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e Problems with membrane rotations in assembled shell models
 Penalty stiffness for membrane rotations

 Physical stiffness for membrane rotations using shell elements
with 6 dof per node

« Connections avoiding rotations

e Conclusions



Problems with Membrane Rotations in Shells =k
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Mindlin shells have no stiffness in the
membrane rotation &z normal to the
shell plane

The rank deficiency can be
automatically removed, for example
using AUTOSPC in MSC.Nastran

The membrane rotation may be loaded
either by accident or intentionally, for
example, through stiffeners, spot
welds, rigid elements, concentrated
masses, etc.

False load transfers or spurious modes
may occur




Typical Shell Model in Aerospace JPL
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Terrestrial Planet Finder
Chronograph

e Elements
QUAD4, TRIAS3,
few HEXAs and PENTAS

e« Connectors
CELAS, CBUSH,
RBE2,
RBE3




Typical Shell Model in Automotive JPL
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BIW with acoustic cavity (courtesy of GM) 1.5 Mill. dof
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Penalty Stiffness for Membrane Rotations Pk

National Aeronautics and Space Jet Propulsion Laboratory
Administration California Institute of Technology

A penalty term is added to the energy functional
_6 1 2
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K6ROT is a user parameter in MSC.Nastran,
default value is K6ROT= 100.
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Fine Meshes

Good Value of the Penalty Stiffness =JPL
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Effect of Penalty Stiffness - Flagpole <JIPL

Flagpole Example

K6ROT No. of First Comment
Zero Nonzero
Modes Mode
0. 7 2.4671e+6 spurious mode,
bad first
100. 6 1.2745e+6 no spurious,
good first

* Intentional loading of the drilling degree-of-freedom in shells may be

discredited as bad modeling practice.
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Effect of Penalty Stiffness — Ring with stiffener JPL
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 Unintentional loading of the drilling degree-of-freedom occurs in some cases,
for example, in stiffened shells modeled with beams and offsets.

Cylindrical Ring with Stiffener

Normal Modes

Ring Modeled with CQUAD4

Stiffener modeled with CBARS and offset
No 12 specified on PBAR

Offset direction and normal direction differ slightly

Offset
K6ROT Disturbance Comments
1 rigid body mode
No spurious modes
AUTOSPC catches
0. & Sl8E_4 singularity
2"d mode 9.667
821.9E—4 1 rigid.body mode
0. 5 spurious modes
7t mode 9.734
1 rigid body mode
100. 194

No spurious modes
2"d mode 9.655




Shells with 6 Degrees of Freedom per Node JPL
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The membrane displacements and the membrane rotations are coupled
with quadratic shape functions, for example, the displacement at the midpoint
of edge 1-2is

1 1
U = E(U1+ Up )+ 3 1(®,-0,1)m

The following term is added to the energy functional
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Comparison of QUAD4 and QUADR  <JPL
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e QUADR is superior to QUADA4 for in plane shear and in plane bending

Straight Beam Shear load at tip
Tip deflection (normalized with theoretical value)

N

; I l ; ] Rect Version Rect Trap Skew
QUAD4 0.9929 0.0515 0.6323
QUADR 0.9926 0.9613 0.9491
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Comparison of QUAD4 and QUADR (cont.)
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Normal Modes of a Straight Beam

QUAD4 test models
Release Guide Ver 70.7
Sect 6.7 Skewed Element Formulation
=== ; == | Rect
i I/// \\\\ ///I : \\\\ I/ I//I \\\\ i Trap
== \ == | Skew
In Plane Bending Frequency Element Rect Trap Skew
QUAD4 9.39 15.89 9.41
QUADR 9.39 9.42 9.39
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Modeling of Connectors
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Bolts or spot welds for nearly congruent meshes
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Figure 6. Two Plates Connected with 16 Spot Welds

13



National Aeronautics and Space
Administration

« Comparing two modeling
options

— RBAR with no additional
constraints

— Connector with constraints

« Membrane rotations of the
shell are not coupled to

the drilling rotations of the
bar

— The results from the perfectly
aligned grids are the baseline

— RBAR modeling causes errors
up to 12% in the first
eigenfrequencies

Modeling of Connectors (cont.) JPL
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upper shell mid surface

lower shell mid surface

~

Error [%]

Error in first 6 Eigenvalues

HCWELD, shifted grids
(not visible)

RBAR, shifted grids

ECWELD, missaligned grids
(not visible)

BRBAR, missaligned grids

1 2 3 4 5 6
Eigenfrequency No.

Figure 7. Errors in the first 6 Eigenfrequencies
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Connections Avoiding Rotations JPL
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Interpolation constraints for translations Z
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Connections Avoiding Rotations (cont.) JPL
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» Spot weld is modeled with a
HEXA element

» The HEXA is connected to
the shell elements through
interpolation of translational
dof only
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Modeling Connectors (Results) JPL
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Body in White Model

3,712 CWELD Elements
* 3,562 connecting two parts
* 150 connecting three parts

Eigenfrequency Analysis:

e Test Result
| W Old Spot Weld Modeling VW
New CWELD Element

Mode | Mode Il Mode IlI
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Conclusions JPL
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 Shell elements with membrane rotations (6 dof per node) are a
good choice in general

— Increase accuracy
— Provide realistic stiffness in membrane rotations

« For connectors (bolts, rivets, and spot welds), global results are

more accurate when coupling to shell rotations is avoided
— Generate constraints which involve only translational dof in shells
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