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CASSINI RADIO SCIENCE TEAM CASSINI RADIO SCIENCE TEAM 
GRAVITY SCIENCE OBJECTIVESGRAVITY SCIENCE OBJECTIVES

• Mass and density of icy satellites
• Quadrupole field of Titan and Rhea
• Dynamic Love number of Titan
• Moment of inertia of Titan (in collaboration with 

the Radar Team)
• Gravity field of Saturn

Proposed measurements for the extended tour:
• Quadrupole field of Enceladus
• More accurate measurement of Titan k2
• Local gravity/topography correlations for Iapetus
• Verification/disproof of “Pioneer anomaly”



MEASUREMENT METHOD AND DATA SETMEASUREMENT METHOD AND DATA SET
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DSN antenna

Measurement accuracy at 1000 s :

Δf/f = 3 10-12 (solar conjunctions) 
Δf/f = 3 10-14 (solar oppositions, 
4.5 μm/s)

Gravity field parameters determined
by means of Doppler measurements
over multiple segments across flyby.
Several arcs can be used.

Velocity change across flyby:
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The 34m beam waveguide tracking
station DSS 25, NASA’s Deep Space 
Network, Goldstone, California

The Advanced Media Calibration
System for tropospheric dry and wet 
path delay corrections.



DYNAMICAL MODELDYNAMICAL MODEL

• Gravitational accelerations from all the bodies of 
the Saturnian system.

• Non-gravitational accelerations:
– RTG (fixed in S/C frame, mostly radial, 5×10-12 km/s2.

– Solar radiation pressure (included but very small).
– Short arc technique in which the arc contains no 

maneuvers.
• Solve-for parameters:

– The initial states of the satellite and Cassini
– The satellite’s GM
– The satellite’s J2 and C22 if data were acquired at closest  

approach



RESULTS FOR PHOEBERESULTS FOR PHOEBE

• Flyby occurred on June 14, 2004.
• Altitude was 2000 km.
• Optical navigation data were used to improve our 

knowledge of the spacecraft orbit with respect to 
Phoebe.

• GM = 0.5517 +/- 0.0007 km3/s2

• With a mean radius of 107.3 km, this mass implies 
a density of 1.59 g/cm3.

• This corresponds to a silicate mass fraction of 
0.58 to 0.63.

• Phoebe is most probably a captured satellite, 
maybe a Kuiper Belt object.



IAPETUS MASS DETERMINATIONIAPETUS MASS DETERMINATION

• There were two Iapetus flybys: The first one on 
October 17, 2004.
– The distance was 1.1 million km. 
– The SEP angle was 87°.
– The relative velocity was 3.7 km/s.

• The second flyby was on December 31, 2004.
– The distance was 12300 km. 
– The SEP angle was 165°
– The relative velocity was 2.0 km/s



GEOMETRY OF IAPETUS FLYBY 1GEOMETRY OF IAPETUS FLYBY 1
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IAPETUS FLYBYIAPETUS FLYBY--1 1 
DOPPLER RESIDUALS (PREDOPPLER RESIDUALS (PRE--FIT)FIT)

C/A



IAPETUS FLYBYIAPETUS FLYBY--1 1 
DOPPLER RESIDUALS (POSTDOPPLER RESIDUALS (POST--FIT)FIT)

C/A

1700 data points @ 60 and 300 s rms range rate error: 3.0 10-3 cm/s2

(@300s)



IAPETUS FLYBYIAPETUS FLYBY--2 2 
DOPPLER RESIDUALS (POSTDOPPLER RESIDUALS (POST--FIT)FIT)

C/A

686 data points @ 300 s rms range rate error: 1.3 10-3 cm/s2



RESULTS FOR IAPETUSRESULTS FOR IAPETUS

• The first flyby gave:
– GM = 120.20 +/- 0.063 km3/s2.
– With a radius of 730 +/- 6 km this implies a density of 

1.106 +/- 0.027 g/cm3.
• The second flyby gave:

– GM=120.51 +/- 0.003 km3/s2.
– But the orbit of Iapetus was not updated and note that 

σ(GM)/GM = |σ(v)/Δv| + |σ(b)/b|
• The Cassini radio science estimation is that of the 

first flyby
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HYPERION MASS DETERMINATIONHYPERION MASS DETERMINATION

• The flyby of Hyperion was on September 26, 2005.
• The observation consisted of two segments, but 

the outbound one was lost due to a Madrid 
failure.

• Fortunately, the Cassini Radio Science Team had 
planned two Gravity Science Enhancement (GSE) 
passes before and after closest approach.

• GM = 0.375 +/- 0.017 km3/s2.



ENCELADUS MASS DETERMINATIONENCELADUS MASS DETERMINATION

• The best Enceladus flyby occurred in February 
2005.  

• The data were acquired up to a distance of 1511 
km.

• The flyby velocity was 6.7 km/s.
• The change in velocity of the spacecraft was 0.71 

m/s, significantly larger than the measurement 
accuracy of 3 × 10-5 m/s at 60 seconds integration 
time.



ENCELADUS DOPPLER RESIDUALS (PREENCELADUS DOPPLER RESIDUALS (PRE--FIT)FIT)

C/A



ENCELADUS DOPPLER RESIDUALSENCELADUS DOPPLER RESIDUALS(POST(POST--FIT)FIT)

C/A

331 data points rms range rate error: 0.03 mm/s @60s



ENCELADUS MASSENCELADUS MASS ESTIMATIONESTIMATION

GM =  7.207 ± 1.1x10-2 km3/s2

R   =252.3 +/- 0.6 km 
ρ =  1605 ± 14 kg/m3



INTERIOR OF ENCELADUSINTERIOR OF ENCELADUS

• Density of 1605 kg/m3 requires a substantial amount 
of rock ⇒ enhanced likelihood of differentiation.

• There is evidence that Enceladus may be 
differentiated:

• However it is difficult to understand why Enceladus 
would be differentiated.

• Assuming Io’s mean density for the silicate 
component, one finds its fractional mass to be 0.52 
+/- 0.06.



INTERIOR OF ENCELADUSINTERIOR OF ENCELADUS

• A two layer model leads to the radius of the core 
as a function of the core density.  If the density of 
the core is about 3500 kg/m3, then the core radius 
would be 160 km.  But if the core consist of 
hydrated silicate and has a density of 2500 kg/m3, 
the radius of the core would be 190 km



Ratio ε of the librational frequency to the orbital frequency < 0.33
⇒Secondary resonance postulated by Wisdom (2004) is impossible

POSTULATED SECONDARY RESONANCE



RHEA RHEA FLYBY GEOMETRYFLYBY GEOMETRY

Closest Approach = 1262 km
TCA:  26-NOV-2005  22:37:42 UTC
SEP angle = ~113°
Relative velocity = ~7.3 km/s
Orbit Inclination = ~10°

View from Saturn system north

View from Saturn



• Perturbing potential due to
Saturn tidal and rotational potentials.

• Hydrostatic equilibrium.
• Principal axes reference frame coinciding 

with orbital reference frame at periapsis.

Assuming:

Quadrupole coefficients:
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RHEA DOPPLER RESIDUALS (PRERHEA DOPPLER RESIDUALS (PRE--FIT)FIT)

C/A

X/X

X/Ka



Doppler ResidualsDoppler Residuals X/X/KaKa ((postfitpostfit))
RHEA DOPPLER RESIDUALSRHEA DOPPLER RESIDUALS X/KAX/KA

(POST(POST--FIT)FIT)1471 F3 data points rms range rate error: 5.4 10-2 mm/s @ 60

C/A



RHEA RHEA MEASURED QUANTITIESMEASURED QUANTITIES

• GM =  153.939 ± 0.0018 km3/s2

• ρ =  1232.3 ± 9.7 kg/m3

• C20 =   - (7.947 ± 0.892)· × 10-4

• C22 =   (2.3526± 0.0476) ×·10-4

• Hydrostatic values
• Close to values for an homogeneous 

fluid body

C20 measured to within 11%
C22 measured to within 0.2%



MODELS OF RHEA INTERIOR STRUCTUREMODELS OF RHEA INTERIOR STRUCTURE

• Numerical integration of the hydrostatic equation and mass 
equation.

• Equations of state for ice I, ice II, and the silicates (Lupo
and Lewis, 1979)

• Temperature profile is given (Ellsworth and Schubert 1983).
• Computation of C22:

– Density profile → Normalized moment of inertia C/MR2

– C /MR2 + Radau equation → Fluid Love number kf
– kf + tidal parameter → C22 (Rappaport et al. 1997)

• Boundary conditions: Pressure at the surface, mass, C22 →
Three algebraic equations.

• Several sets of variables possible among: 
– The pressure at the center
– The radius of the core
– The density of the core
– The mass fraction of silicate in the core
– The mass fraction of silicate in the mantle



TEMPERATURE PROFILETEMPERATURE PROFILETEMPERATURE PROFILE

Fit to results of thermal
evolution calculations by
Ellsworth and Schubert
(1983)



• Two algebraic equations that
we solve for the pressure at the
center and the silicate mass 
fraction as a function of the
silicate density.
• C22 > determined value
⇒ Rhea is differentiated

UNDIFFERENTIATED UNDIFFERENTIATED 
MODELSMODELS



DIFFERENTIATED MODELS DIFFERENTIATED MODELS 
OF THE FIRST TYPEOF THE FIRST TYPE

• Core of radius Rc and density ρc.
•   Mantle of density ρm
•   Pressure equation decouples from
mass equation.
•   Two algebraic equations that we
solve for the core density and 
the core radius as a function of
the mantle density.
•   Large core radius + small core 
density ⇒ Rhea is weakly
differentiated.

�

�



• Core and mantle consist of mixtures 
of ice and silicates in different ratios.
•   Three algebraic equations that we
solve for the pressure at the center, 
the core radius, and the core silicate 
mass fraction as a function of the 
mantle silicate mass fraction.
• A rocky core is excluded.

DIFFERENTIATED MODELSDIFFERENTIATED MODELS
OF THE SECOND TYPEOF THE SECOND TYPE



CONTINUOUS MODELSCONTINUOUS MODELS

• No clear discontinuity in 
composition between a core and
a mantle.  The silicate mass
fraction varies linearly from the
center to the surface.
•   The silicate mass fraction
decreases from 0.704 at the 
center to 0.132 near the surface.



SUMMARYSUMMARY

• Rhea is in a state of weak differentiation.
• Undifferentiated models cannot account for the 

gravity data. 
• Models with a rocky core and an icy mantle are 

also excluded by the data.
• It is possible that Rhea consists of two layers, 

each being a mixture of ice and silicate.
• More simply, the mass fraction of silicates could 

smoothly decrease from the center to the surface.
• Transition from ice II to ice I occurs in all the 

models.
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