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TechnologyProblem/Approach

Goal - transform natural language specifications into formal notation.
Specifically, automate generation of Linear Temporal Logic (LTL)
correctness properties from natural language temporal specifications.
Why?

Model-based techniques becoming more widely accepted
Analytical verification techniques (e.g., model checking, theorem 
proving) significantly more effective at detecting types of spec. 
design errors (e.g., race conditions, deadlock) than manual 
inspection
Many requirements still written in natural language

High learning curve for specification languages, associated 
tools
Increased schedule and budget pressure on projects reduce 
training opportunities for engineers

Formulation of correctness properties for system models can be a
difficult problem
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TechnologyProblem/Approach (cont’d)

Develop more accurate classifiers to discriminate between 
temporal, non-temporal natural language requirements

Extend results of recently completed CI, reported in 
ISSRE20051

Improve probability of detection, reduce false positive rate
Use pattern matching/natural language processing techniques 
to map identified natural language temporal requirements to LTL
patterns

Correctness properties can often be specified as LTL 
expressions

Extract semantic information to populate LTL pattern
Existing techniques (e.g., “-f” option for SPIN, LTL2BA2) can 
transform LTL expression into a “never” clause for model 
checkers (e.g., SPIN)

1. A. Nikora, "Classifying Requirements: Towards a More Rigorous Analysis of Natural-Language 
Specifications", Proceedings of the 16th International Symposium on Software Reliability Engineering, 
Chicago, IL, Nov 8-11, 2005.

2. P. Gastin, D. Oddoux “Fast LTL to Büchi Automata Translation”, CAV'01, LNCS 2102, p. 53-65.  Available at 
http://www.liafa.jussieu.fr/~oddoux/

Example

Details

http://www.liafa.jussieu.fr/~oddoux/
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Schedule of Activities and Deliverables
Year 1

Initial (manual) identification of temporal requirements within requirements 
documents of collaborating projects.

These requirements will be used as training sets for the classifiers and 
transformation tools developed for this task.
On-going throughout first year as additional collaborating projects
contribute requirements

High-performance specification classifiers (temporal vs. non-temporal 
requirements)
Initial specification and design for tool to transform natural language 
temporal requirements to LTL expressions
End of first year report

Year 2
Final specification and design for tool to transform natural language 
temporal requirements to LTL expressions ; initial tool implementation.
Final toolset for transforming natural language temporal requirements into 
LTL expressions
Final Report
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Simplify 
development of 
formal correctness 
properties
More widespread 
use of model-based 
specification, design 
techniques

Earlier identification 
of defects
Reduce residual 
defect content for 
space mission 
software systems

⇒
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Model-based assurance techniques can
Find defects earlier in the development process
Find types of defects that cannot easily be found by 
test (e.g., race conditions, deadlocks, lack of progress 
cycles/starvation)

Correctness properties
Manual specification of correctness properties can be 
difficult
Goal: Automated/assisted transformation of 
correctness properties written in natural language will 
simplify application of model-based techniques, 
encourage greater use

More widespread use of model-based techniques will 
result in more reliable flight software.
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Accomplishments and/or
Tech Transfer Potential

New task, work just starting
Gathering requirements from collaborating projects – projected data availability 
high

Requirements for one project already in hand
Working with additional on-going projects to collect requirements for 
analysis

Acquiring relevant classification, natural language processing tools.  Several 
tools already in hand:

Link Grammar natural language parser
TnT parts-of-speech tagger
Weka
SPIN

Projected Technology Transfer Level:
Year 1 (by June 07): 3 (“Experimental demonstration of critical function &/or   
proof of concept”)
Year 2 (by June 08): 4 (“Validation in a lab environment”) on collaborating 
flight projects

http://bobo.link.cs.cmu.edu/link/
http://www.coli.uni-saarland.de/~thorsten/tnt/
http://www.cs.waikato.ac.nz/ml/weka/
http://spinroot.com/spin/whatispin.html
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Focus areas for next year
Develop High Performance Classifiers

Improve ability to discriminate between temporal, non-temporal 
requirements

• Try more classifiers – only a subset of classifiers in WEKA 
has been applied in previous work

• Add more structural information to requirements being 
classified (e.g., parse tree information – part of speech, 
level in tree)

• “Bagging” – apply more than one classifier, develop meta-
classifier in which individual components are weighted 
according to how well they perform (e.g., pd, pf)

• Direct pattern matching – use natural language 
parsing/transformation techniques to match structure of 
requirement to LTL pattern

Map Temporal Requirements Structure to LTL Patterns
Populate LTL patterns with semantic information

Work by Jane Malin, JSC, et al. (“Reconciler”) may be 
applicable



20 July, 2006 SAS_06_Formal_Specs_Nat_Lang_Nikora_Tech_Briefing 10

California 
Institute of 
Technology

Discriminating Between Requirement Types 
(cont’d)

Machine Learning/Natural Language Processing (cont’d)
Developing input to classifiers

Apply TnT POS tagger to requirement text
Form list of tags – n’th list element corresponds to n’th word in 
requirements text
Map each word in requirement to unique numerical ID
Map each POS tag to unique numerical ID
Concatenate requirements text word list, POS tag list

Use only first 200 elements of word list, POS tag list
Apply supervised discretization1

Many classifiers require discrete data input
Created training data sets (252 temporal requirements, 252 nontemporal 
requirements) that included the attributes accounting for the first 60%, 
80%, and 90% of the classification merit
Other input representations yielded poorer classifiers

Return to Approach

1. U.M. Fayyad, K.B. Irani,. “Multi-Interval Discretization Of Continuous-Valued Attributes For Classification 
Learning”, Proc. 13th Int. Joint Conf. AI (IJCAI-93), Chamberry, France, Aug./ Sep. 1993.
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Discriminating Between Requirement Types 
(cont’d)

Machine Learning/Natural Language
Processing (cont’d)

Five well-performing classifiers
AODE1

RBF Network2 boosted with 
AdaBoostM13

Lazy Bayesian Rules (LBR)4

NNGE4, 5

NNGE boosted with AdaBoostM1

Detected as 
temporal

Detected as 
nontemporal

a b Really 
temporal

c d Really 
nontemporal

Classifiers evaluated according to four criteria:
pd (probability of detection) - a/(a+b)
pf (probability of false detection, or “false positives”) - c/(c+d)
accuracy - c/(a+c)
precision - (a+d)/(a+b+c+d)

1. G. I. Webb, J. Boughton, Z. Wang, “Not So Naive Bayes: Aggregating One-Dependence Estimators”,  Machine Learning, 58(1), pp. 5-24, 
2005

2. D.S. Broomhead, D. Lowe, “Multivariate Functional Interpolation And Adaptive Networks”, Complex Systems, 2:321-355, 1988.

3. Y. Freund, R. E. Schapire. "Experiments With A New Boosting Algorithm".  Proc International Conference on Machine Learning, Morgan 
Kaufmann, San Francisco, 1996.

4. B. Martin, "Instance-Based Learning: Nearest Neighbor With Generalization", Master Thesis, University of Waikato, Hamilton, New Zealand, 
1995

5. Z. Zheng, G. Webb, “Lazy Learning Of Bayesian Rules”, Machine Learning, Vol 41, No 1, pp. 53-84, Kluwer Academic Publishers, 2000

Return to Approach
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Classifier Performance: Requirements Text 
and POS Information
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Discriminating Between Requirement Types 
(cont’d)

Classifier Performance – Requirements Text and POS Information

Better
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Next SlideReturn to Approach
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Discriminating Between Requirement Types 
(cont’d)

Classifier Performance – Requirements Text Only

Classifier Performance: Requirements Text 
Information Only
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Previous SlideReturn to Approach
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Example
Natural language requirement text

“Electrical interfaces passing through cable cutter 
separation devices shall be deadfaced prior to 
actuation of the device”

Requirements text parsed with Link Grammar 
parser1, 2

Continue Example

(S (NP (NP Electrical interfaces)
(VP passing

(PP through
(NP cable cutter separation devices))))

(VP shall
(VP be

(VP deadfaced
(PP prior to

(NP (NP actuation)
(PP of

(NP the device))))))))

1. D. Sleator, D. Temperley, “Parsing English with a Link Grammar”, Third International Workshop on 
Parsing Technologies, 1993

2. Link Grammar, http://bobo.link.cs.cmu.edu/link/

Return to Approach

http://bobo.link.cs.cmu.edu/link/
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Matching LTL Pattern (patterns developed at KSU 
CIS Dep’t1)

S precedes P: 
(*) Globally !P W S
(*) Before R <>R -> (!P U (S | R))
(*) After Q []!Q | <>(Q & (!P W S))
(*) Between Q and R []((Q & !R & <>R) -> (!P U (S | R)))

(*) After Q until R [](Q & !R -> (!P W (S | R)))

Where “W” represents the “weak until operator” and “U” represents the 
“strong until operator”, which are related as shown below:

p W q = ([]p) | (p U q)
= <>(!p) -> (p U q)
= p U (q | []p)

Continue ExampleReturn to Approach

1. Kansas State University CIS Department, Laboratory for Specification, Analysis, and 
Transformation of Software (SanToS Laboratory), Specification Patterns Project, 
http://patterns.projects.cis.ksu.edu/
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Extract semantic information
Event “P” represented by noun phrase “(NP (NP 
actuation) (PP of (NP the device)))”
Event “S” represented by clause “(S (NP (NP 
Electrical interfaces) (VP passing (PP through (NP 
cable cutter separation devices)))) (VP shall (VP 
be (VP deadfaced))))”.
Corresponding LTL specification

!cable_cut W deactive_electrical_interface
Equivalent to: <>(cut_cable) -> (!cut_cable U 
deactivate_electrical_interface)

Return to Approach
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Linear Temporal Logic (LTL) is a way of reasoning about 
a system’s desired properties

p is invariantly true
eventually p becomes invariantly true
p always implies not q
p always implies eventually not q

Interesting in model checking context because an LTL 
expression corresponds to an automaton that can become 
part of the model being checked
Introduced by Amir Pneuli in late 1970s
Based on “tense logics” developed in 1950s

Return to Approach
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LTL can specify both safety and liveness
properties
LTL is propositional logic plus following 
temporal operators:

[]p: always p
<>q: eventually q
p U q: p until q

Return to Approach
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Common LTL Expressions

[] p always p invariance
<> p eventually p guarantee
p -> <> q p implies eventually 

q
response

p->q U r p implies q until r precedence
[] <> p always eventually p recurrence (progress)
<> [] p eventually always p stability (non-progress)
<> p -> <> q eventually p implies 

eventually q
correlation

Return to Approach
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Common LTL Rules
![]p ⇔ <>!p
!<>p ⇔ []!p
!(p W q) ⇔ (!q) U (!p ⋀ !q)
!(p U q) ⇔ (!q) W (!p ⋀ !q)
[] (p ⋀ q) ⇔ []p ⋀ []q
<> (p ⋁ q) ⇔ <>p ⋁ <>q
p U (q ⋁ r) ⇔ (p U q) ⋁ (p U r)
(p ⋀ q) U r ⇔ (p U r) ⋀ (q U r)
p W (q ⋁ r) ⇔ (p W q) ⋁ (p W r)
(p ⋀ q) W r ⇔ (p W r) ⋀ (q W r)
[] <> (p ⋁ q) ⇔ []<>p ⋁ []<>q
<> [] (p ⋀ q) ⇔ <>[]p ⋀ <>[]q Return to Approach
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Relationship between never claims and LTL
Desired property can be expressed as an LTL 
formula.

Requirement: “The electrical interfaces 
between the probe and the orbiter shall be 
deadfaced prior to activation of the cable 
cutting device”
Corresponding LTL formula: “Not p until s”, 
written as “!p U s”

• “p”: activation of cable cutting device
• “s” deadfacing of electrical interfaces

LTL formula is then negated (the negated property 
should NEVER occur)

Example: “!(!p U s)”
Return to Approach
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Relationship between never claims and LTL (cont’d)
Negated formula can then automatically be converted to a never 
claim using one of the spin execution options
Example – produce never claim to see if property “not p until s” can 
be violated by a model

spin –f ‘!(!p U s)’ [> text file]

never {    /* !(!p U s) */
accept_init:
T0_init:

if
:: (! ((s))) -> goto T0_init
:: (! ((s)) && (p)) -> goto accept_all
fi;

accept_all:
skip

} Return to Approach
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TechnologyPropositional Logic Operators

Unary
!: negation

Binary
&&: logical and
||: logical or
->: logical implication
<->: logical equivalence

Return to Linear Temporal Logic
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Weak until (p W q)
A state si satisfies p W q iff

si satisfies q, or si satisfies p and si+1 satisfies (p W 
q)
Formally: si⊨p W q iff si⊨q ∨ (si⊨p ∧ si+1⊨(p W q))
Never actually requires q to become true

Strong until (p U q)
A state si satisfies p U q iff

For some value of j, j >= 1, sj satisfies q, and for all 
values of k, i <= k < j, sk satisfies p
Formally: si⊨p U q iff∃j,(j >= i): sj⊨f and ∀k,(i <= k 
< j): sk⊨p
Requires that q eventually become true

Return to Linear Temporal Logic
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