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High mass versus low mass star 
formation

• High mass star formation is not simply a scaled-up 
version of low mass star formation
– Relevant time scales are extremely short
– Radiative acceleration of dusty gas very important
– Disk dissipation must be very quick
– Associated with UCHIIs, massive collimated outflows, H2O 

masers, …
• High mass star formation is not merely a scaled-down 

version of accretion disks around super-massive black 
holes

• High mass star formation lies somewhere in between
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Questions to be addressed

• Assuming a gravitationally unstable massive 
clump, how does enough material become 
concentrated into a sufficiently small volume 
within a sufficiently short time?

• How does the forming massive star influence its 
immediate surroundings to limit its mass?
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Stability of gaseous clumps

• Consider a gaseous clump of mass M, temperature T, 
radius R, density ρ = 3M/4πR3, magnetic pressure B2/8π, 
rotational velocity Ωrot , equation of state P = Kργ , 
immersed in an external hot medium

EG = – αGM2/R = – AGR-1 (gravitational energy)
Eint = AintR3(1-γ) (internal energy)
Emag= Amag R-1 (magnetic energy)
Erot = Arot R-2 (rotational energy)
Eext = Aext R3 (external pressure)

R

Pext

M
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γ=5/3γ=1
Etot = Eint + EGEtot = Eint + Eext

Stable, Expansion or Collapse?

MJeans = 1 M   (T/10K)3/2 (nH2/104 cm-3)-1/2.O
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The Initial Mass Function
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Early Universe Analogy

• Rather than a single isolated star of a 
“characteristic mass” we can expect a spectrum 
of mass scales (an IMF) ranging from…
– Lower mass limit:  Mmin > 1 M      

(solution to G-dwarf problem?)
– Upper mass limit? Slope/Shape?
– Cluster, multiple systems?

• Note: clustered star formation is primary mode in 
present epoch and past out to z~3

.O
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Important relevant time scales
(today)

• Free-fall time scale

• Accretion time scale

• Kelvin-Helmholtz 
time scale (time to 
reach ZAMS)

~ M -2

Ae

Be
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Important relevant length scales

• Size of clump to 
produce star of 
mass M

• Photoevaporation 
radius

• Dust destruction 
radius

• Stellar radius
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Evolution of accreting stars in the 
HRD ( dM*/dt > 0 )

(Yorke 2002; Behrend & Maeder 2001)

Behrend & Maeder 2001
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Necessary conditions for forming 
stars by accretion

• The mass gained 
by accretion must 
exceed losses

• Must accrete 
material within 
“reasonable” time

• Gravity must be 
dominant force

M
.

diskM* (t) = M
.

S-wind(t’) - (t’) ] dt’[

M
.

accMdisk (t) = M
.

disk(t’) - (t’) ] dt’[ M
.

D-wind(t’) -

M
.

acc M
.

S-wind- M
.

D-wind- ~ M* / tacc
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Luminosity & Radius of ZAMS 
star

Kelvin-Helmholtz timescale
(for thermal readjustment)
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Accretion onto main sequence 
stars

ZAMS
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The Eddington accretion limit

Assume electron 
scattering for 
minimum opacity...
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How you form massive stars
in the present epoch?

• Reduce κeff
– Modify optical properties of absorbing and scattering 

material
• Dust destruction 
• Dust coagulation
• Slippage of dust and gas (dust is left behind)

– Accrete optically thick “blobs” of material
• Reduce radiative flux

– Accrete during quiescent phases
– “Flashlight” effect of disks

• Increase gravity
– Force material on star from its sheer weight (and 

external pressure)
– Form massive stars within a dense cluster of not so 

brightly radiating objects
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Opacity of dusty gas

ISM Dust
(mixture of 

silicates, SiC, 
carbons, ice-

coated grains)

compared to

Silicates of
given sizes

(colored lines)
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Numerical Simulations of Physical 
Processes

Collapsing Envelopes
• 2D Hydrodynamics (axial symmetry)
• 2D Radiation transport of non-ionizing radiation  

("grey" FLD approximation) => dust temperature
• Self gravity
• Angular momentum transport (Shakura-Sunyaev "alpha")
• Evolution of central protostar in HRD
• Time dependent heating/cooling of gas
• No evolution of the dust (coagulation/cratering/shattering)
• No magnetic fields

Photo-ionized Envelopes
• Central stellar wind + UV
• Time dependent ionization/recombination
• Transport of stellar EUV photons (hν > 13.6 eV)
• Transport of stellar FUV photons (6 eV < hν < 13.6 eV)
• Transport of H-recombination photons (hν ~ 14.2 eV)
• Transport of UV photons scattered by dust
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Envelopes of accreting Stars

Formation of a 1MO Star with accretion disk 

Yorke & Bodenheimer 1999

• 2 MO cloud, diameter 0.13 pc
• <nH2> = 3 104 cm-3 , T = 10 K
• nH2 = A r-2 (density peaked)
• Ω = 5 10-14 s-1 , vrot = 10 m/s
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Time dependent accretion through 
disk

(Yorke & Sonnhalter, 2002, ApJ, 569, 846)
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10,000 yr   13.4 MO25,000 yr   33.0 MO35,000 yr   33.6 MO

ν-Dependent Radiation Hydrodynamics of 
Collapse

Yorke & Sonnhalter, 
2002, ApJ, 569, 846
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The “flashlight” Effect
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SEDs as a function of time and orientation 
(0O, 20O, 30O, 60O, 75O, 90O from pole-on view)

2 MO
ρ ~ r -2
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Visual Extinction [mag]

Photodissociation Regions (PDRs)

• Illumination of interstellar material (ISM) by UV photons
affects its composition and thermal properties.

• This in turn affects the dynamics of the ISM.
• Many important lines for analyzing ISM and the UV
sources are accessible to Herschel’s HIFI.

[mag]
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Destruction of circumstellar disks
• Destruction of nearby disk: 1, 2, 3, 4

Initial conditions

Mass of star: 1.2 MO
Mass of disk: 0.5 MO

External O5 star
Distance from disk: 0.1 pc

Results

0 … 400 years: 
400 … 40,000 years:
40,000 … 100,000 years:
100,000 … 220,000 years:
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Destruction of circumstellar disks
• Destruction of circumstellar disk: 1, 2

Initial conditions

Luminosity of star: 3550 LO
Mass of central star: 8.3 MO
Stellar wind: 30 km s-1 10-7 MO yr -1

Mass of disk: 0.7 MO
H-ionizing flux: 7 x 1044 s-1

Net UV flux: 2 x 1048 s-1

Results

Disk wind via “external” UV heating
Stellar wind focused through polar cavity
Photoevaporation of disk within 105 years
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Accretion and mass loss as mass 
exchange between components

Star Disk

Jets and
Outflows Cloud

Clump
Core
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Pop III: Accretion and mass loss as 
mass exchange between components

Star Disk
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What determines these dM/dt’s?

• Mdisk related to angular momentum transport within disk
– Magnetic fields (important for current star formation)
– Turbulence
– Tidal effects (bars, spiral arms)

• Macc determined by cloud core parameters
– tacc ~ tff ~ tcross

• MD-wind has contributions from jets and photoevaporation
– Mjet ~ f(Mdisk)
– Mphotoevap ~ f(Fν)

• MS-wind related to stellar parameters (stellar winds won’t 
happen for young Pop III stars but may occur later)

.

.

.

.
.
.

.
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“Known” Massive Accretion Disks
Shepherd et al. 2004

G 192.16-3.82

10 M    -star
10 M    -disk

260 AU

sun

sun

(artist impression)

D = 2000 pc

1.2 mm
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How likely is it to observe high 
mass stars during accretion?

Assume:
• Galactic star formation 

rate: 5 MO/yr
• tacc = 2 x 105 yr
• Salpeter IMF

– N(M) dM = A M−α dM
– 0.1 MO < M < 100 MO

Note that the local Galaxy 
(r < 500 pc) contains ~10-3

of Galactic star forming volume

M*
[MO]

N*
α = 2.35

N*
α = 2.3

>10 5400 6300

>20 2000 2400

>30 950 1200

>50 390 480

=> 106 MO in stars
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Star Formation in the Distant Past –
Standard Wisdom

• Star formation in the earliest epochs (metal-free) is an 
“easy” theoretical problem
– No magnetic fields
– Equation of state relatively simple
– Merely collect mass in gravitational troughs and allow it to 

evolve to central hydrogen burning
– Once they form, the first stars have negligible winds
– Once they form, the first stars inhibit further star formation 

in the immediate vicinity (radiation, SN explosions)

• The greatest difficulty: no direct observations of these 
Pop III stars
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More Star Formation Wisdom

• Massive star formation today is by contrast a difficult 
theoretical problem
– Magnetic, radiative forces on dust important
– Complex microphysics (dust, degree of ionization, …)
– Generally form in groups and clusters and their winds, 

ionizing radiation, and supernova explosions strongly 
affect ongoing star formation

• There are direct observations

• What we don’t know about massive star formation today 
may indicate what we don’t really know about star 
formation in the distant past.
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First protostars
Rotation will play an important role …

(Abel, Bryan, Norman 2000)



Theoretical Considerations 
of Massive Star Formation

EPOS 2006   28 Aug - 1 Sep 2006  
Ringberg, Germany

H.W. Yorke 34
28 August 2006

• Stars in the distant past (Pop III) are probably formed 
non-homologously through accretion => disks?

• Without magnetic fields angular momentum transport 
in disks occurs via…
– Tidal forces (bars & spirals)
– Turbulence (?)

• Massive stars photoionize nearby disks (including their 
own), eventually destroying the disks.
– The accretion and disk destruction processes close 

to massive stars operate on similar timescales.
– Photoionization can limit the final mass of the star

Concluding Remarks 1
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• Pop III stars probably form in clusters.
– Pop I/II analogy: “triggered star formation”
– Photoionization, winds, and SN shocks can help 

compress nearby clumps, initiating secondary 
star formation

• Pop III stars are probably multiple systems.
– Because of lack of magnetic fields in their early 

phases, fission in rapidly rotating Pop III stars 
can produce close binaries

Concluding Remarks 2
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• Unable to support themselves through pp-burning, Pop 
III stars immediately produce C (via 3-α process) which 
then allows central CNO H-burning

• Meridianal circulation (Goldreich-Schubert-Fricke) in 
rapidly rotating Pop III stars mix interiors on a 
timescale of 106 years, bringing metals to the surface.

• Radiation driven mass loss may create Wolf-Rayet Pop 
III stars. 

Concluding Remarks 3
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