beam walk. 

The baselines of the four S N  interferometers are defined by corner cubes as previousfy mentioned. The corner cubes 
are also the oniy components in the instrument that the internal and external metrology beams have in cornon. For the 
science baselines, the corner cubes are embedded in the siderostat mirrors and thus &icul&e as the interferometer 
observes different stars in a particular tile. As the corner cubes articulate the internal and e x t e d  metrology beams are 
incident on the cube facets at changing angles and intercept points. As a result there are changes in the average phase of 
the metrology bems clue to changes in reflection phase shifts and dihedral errors. Ttxe design of the corner cube 
sudkces calls for coating with unprotected gold. Thus, the reflection phase shift is a function of the polarizaion state of 
the incident fieId and varies wntinuausly with angle of incidence. Dihedral enom refer to tlse f8ct that the corner cube 
facet normals are not exactly mutually perpendicular. This gives rise to geomeg îc path length errors that depend on 
reflection sequence and point of incidence. 

There are three additional FD corner cube errors to consider: ( 1 )  corner cube vertedsiderostat offset, (2) non-common 
vertices, and (3) beam walk. The first effect refers to the fact that the corner cube vertex is oRset k r n  the surface of the 
siderostat mirror. This introduces a non-common optical path betcnrmn the starIight and the internal metrology that varies 
with field angle. The second item results &om the n ~ e d  to accommodate bath internal and external met~alogy beams 
whose propagation directions exceed the field af view of a single comer cube. We have effectively extended the field of 
view of the comer cubr:s by utilizing assemblies that are multiple Gorner cubes. In theory these multiple comer cubes 
have a common vsrtex 'but in practice they do nett 6ue ZI fsbricatiofi liniitstions. The am-co~limm vertex bias isdoes not 
appear in M4.M because there is no extmal metrology system; however, this enor is important for the flight system so 
we mention it here for compIeteness. Finally, there are two types of beam walk iQ consider. The comer cube articulation 
axes will not pass through the vertex. The resulting translation of the corner cube %cds relative to the fixed metrology 
beams wi1I produce beam walk of the type described above. ho the r  type of beam walk also occllrs because the 
metrology h a m  footprints on the facets change shape as the corner cubes articolate. 

Tjle metroiogy pmpagabcs through the system in double pass but the change in its phase i s  n-dtipiled by 0.5. This removes the 
geometric contribution when the diffe~nce between the metrology and starlight phase change is computed. 



In this section we have provided an introduction to the nature of the FD biases enco~ntered in the MAM testbed. In the 
next sedion we give the details concerning the modeling of these bias terms. 

2. FIELD DEPENDENT MODELS 

2.1 Diffraction 

The computer code used to model difhction terms for the SIM flight system and testbeds was developed at the 
Lockheed Martin Advanced Technology Center by R Benscsn Bef. 31. frr this section tve briefly describe some of the 
physical principles and numerical techniques on which the code is based. The SIM diBaction code is a numerical 
implementation of the scalar, paraxid theory as described in Ref. 4. Diffraction calculations for SM consist of a series 
of free-space propagations between various planes within the optical system. The Fresnel nurnks for these 
propagations vary over a wide range of values implying that both near field and far field calculations are required.5 

The diffraction calculation can be formul&ed in a number of ways. Consider an apeme Z: in the x-y plane. Let a field 
af wavelength h be incident on the aperture. We wish to caIculate the field for an arbitmy observation point po = 

(x,y,z). Foi~owing Ref, -4, we m y  write the complex field at po in two fomulations6 

where k is the wave number 2 d ,  pl is in $ rol is the distance fiom pl to po, f ,  = cxih is the spatial frequency associated 
with the direction cosine a along the q axis, and A is the Fourier msform of the field in the aperture E. Tffe 
expressions given in Eiq. (3a) and (3b) may be called rhe point source, or direct method, and the angular spectrum 
methad respecti-gely. P,f&ough the twa expressions are mathematicalfy equivalent, there are campuhtional advantages 
to having the capabiIiqr of evaluating either expression depending on circumstances. The expressions in Eq. (3) are 
simplified by evoking the assumption that the propagation distance is much greater than ihe maximum linear dimension 
of either the aperture X or the region of interest in the observation plane. Expanding the appropriate square roots yields 

Substituting Eqs. (4) into (3) gives the following 

Inspection of Eq. (5) shows that for a fixed grid size (e-g., Ndx) here is an exponentid function within the integrai of the 
direct method with an argument that is proportional to the Fresnei number; for the angular spec- method the 

' Near and far frdd dIffrai:tion ~ z d d a ~ 0 ~ 3  u e  often referred to as Fresnel and Fm.u-ihofex approximations of the diffraction problem 
respectivdy. Techr~ieaiiy, he  'Fresnei approximation covers 'both the near and far Gdd: that is, ths Frrcuribifer integral is a syeciai 
case of the Fresnel integral 
6 In Eq. (3) the obliqrrity factor has been approximated as uciry in keeping with the paraxial assumption. 



argument is inversely PI-oportional to the Fresnel number. Therefore, the integrmd for the direct method becomes more 
osciiiatory with increailsing Fresnel number while the integand for the angular specgirrn method becomes more 
oscillatory with decreasing Fresnet numbs. FoIIowing the aliasing argument presented by Dutta and Benson LRef. 331, 
we can cast the choice between ?2qs. (5a) and (5b) in terms of propagation length as follows 

, , - , direct method . 
m 

This wade In computational accuracy, as a fimtion of Fresnel number, between the direct and angular sspectrum methods 
was tested for a series of cases with clod-fbrm solutions and demonstrated the need for both algorithms if a wide range 
of Fresnei numbers is ~equired [Ref. 51. This, fhe d i f h d o n  code chooses tli~ appropriitte formu2&m based on the 
criteria given in Eq. (6). 

Both the direct and angular spectrum methods require numerical impiernentation of a two-dimensionaf Fourier trsmsfom 
that is usually calied a discrete Fourier transform @FT). A subset of DFT algorithms, dled fasi Fourier transforms 
(FFT), have been devekpci for high computational efficiency. However, FFTs came with cerhh restrictions on sample 
spacing in the two planes of interest That is, selecting the sampling intwvaI in one plane determines the sampling 
interval in the other pizme. The general DFT does not contain this sapling restriction. Thus, what one sacrifices in 
computational speed is offset by the ability to taibr the sample spacing to the aperture of interest. However, one can 
improve the computational efficiency of the DFT by using the chirp z-transform f(32T) Pefs. 6, 71. The CZT algorithm 
allows one to formulate the DFT as a convolution that can then be eathated by FFT thus improving the computationai 
spwd aver the DFT retaining tbe &adom to choose the grid spacing in the transform plane. For the anguIar 
spectrum method, the diffraction code evaluates the Fourier transforms by a EFT. For the direct method, the code wiit 
use a FFT or the CZT depending on the user's choice for the grid spacing in the dnal plane. 

Perhaps the mot crucial issue with regard to difhction is the accuracy of the code. This is a two-part question, namely 
(I) what is the a c c w j r  requirement for SIM, and (2) how does om test the coda The answer to the first patt of the 
question comes from the SIM astrornetric error budget that requires knowledge of certain types of diffraction effects at 
the few picorneter ievc:L7 The second part of the question required a two-step answer. Step 1 consisted of a 
computational check using a case amenable to implementation by an independent catculztion using symbolic software 
such as bfathematica. This step checked that the paraxial, scalar diffraction equations were correctly coded in the 
Fo- program and gave an indication of the accuracy as a function of sampie spacing, To make the cdcuIation 
tractable in Matfiwatica we chose a case with circular symmetry and calculated the average phase of he beam in the 
observation plane. The circular symmetry albwed us to replace two-dimensional. DMS with onedimensional Fourier- 
Bwsel transforms. The Mathematics calculation was carried out with a working precision of 34 digitsg and was taken as 
the "correct" answer. 1R1e difference in average phase, converted to path length (h = 1.319 pm), between the Fostran 
diffraction code and the Maihernatica cabu&ion, as a function of sample spacing, is given in Table 1. Based on the 
convergence of the two methods at the picomem fevef, as a function of sample spacing, we concluded that the Fortran 
diffraction code aIgorithms were properly coded and had the necessary precision. 

Table 1 : Comparison of Fortran and Mathernatica diffraction calculations 
[ Grid size I Grid pts. 1 Sample I Average phase 1 

' The metrology beam lam!chefs have a requirement on an error called cyclic error that is 3 pm. 
A working precision of 34 is the precision used far intend dcu lbow.  We used the default setting for the precision of the find 

answer (pmision goal parameter) which means &e dcdation strives for 10 digits less or 24 digits of precisian. 



The Fortran code and the Mathematics calculations embody the same paraxial, scalar approximations. Thus, step 2 of 
the verification process was to check the code against a set of measurements. A special testbed, dubbed the Diffraction 
testbed (Dm), was des,igned and constructed at the Lwkheed Martin Advanced Technology Center for this purpose 
Ref. 81. The details of the configuration, operation, and data processing of the DTB are outside the scope of this paper 
but suffice it to say that the testbed was designed to operate with SM--like starlight and metrology Fresnel numbers. 
There wera several requirements levied on the agreement between the difkztction model and the DT3 results but the 
most germane for our riiscussion is the following: The rms difference between the DTB and model OPD residuals 
(obtained by removing llinear and quadratic terms) shall be less than 75 pm over a 30-cm mechanical delay line stroke. 
The model and testbed rms difference was 43 pm and thus met this requirement with margin. This was a tmly 
impressive achievement for both the testbed and the model. It shouid also be noted ha t  the Dm is the first successful 
S M  pico-level testbed. 

2.2 Beam walk 

The beam walk model is a statistical calcuhtation. The quantity calculated is the standard deviation of a zero-mean 
distribution of path length changes that result fiom translation of a beam of given geometry by a distance s over an 
ensemble of surfaces that are aII characterized by a specified diameter, rms surface figure error, and PSD function for the 
surface error. The general expression for the variance of this path length change, 2, is given by the following 
expression. 

where x is the deviation of the surface height fi-om the mean at position 7, A is the area of the beam, and <...> 
represents an average over an ensemble of surfaces. The beam walk calculation is based on a formalism used for random 
processes in atmospheric; turbulertce problems. The key concept is the representation of the optic surface in Eq. (7) by a 
stochastic Fourier Stieltjles integral as described in Appendix A of Ref. 9 and given in Eq. (8). The use of this integral 
representation for beam ,walk analysis was originally developed at JPL by M. Colavita. 

where f is the spatial frequency normalized to the mirror diameter and dw(f) is called the random amplitude. The 
random amplitude has the following property 

In orda the carry out this calculation we make several assumptions that are listed here: 
The PSI) function is radially symmetric; hence, the path length change only depends on the magnitude of the walk 

and not the direction. 
The PSD function is directly proportional to I?. If PSD data are available we fit for the exponent p. If no data are 

available we usually assume p = -2.5. The minimum spatial frequency considered is 1 cycle/mirror diameter. 
One half of the surface error power is contained in spatial frequencies greater than 1 cycle/mirror diameter. 

Using Eqs. (7) - (9) and the assumptions listed above, the general form for the path lengih change variance can be 
written as an integral of spatial Erequencies over the PSD function, normalized to half the wavefront variance, multiplied 
by a transfer or filter hc t ion  H. 



As an example, the filter hncfion for a uniform circular beam of diameter d, normalized to the mirror diameter, is 

where Jo and Jl are Bessel functions of the h t  kind of order 0 and 1 respectively. 

We are often interested in a quantity called the beam walk sensitiviq that is the first derivative of the path length change 
standard deviation with respect to beam -slation. For a circular beam and typical beamlmirror dimensions, it can be 
easily shown that (T is a linear function of s. Expanding Jo as a power series of its argument yields [Ref. 101 

Substituting Eqs. (11) and (12) into (10) shows that a is directly proportional to s. Thus, for this case and many others, 
the beam walk sensitivity is independent of the magnitude of the beam transIation. 

A secondary goal of th~: DTB was to validate the beam walk model described above. Note that it is diacult to assign a 
pass/fail criterion to this test due to the statistical nature of the model. The beam walk sensitivity results for the testbed 
and the model were 0.53 and 0.90 pmlpm respectively. Analysis of various model uncertainties showed that the model 
prediction could reasonably be 0.74 pdpm.  It wzs concluded that the agreement bstween the testbed and the model was 
close enough that there is unlikely to be anything substantially incorrect about the model assumptions or computational 
techniques. A detail discussion of the beam walk test and model results can be found in Ref. 8. 

2.3 Corner cubes 

2.3.1 Dihedral errors 

The dihedral error between two corner cube facets is the difference of the angle between the surface normals and 90 
degrees. These errors result in two types of geometric path length changes as the corner cube articulates, namely OPDl 
within the comer cube and BPDZ due to the fact that a given ray exiting the comer cube is no longer propagating anti- 
parallel to the incident ray direction. An expression for the first type of OPD between two facets is easily derived. 
Consider the path length of a ray propagating between facet i and j. The facets are defined by. their unit normals, nt and 
nj, and the comer cube vertex q. Let the ray of interest be incident on facet i at the point p; and propagate between 
surfaces i and j aIong the unit vector v. Then the propagation distance t between facets i and j is given by the following 
equation. 

vrhm Q , b> is the inner prodxct S e t w w ~  vectors a and b. Let $ 5e the dihedral eirm liei-iv'sea facets i sri2 j. TG first 
order in y, we may write n, = r + vn; where r is the unit normal to facet j with no dihedral e m  present. Substituting this 
expression for n, into Eq. (13) yields after some manipulation the foIlowing 

We note that OPD, is directly proportional to the dihedral error and the distance bstween the ray intercept on facet i and 
the ccnsr m5e veriix. ;i:: zdfit i~n, the i;;ci;ort;,or;a!ity czcnstmt is a f.iiiction of the angle of incidmce zt facet i. 



To calculate OPDz we need to h a w  the propagation direction of a my exiting the corner cube empared to the incident 
ray direction, that is, the angle of deviation 8. f can be shown Ref. 112 that 

where v is a unit v&or in the incident propagation direction and I# is a vecter containing the three dihedrai errors 
defined zs follows when the subscripts denote the reflection sequence. 

Using the expression in Eq. (15) for the propagation deviation angle, the value of 0 P 4  after propagiting a distance L is 
given by 

Comparing Eqs. (14) and (1 ?), it is clear &at the OPD within the comer cube depends on the d & d d  error to first order 
while the OPD resuiting fiorn rnbalignment is a second order H e &  The impiication of the above analysis is that each 
ray will have its particular OPD based on its reffedion sequence and point of incidence. 

2.3.2 Reflection phase s 'h ih  

Reflection phase shifts ,me a hnction of angb of incidence, wavelength, index of refraction of the reflecting surface, and 
polarization state. Xn the case of MAM only the articulation of the corner cubes at the siderastats will produce significant 
changes in the reflecticln phase shifts. The corner cubes are coated with unproteced gold and hence have a mmpiex 
index of refkction. The reflection phase shifts are given by the well-known Fresnel equations. The only issue invoIves 
consistency between the FwsneI equations, the directions of the s and p polarization unit vectors before and after the 
refledon, the sign of the imaginary part of the complex index, and the sign of the spatiat phase term &r a wave 
propagating in free space. U'e have found several inconsistencies between these items in various texts and commerciaf 
op t id  design codes. r'i. complete discussion of these issues can be found in Ref, 12. We can slrmmLnize our modeling 
conventions as Eollows: (1) 'Fhe spatid part of the phase of a wave propagating in free space becomes more positive in 
the direction of propagation. (2) The complex index of refraction is given by 2 = n + ik where n and k are positive. 13) 
The positive (zero phase) directions of the incident and reflected p-polarization unit vector point are defined by the cross 
product s x k where s is the unit vector in the positive s-polarization direction and k is the propagation vector. (4) 
FinaIIy, the equations fir the s- and p-polarization canpiex amplitude reflection coefficients are given by 

where Bi and 0, and the angles of incidence and refraction respectively. 

2.3.3 Vertex offset 

Tne siderasfat mirror aiiculates aver the field af regard t~ re3ect D S  sk-light, ddetked by the mit sect3r s, intc the T,4 
optical system in a d h t i o n  specified by the unit vector e. If the comer cube vertex is separated from the side~ostat h n t  
surface by a distance d along the mirror n o d ,  the unmonitored geometric distance, b, is given by 

where <s , e> is the inner product between the vectors s and e, The unmonitored distance at the center of the field of 
regard represents a mastant offset betweeil stxligfnt and metrology path lengths that can be hmped in with sher 
constant offsets. However, b is a function of field angle; thus, we are realiy interested in the deviation of b Erom its value 



at the center of xbe field ;a a knction of field angle. Although we can simply evaluate Eq. f 19) fbr van'ous field points, it 
is of interest to decompore this deviation into ierms of increasing order of the field coordinates. 

In the IMAM testbed field angle is specified by the C&$im coordinates x add y which are displacements from the 
center of the field in directions paratbl and perpendicular to the TA baseline respectively. Let 8 be t k  angle between 
the center of the field (x := y = 0) and the vector e. Then we can rewrite Eq. (19) as 

where C is the value of b and the center of the field and 

where 3 =: 2 i- Y2 and E: is the dismnce between the corner cube vertex and the x-y piane. Expanding the radicd in Eq. 
(20) as a power series in K, we may write the deviation of b from ifs value at &the center of the field as a sum of terms of 
increasing order of the Geld coordinates noting &at there is only a linear tern in the field coordinate y. 

3. COMPAR1[§UN OH MODELS AND NPAM DATA 

In Section 2 we describr?d the physical md mathematical bases of the various FD bias modeis. In some cases the madel 
description applied to a singk eflection or propagation path. These equations have been cornbird with a layout of the 
MAM testbed to produce system-fevel predictions. For computational reasons two system models have been developed, 
namely one for diffraction and one far comer cube phenomen:na. Beam walk ccdculations are not included in the results 
given below. 

When cornparing the model predictions with MKM data it is convenient to expand the FD bias function, a, in terms of 
the low-order Zemike polynomiafs written in Cartesian coordinates as in Eq. (23). 

where x and y arc the MAM fieM coordinates @Ief and perpendicular to the baseline respectively. GenerJIy, we 
evaluate cl, c2, and c:. lhder certain cir6umstances we evaluate c g  + c4 and q - c4 which are the coefficients o f 2  and J 
respectively. It is important 0 note that post-processing of the SIM flight system data u i f I  remove terms CQ through Q. 

For model validation purposes we cornpare coefficients cl, cz, c3 C CG, and ~3 - c4 and Me residual that remains after these 
terns are removed from the bias function a. 

Validation of the difkkrction mode! was successfitIIy carried out on the Dm Ref. 83. However, in the interest of 
tifliiersLmtkig the b ~ h i i ~ i  cf the h N I  +a%& we zcr~pare &e mde! zx! k s t m  data Em th$ rliflkwiozl bias tern. 
Validation of the corner cube modeI is dependent OR ibe cornpaison W e e n  mode1 predictions and testbed dab. 



There are two criteria of' interest over the WA field of regard, one pertaining to unprocessed data (only co removed) and 
one to the residua1 after SM-like p&-processing. These criteria are tvritttn qum%btivefy as folIows: 

maxd a,, - n,,,~/(max{aw ) -min(am)) 20% (24a) 

where and CL-M represent the comer cube bias function far the model and testbed respctively. The superscript - 
indicates &at the linear (#c1 and q) and quadratic t e r n s  (c3 -t c4 and Q - c4) have been removed. 

In order to faciliie the comparison of the MARl models and experimental results the testbed was operated in particular 
modes &at isolated, to varying degrees, the various bias terms? To isolate the deact ion term the testbed was run in. the 
TA and IPS retro modes that utilize only half of the testbed at a time, For e r n p i e ,  in the TA retro mode the siderostats 
are oriented to retro-reflect a monochromatic starlight source that propagates with the internal metrology beam from the 
TA beam splitter, En this case the TA operates entirety w&out the IEPS. Because the starlight source has a long 
cofiermce Ien@ the Tt?i can still produce fringes for large path length diEerences. Thus, the only macro configuration 
change in this mode is the path length in the TA arm with the delay line. For the corresponding mode on the mPS side 
the siderosrats are rephced with large comer cubes that aehun the metrology and starlight beams. The corner cubes 
articulate to give thein a constant orientation with respect to the starlight and netfoiogy beams and thus remove their FD 
effects. To isolate the comer cube effects we operate the testbed in its normal EPS plus TA configuration but only 
w1yz.e data that depend on the coordinate perpendicula to the TA baseline. Motion in this direction maintains a 
constant path length diflerence thus producing a constant difhction contribution. Another test of the corner cube model 
is the ZIPS r m  test where only the comer cubes articutate. In this case the path lengths in each ann are f ~ e d  so that the 
diflkctfon term is a cox~shrtt. At this time the dihedral errors for the corner cubes used in the IPS m o  test have not 
been measured with sufficient precision. Thus, comparison between the model and IlPS test data will not be available 
untiI the tests have been completed, the large comer cubes removed and their dihedral errors re-measured. 

3.1 Diffraction results 

Table 2 compares the nilode1 results with the testbed data for the two tests that were illended to isolate the diflbction 
terms for the TA and IIIPS. The TA retro mode test generates a true one-dimensional bias knction in the field variable x 
because there is no other degree of Ereedom. Thus, only the coefficients c~ asxd q + c4 are meaningful. On the other 
hand, the IPS tern test produces a two-dimensional bias function although it is weakly dependent on the y coordinate. 
Both the model and testhed data show that the dieaction in the I P S  dominates the difhction in the TA. 

terms Table 2: Comparison of W data and model predictions for diffraction 

3.2 Corner cube resutts 

I 

The three comer cube phenomena described in some detail above have been intepated into a single mode1 Gaited the 
integrated model. However, it is possible to evaluate each term separately. For example, one can determine the 
reflection phase shifts assuming no dihedral mors or vertex offset. f ius ,  the sum of the individual terns can be 
compared with the fully integrated model. This exercise has been carried out with results that differ at the few picometer 

TA retro test 1 IPS seiro test 

9 
Note that ail macro charges to the system coIlfigvration introduce beam walk which is not included in either the diffraction or comer 

cube models. 

Coefficient I Model 1 MAM data I Model I MAM data 



level. Wre therefore conclude that the coupling between reflection phase $hi%, dihedral errors, and vertex offset is 
negligible for the size errors of interest to Wi and SIM. In addition to ddemonstr&ing that coupling betwm different 
corner cube bias tern is satail, the individual models give insight into which type of corner cube errors dominate the 
overall bias function. For example we have found that the reflection phase shifts from &fie two arms largely cancel each 
other pmducing a small net bias term. Table 3 presents the c? and c; - c4 coefficients derived from fits to the M M  
measuremen& for the IPS plus TA configuration along with the model predictions. 

Table 3: Comparison of MAM data and model predictions for - comer cube terns 

A comparison ofthe unprocessed data between the model predictions and the testbed data gives a result of 1 1.3% against 
a goal of 2WA. Comparing the model and testbed data residual functions yields an m s  difference of 104 pm against a 
god of 661 pm. This result represents two slices dong the y-axis ai x field angles of rl deg. A y-axis sIice at x = O deg. 
was not used because titere is on$ one test field pint for &is x wordinate (Le., x = y = 0). Larger x coordhztes 
introduce unwanted difhction terms and were not analyzed. 

We have cornpared modeling results and testbed data for three cases. For the two cases with large linear terns, one for 
difhctian and one for the comer cubes, the agreement between model and data for these linear terns is approximately 
10 and 15 percent respectively. For the difhctian case with the relatively ssmsii linear t m .  (TA retho cse) ,  the sign and 
magnitude do not agree, For this case the sign and magnitude of the measured linear term is known to fluctuate with 
mmology and starlight beam alignment and perhaps other factors that are not known at this time. Thus, a reliable 
comparison wilI require, at the very least, an optimized and stabilized alignment between these starlight and metrology. 

For the IIPS retro confi,guration the testbed reports a significant x quadratic coefficient *at the modei does not predict. 
Based on the model results and theoretical considerations, we believe that this coefficient should be very small. The 
origin of this quadratic term in the testbed results is currently under investigation. 

Finally, the corner cube modei has met the criterion given in Eq. (24a) with considerable margin. For the more stringent 
criterion given in Eq. (24b), the match up between the model and the test data exceeds the god by 70%. A task for the 
i d i a t e  %ture is to determine $&is discrewcy is c~nsisteat with cx k;la.=bdge wcertzinty of the pdnent  testbed 
parameta. For the pre:sent, we betieve the match between the mode1 and test data is sufficiently close to indicate that 
dl the significant physics has been correctly captured in the model. 

The author would like 63 acknowledge the significant contributions of R. Goulfioud (PI;), who has overall responsibility 
fix the h@& testbed and provided vdaeble eversight of the modeling eEort, and 3. Shen (JFL), who petformed at1 the 
MAM dara analysis. This research was perEomed at the Jet Propulsion Laboratory, California Institute of Technology, 
under contract with the fqafimd Aeronautics and Space Administration. 
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Fig. 1: Schematic of a SIM-like interferometer. The external delay is a function 
of the angle between the stellar wavefront and the interferometer baseline. 
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Fig. 2: Schematic of the MAM testbed. The dotted line indicates the boundary between the IlPS and 

the TA. The non-common paths extend from the IPS beam splitter to the TA beam splitter. 




