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ABSTRACT 

We propose a novel algorithmic approach and present a new algorithm for 
solving the diagnosis problem. We report the results of the performance tests of the new 
algorithm and compare them with the traditional and standard algorithms. These results 
show the strong performance of our new algorithm with more than ten times 
improvement over the traditional approach. 

The most widely used approach to model-based diagnosis consists of a two-step 
process: (I) generating conflict sets from symptoms; (2) calculating minimal diagnosis 
set from the conflicts. Here a conflict set is a set of assumptions on the modes of some 
components that is not consistent with the model of the system and observations, and a 
minimal diagnosis is a set of the consistent assumptions of the modes of all components 
with minimal number of abnormal components. However, there are major drawbacks in 
the current model-based diagnosis techniques in efficiently performing the above two 
steps that severely limit their practical application to many systems of interest. For 
conflict generating problem, these techniques are usually based on different versions of 
Truth Maintenance method, which lead to an exhaustive search in the space of possible 
modes of the components. For finding minimal diagnosis from the conflicts, the most 
common is based on Reiter's algorithm, which requires both exponential time and 
exponential space (memory) for implementation. 

In this paper we address the problem of generating the minimal diagnosis from 
the conflicts. This problem can be formulated as the well-known Hitting Set Problem. Our 
approach starts by mapping the Hitting Set problem onto the Integer Programming 
Problem that enables us, for the first time, a priori determination of the lower and upper 
bounds on the size of the solution. Based on these bounds, we introduce a new concept 
of solution window for the problem. We also propose a new branch-and-bound technique 
that not only is faster than the current techniques in terms of number of operations (by 
exploiting the structure of the problem) but also, using the concept of window, allows a 
massive reduction (pruning) in the number of branches. Furthermore, as the branch-and- 
bound proceeds, the solution window is dynamically updated and narrowed to enable 
further pruning. 

We present the results of the performance of the new algorithm on a set of test 
cases. These results clearly show the advantage of our new algorithm over the 
traditional branch-and-bound algorithm; more specifically the new algorithm has 
achieved several orders of magnitude speedup over the standard algorithm. For 
example, for the systems with 40 components, the new algorithm, in average, solves the 
problem more than 300 times faster than the traditional algorithm. 

I. Introduction 

The Hitting Set Problem, also known as the Transversal Problem, is one of key 
problems in the combinatorics of finite sets and the theory of diagnosis [4]. The problem 



is simply described as follows. A collection S = {S , ,  ..., S,) of nonempty subsets of a set 
M i s  given. A hitting set of S is a subset H of M that intersects every set in the collection 
S. Of course, there are always trivial hitting sets, for example the background set M is 
always a hitting set. Actually we are interested in minimal hitting sets with minimal 
cardinality: a hitting set H i s  minimal if no proper subset of H is a hitting set. 

Our primary interest to Hitting Set Problem is its connection with the problem of 
diagnosis. The diagnosis problem arises when some symptoms (anomalies) are 
observed, that is, when system's actual behavior contradicts the expected behavior. 
System diagnosis is then the task of identifying faulty components that are responsible 
for anomalous behavior. To solve the diagnosis problem, one must find the minimal set 
of faulty components that explain the observed symptoms. The most disciplined 
technique to diagnosis is termed "model-based" because it employs knowledge of 
devices' operation and their connectivity in the form of models. This approach [4] 
reasons from first principles and affords far better diagnostic coverage of a system than 
traditional rule-based diagnosis methods, which are based on a collection of specific 
symptom-to-suspect rules. 

The diagnosis process starts with identifying symptoms that represent 
inconsistencies (discrepancies) between the system's model (description) and the 
system's actual behavior. Each symptom identifies a set of conflicting components as 
initial candidates. A minimal diagnosis is the smallest set of components that intersects 
all conflict sets. The underlying general approach in different model-based diagnosis 
approaches can be described as a two-step "divide-and-conquer" technique wherein 
finding the minimal diagnosis set is accomplished in two steps: a) Generating conflict 
sets from symptoms, and b) Calculating minimal diagnosis set from the conflict sets. In 
summary, the conflict generation corresponds to forming a collection of sets, and 
calculating minimal diagnosis corresponds to the solution of the hitting set problem for 
this collection (see Figure 1). 

Figure 1. Diagnosis as the hitting set of conflict sets 

However, there are major drawbacks in the current model-based diagnosis 
techniques in efficiently performing the above two steps that severely limit their practical 
application to many systems of interest. First, the existing conflict generating algorithms 
are all based on various versions of constraint propagation method and truth 
maintenance systems. The problem with these methods is that not only they need 
exponential time but usually they also require exponential memory to be implemented. 
Therefore, these methods cannot handle realistic systems with large number of 
components. Second, in order to find the minimal diagnosis set, current model-based 
diagnosis techniques rely on algorithms with exponential computational cost and hence 
are highly impractical for application to many systems of interest. 



In this paper, we present a powerful yet simple representation of the calculation 
of minimal diagnosis set. This representation enables the mapping onto a well-known 
problem, that is, the 011 lnteger Programming problem. The mapping onto 011 lnteger 
Programming problem enables the use of variety of algorithms that can efficiently solve 
the problem for up to several thousand components. Therefore, these new algorithms 
significantly improve over the existing ones, enabling efficient diagnosis of large complex 
systems. In addition, this mapping enables a priori and fast determination of the lower 
and upper bounds on the solution, i.e., the minimum number of faulty components, 
before solving the problem. We exploit this powerful insight to develop yet more powerful 
algorithm for the problem. This new algorithm is a new version of the well-known 
branch-and-bound method. We present the results of the performance of the new 
algorithm on a set of test cases. These results clearly show the advantage of our new 
algorithm over the traditional branch-and-bound algorithm; more specifically the new 
algorithm has achieved several orders of magnitude speedup over the standard 
algorithm. For example, for the systems with 40 components, the new algorithm, in 
average, solves the problem more than 300 times faster than the traditional algorithm. 

2. A New Algorithmic Approach to Diagnosis Problem 

To overcome the complexity of calculating minimal diagnosis set, we will utilize 
and expand our new discovery relating this calculation and the solution of the Hitting Set 
Problem to the solution of lnteger Programming and Boolean Satisfiability Problems [I, 
21. Our primary interest in the Hitting Set Problem is due to its connection with the 
problem of diagnosis. 

In order to describe the mapping of Hitting Set Problem onto lnteger 
Programming, let us define a 011 (binary) matrix A (see Figure 2) as the incidence matrix 
of the collection of the conflict sets; i.e., the entry a,=l if and only if the jth element m, 
belongs to the ith set C,. Let x = (x,, x2, ..., b) be a,  binary vector, wherein xj = 1 if the 
member mj belongs to the minimal hitting set and hence the minimal diagnosis set, 
otherwise xj = 0. It can be then shown [ I ,  21 that we have the following formulation of the 
Hitting Set Problem as a 011 lnteger Programming Problem: 

minimize xl+x2+ ... +x,, 
subject to Ax L b, xi= 0, 1, 

where bT= (1, .... 1) is a vector whose components are all equal to one. This new mapping 
allows us to utilize existing efficient integer programming algorithms, permitting solution 
of problems with a much larger size. In fact, we have shown [ I ]  that, even using 
commercially available lnteger Programming tools, we can achieve a more efficient 
calculation of minimal diagnosis compared with the existing algorithms. 

Figure 2. Mapping hitting set problem onto integer programming 



3. Bounds on Diagnosis 

This new mapping offers two additional advantages that can be exploited to 
develop yet more efficient algorithms. First, note that this mapping represents a special 
case of Integer Programming Problem due to the structure of matrix A (binary matrix) 
and vector b. Second, by using this mapping, we can determine the minimum number of 
faulty components without solving the problem explicitly [1,2]. For this purpose, we 
consider the I -norm and 2-norm of vectors defined as 

For the vector b in ( I ) ,  we then have bll, = m and IWI, = &. Since the elements of both 

vectors Ax and b are positive, we can then drive the following two inequalities: 

Since x is a binary vector, then both norms in (2) give the bound on the size of the 
solution, that is, the number of nonzero elements of vector x which, indeed, corresponds 
to the minimal diagnosis set. Note that, depending on the structure of the problem, i.e., 
the 1- and 2-norm of the matrix A and m, a sharper bound can be derived from either of 
(2). To our knowledge, this is the first time that such bounds on the solution of the 
problem have been derived without any need to explicitly solve the problem. Such a 
priori knowledge on the size of solution will be used for developing much more efficient 
algorithms for the problem. 

Furthermore, using monotonicify of the integer programming (I), we are able to 
efficiently find an upper bound for the solution size. Here by monotonicity we mean that if 
x is a solution of Ax 1 b and y I x then y is also a solution of the same system. Note that 
finding a 011 solution x for the system Ax 2 b is equivalent to finding a subset of the 
columns of the matrix A such that their sum is a vector with components all equal to or 
greater than 1. Of course, any such solution provides an upper bound for the 
optimization problem (I), since for that problem we are looking for a minimal set of such 
columns. 

Therefore, to find an upper bound,'we first choose a column C, of A with largest 
weight. Then we construct a submatrix of A by deleting the column C1 and all rows of A 
that correspond to non-zero components of C1. We apply the same process to the new 
matrix, until we end up with the empty matrix. The columns C,, CI, ..., C, that we obtain 
determine a solution for Ax I b and the number t is an upper bound for the solution of the 
integer programming problem (1). Our initial test shows that the upper bound is actually 
sharp, particularly for small size solution (see Table I). Note that it is easy to modify this 
algorithm in a way that the it also provides a vector a such that the vector Aa realizes the 
corresponding upper bound. 



Upper-Bound [A] 
I* returns an upper bound for the solution of Ax r b *I 

u1 + 1 
a1 +- a maximum-weight column of A 
Al t submatrix of A obtained by deleting the column al and all rows 

of A that correspond to non-zero components of al 
if A l  is the empty matrix return UI 

else return Ul + Upper-Bound [Al] 
end if 

Figure 3. A recursive procedure for computing the upper bound 

There are two simple rules that will help this algorithm in extreme cases. These 
rules also can be useful in other cases, as by the recursive nature of the algorithm, most 
likely the algorithm will ends up with submatrices that these rules can be applied. Here is 
the formulation of these rules: 

(I) If the matrix A has an all-one column, then the upper bound is equal to 1; 
(11) If some row of the matrix A has weight 1, then remove that row and the 

corresponding column to obtain the matrix A, and Upper-Bound [A] = 1 + 
Upper-Bound [ A l ] .  

We could also improve the u per bound by a step-by-step method and in an 
t I? iterative fashion wherein the cost of k step in the iteration is O(nk) so the first few steps 

are practically efficient. More specifically, for fix k, instead of choosing the maximum 
weight column for the vector a,, we could choose the sum of k columns of A, and try all 
possible such vectors. 

Table I. Upper and Lower Bounds 

As another application of the a priori lower bound, before starting to solve the hard 
problem of finding the minimal hitting sets, we could separate the cases where the high 
number of faulty components requires another course of action instead of usual 



identification of faulty components. Also a good lower and upper bound could determine 
whether the enhanced brute-force algorithm [I, 21 can provide a solution efficiently. 
Since, as it was stated before, this algorithm has a complexity of 0(nt), where t is the 
number of faulty components. 

4. The Traditional Branch-and-Bound Method 

The branch-and-bound method is one of the most common methods for solving 
NP-complete problems. For the case of lnteger Programming (IP) problem, this method 
traditionally begins by solving the Linear Programming (LP) relaxation of the IP; i.e., by 
removing the condition that the variables x, are integers. Figure 4 shows typical solution 
sets of the LP relaxation and IP problems, where the polygon represents the solution set 
of the LP relaxation and the grid points inside this polygon represent the solution set of 
the IP problem. If the optimal solution of the LP relaxation consists only of integer 
values, then the optimal solution of the LP relaxation will be the optimal solution for the 
IP problem. Otherwise, if the IP problem is defined by a system like (I), the optimal 
solution of the LP relaxation provides a lower bound for the IP problem. In this case, we 
choose one of the non-integer values of the optimal solution of the LP relaxation, say x, = 

a, and define two new subproblems by adding the conditions x, I [a] and x, r [a]+l to the 
system, where [a] denotes the integer part of a. Then we have to solve the two new 
subproblems. By continuing this procedure, we define subproblems of the original IP 
problem. Once we find an integer optimal solution for the LP relaxation of a subproblem, 
that solution gives us an upper bound for the IP problem. After finding such integer 
solution, we eliminate any subproblem whose (LP relaxation) lower bound is larger than 
upper bound provided by some other subproblem. We continue this procedure until all 
subproblems are eliminated or we find an integer optimal solution for the corresponding 
LP relaxation problem. At the end, the optimal solution for the IP problem is the best of 
the optimal integer solutions of the subproblems. 

Figure 4. Solution sets of an Integer Programming problem and a corresponding Linear 
Programming relaxation problem 

We can simply generalize the above procedure as follows. To begin the branch- 
and-bound procedure, we need to have the capability to perform the following tasks: 



(a) Partitioning a problem P into a collection PI, P2, ..., Pk of mutually disjoint 
subproblems; 

(b) Finding a lower bound for each subproblem P,; 
(c) Finding an integer solution for a subclass of subproblems (in this case we obtain 

an upper bound), we could also determine whether the integer solution is optimal 
for the corresponding subproblem. 

Note that in the case of LP relaxation, whenever we find an integer solution for a 
subproblem, it is guaranteed that it is an optimal solution for that subproblem. We now 
start with the original problem PI defined by a system like (I), and in the mth step of the 
procedure we have a partition P ,,,, P,,,,2, ..., P,, of mutually disjoint subproblems. For 
each subproblem Pmj we find a lower bound Lmj and, if possible, an integer solution and 
corresponding upper bound Umj. Then we decide which subproblems PmJ should be 
eliminated at this step. There are two criteria for this decision: 

(i) The lower bound L,, is larger than some upper bound of some other 
subproblem Pm,k; 

(ii) An optimal solution for the subproblem Pmjis found. 

In the case (ii) we keep the record of the best optimal solution of the subproblems. Then 
we apply the partitioning method (a) on the remaining subproblems and find lower and (if 
possible) upper bounds for the new subproblems. We continue this procedure until no 
subproblem remains. Then the best of the optimal solutions of subproblems is the 
optimal solution for the original problem. 

5. The New Branch-and-Bound Method 

Our new branch-and-bound algorithm is based on our methods for computing lower 
and upper bounds for diagnosis. We also exploit the monotonicity property of this special 
case of integer programming problem. We list the rational behind this new approach, 
and its possible advantages over the standard branch-and-bound, as follows: 

Since the optimal solution is one of the points on the discrete grid of Figure 4, our 
relaxation phase directly applies to the discrete grid, while the standard method 
starts with the much larger set consists of not only the discrete gird but also all 
real points inside the polygon. 
For each subproblem we find a lower bound in linear time, while the time of LP 
relaxation of standard method is 0 ( n 3 )  . 
For each subproblem we are able to find an upper bound, while in the standard 
method the upper bound is found only in the case that the LP relaxation of the 
subproblem at hand ends up with an integer solution. This way our method 
provides more chance to eliminate subproblems with large lower bounds. 

Before describing our method, we introduce a set of useful functions and notation. 
We start with the mxn binary matrix A. We label the columns of A by the numbers 1,2, . . ., 
n, and we denote any subset of these columns by simply as a subset of jl, 2, ..., n ) .  
Similar to the traditional branch-and-bound method, the new algorithm is also based on 
search on the nodes of a tree. Each node of the search tree has a label of the form 

( M  Tin, To,) 



where M is a submatrix of the original matrix A, and T:, and To, are disjoint subsets of the 
columns of the original matrix A. The meaning of this partition is that Ti, is the set of the 
columns (of the original matrix A) considered as part of the solution, Tout is the set of the 
columns (of the original matrix A) considered not as part of the solution. Note that a 
solution of the optimization problem ( 1 )  can be considered as a subset of the columns of 
the matrix A whose addition is a vector with all non-zero components. 

Here is the list of the auxiliary functions and subroutines. 

Function Place-Finding 

Consider a node with the label (M, T,, To,). Since M is a submatrix of the original 
matrix A, every column of M corresponds with a unique column of A, for example the 
column 1 of M corresponds with the column 3 of A and the column 2 of M corresponds 
with the column 7 of A, and so on. Therefore, we can refer to the label of a column of M 
in A without any ambiguity. In fact, given the sets T,, and T,,,, for every column j of M, it is 
possible to find the corresponding column in the original matrix A. We denote this 
relation by the function Place-Finding, also to keep the notation simple, instead of writing 
Place-Finding[T,,, To,,,, j] we simply write 7 if the sets I;,, and Tout are understood form the 
context. 

Functions Remove-0 and Remove-1 

Remove-1 [M, j]: the result is the submatrix of M obtained by deleting the jth 
column of M and deleting all rows of M that correspond with non-zero 
components of that column; 
Remove0  [M, j]:  the result is the submatrix of M obtained by deleting the jfh 
column of M. 

For example, consider the matrix 

Then to compute Remove-1 [M, 21, we first delete the 2nd column of M, and since the znd 
and 4th components of this column are 1, then we delete the 2nd and 41h rows. The result 
is 

Remove-1 [M, 21 = [; ; A) - 

While for Remove-0 [M, 21, we just delete the 2nd column of M. The result is 



Remove-0 [M, 21 = : Y : I -  

This function is based on some rules that simplify the process of finding the optimal 
solution for the system (1): 

Rule I If the matrix A has an all-one column C,, then the set consisting of the jth 
element xj alone is the hitting set; or the vector x with 1 at its jth component 
and zero at other components, is an optimal solution for the system (I). 

Rule 2 If the matrix A has a row of weight one, with 1 as its jth component, then the jth 
element xj is contained in the minimal hitting set. In this case we can simplify 
the system (1) by removing this row and the jth column, and we add the jth 
element X, to the solution of the new system. 

Rule 3 If the matrix A has an all-one row, delete that row. 
Rule 4 If the matrix A has an all-zero column, delete that column. 
Rule 5 If the matrix A has two equal rows, delete one of them. 

Let see how these Rules affect the labels of the nodes in the search tree. Suppose that 
(M, (T,,, Tout)) is the label of a node. First we describe the action of Rule I. If the matrix 
M does not have an all-one column, then there no action is performed and the label is 
unchanged. Otherwise, assume that jth column is all-one. Then Rule I changes the label 
t 0 

(0, T,UE 7 1, Tout). 

In a more formal language, we define a function Rule-1 on the set of labels as follows: 

( M , ,  T o  if M has no all- one column, 
Rule-1 [(M, T,, , T~~~ I1 = (a, T,. u fik T ~ , )  if jth column is an all - one column. 

To define the action of Rule 2, first we introduce a useful notation. Let e, be the unit 
binary vector (of weight one) with its only 1 component at jth position. Now the action of 
Rule 2 can be described by the following function: 

(~emove  - 1 [ M ,  j ] ,  T, LJ {?)Tout) if M has a row equal to e j ,  
Rule-2 [(M,  Tin r Tout )I = 

( M ,  Tin 9 Tout ) otherwise. 

The action of Rule 3 is described by the following function 

(M' ,  T,, , To,) if M has all - one rows, 
Rule-3 [(M, T,, , To,, )I = 

( M ,  qn , Tout ) otherwise, 



where M' is obtained from M by deleting all all-one rows. The action of Rule 4 is 
described by the following function 

( ~ e n o v e - 0  [ M ,  j ] ,  q,,Tout u t) if jth columnof M is all- zeroy 
Rule-4 [(M, T,, , T,,,)] = 

otherwise. 

Finally, the following function describes Rule 5 

(M' , T,, , Tout ) if M has two equal rows, 
Rule-5 [(M, T,, , To, 11 = 

( M ,  T i  T o  ) otherwise, 

where the matrix M' is obtained from M by deleting one of the equal rows. 

Note that once one of these rules is applied on a label hl = (M, T,, To,), and the 
result is the label h2 then it may be possible to apply one of these rules on hZ, and so on. 
For these reason we define the function Rule* on the set of the labels as repeated 
applications of Rule-1-5 until none of them can be applied anymore. It is easy to show 
that RuleQ is well-defined. i.e., the result of Rule*@) does not depend on the order of the 
functions Rule-1 and Rules-2 are applied. As an example, consider the label 

where 

The 2" row of M is equal to e2 and its 3rd row is equal to e,. Therefore, for applying 
Rule-2 we have two possible choices. First we choose to remove 2" row, the result is 
the label ha = (M2, {2), a), where 

The 2" row of M2 is equal to e3, thus we can apply Rule-2. The result is the label h3 = 

(Mi (2,413 @), where 



Note that 3rd column of M, is the 4th column of the original matrix MI. Finally, we apply 
Rule-1, and the result is the label h4 = (0, (2 ,  3, 41, (1, 5)) (again note that the 2nd 
column of the matrix M3 corresponds with the 3rd column of the original matrix MI). 
Therefore, 

We define the (partial) function Split on the set of the labels, where the value 
Split [A] is a pair (Ao, XI) of labels. Suppose that h = (M, TI, T~). If TlUT2 = ( 1 ,  ... n), i:e., if 
TlUT2 is the set of all columns of the matrix A, then the function Split is not defined. 
Otherwise, let j $ T,UT2 be a column of the original matrix A which is corresponded with 
a maximum-weight column of the submatrix M (if there are several such columns then 
we choose the first one). Then we define two new labels based on the assumption that 
the jth column is part of the solution set or not; more specifically, we define two new 
labels as follows: 

Then the Split function is defined as 

Split [A] - (Rule* [Ao], Rule* [A1]). 

Function Upper-Bound I 
The Upper-Bound function is defined is Section 4 to find the number 

Upper-Bound [A] as an upper bound on the solution of the optimization problem defined 
by the system (I). We extend this function to the set of labels as follows. For the label h 
= (M, TI, T,), where M is a submatrix of the original matrix A, Upper-Bound [A] provides 
an upper bound for the system defined by (1) augmented by the following conditions: 

xj = 1, xJ~T1, 

Then it is easy to see that 

Upper-Bound [A] = ITl\ + Upper-Bound [MI. 



In the special case that M= 0, we have Upper-Bound [I]  = ]TIJ. Note that we apply the 
function Upper-Bound both on matrices and labels. 

Function Upper-Bound-Set 

For the label "h (M, T I ,  T2), the function Upper-Bound-Setrh] returns the set 
which realizes the bound Upper-Bound [A], i.e., the union of Tl and the set of columns of 
Mwhich provide the bound Upper-Bound [w. 

Function Lower-Bound r 
Like the previous function, we extend the lower bound defined by (2) to the set of 

labels. More specifically, for the label h = (M, TI,  T ~ ) ,  where M is a kxj submatrix of the 
original matrix A, we have 

Lower-Bound [A] = (TI(  + k / ( \~ ( ( ,  . 

Function Test-Soiution 

This function is defined on the set of the labels and its value is either True or 
False. The value of Test-Solution [(M, TI, T ~ ) ]  is True if the columns in the set TI form a 
solution for the system (1). Otherwise, the value of the function is False. 

This function is defined on the set of the labels and its value is either True or 
False. As it is suggested by the name of the function, here we determine whether a node 
in the search tree is a leaf or not; i.e., whether that node has any children or not. The 
arguments of this function are a label 3, = (M, T I ,  T*) and a value U for the upper bound 
on the solution of the problem. Then 

Now we are ready to present Our new branch-and-bound algorithm. This 
algorithm is described in Figure 5. 

Test - Leaf [ X ,  U ]  = i 

 rue if TI u T2 = (1,2, . . ., n), or 

True if Lower -Bound [ I ]  2 U ,  or 

True if Test-Solution [A] = True, or 

True if M contains an all - zero row, 

False otherwise. 



branch-and-bound (A) 
I* solves the hitting set problem defined by the system (1) */ 

1. Labels t {Rule* [(A, @, @ ) I f  
2. U t w  I* upper bound *I 
3. Solution + 0 
4, while Labels * 0 
5. chose h = (M, T I ,  Tz) E Labels 
6. Labels +Labels - {A) 
7. If Test-Solution [A] = True & UpperBound [h] < U then 
8. Solution t TI 
9. U +- UpperBound [h] 
10. end if 
11. If Test-Solution [h] = True & Upper-Bound [h] = U & Solution=@ then Solution c TI 
72. If Upper-Bound [ I ]  < U then 
13. U +- Upper-Bound [A] 
14. Solution t UpperBound-Set[h] 
15. end if 
16. If Test-Leaf [A, U] = False then 
17. (b, - Split [A] 
18. Labels t Labels u (AD,  A,) 
19, end if 
20. If Test-Leaf [It ,  U] = True & Upper-Bound {h] = U &  Solution=0 
21. then Solution t-- Upper-Bound-Setfh] 
22. end while 
23. return Solution 

Figure 5. The new Branch-and-bound algorithm 

Table II shows the results of performance of the new algorithm and its 
comparison with the traditional Branch-and-Bound method. These results show the 
average time and the number of iterations (i.e., the number of nodes in the search tree) 
used by these algorithms on I00 random binary matrices. 



Table 11. Comparing the average performance of algorithms on 100 random matrices 

Exam pie 

matrix 
20x25 
23x26 

In this example we consider the following 10x12 matrix: 

The nodes of the search tree and their labels are as follows. 

(seconds) 
0.98 
3.68 

Node 0. The label of the root is A, = ( A ~ ,  iZI, 0). In this case, we have Rule*[ho] = AD. 
The initial lower and upper bounds are Lower-Bound = 2 and U = Upper-Bound = 5, the 
upper bound is realized with the set (3, 4, 5,  6, 8). Moreover, Test-Leaf [Ao, U] = False, 
thus this node has two children: Node 1 and Node 2. To find them, notice that column 8 
has maximum weight, then 

iterations 
12-13 
13.13 

iterations I (seconds) 
26.08 0.18 
55.52 0.19 



and 

Remove - 0 [$, 81 = 

Now note that none of the Rules 1-5 can be applied on the matrix Remove-0 [Ao, 81, and 
only Rule 4 can be applied to Remove-1 [Ao, 81, because lst column of this matrix is an 
ail-zero vector. After applying this rule, we get the following matrix 

Therefore, the labels of the children of Node 0 are 

0 0 1 1 1 0 0 1 1 1 0  

0 1 0 0 1 0 0 1 0 1 0  

Node I. Its label is hr. The updated lower and upper bounds are Lower-Bound = 2 and U 
= Upper-Bound = 4, the upper bound is realized with the set {3,5,6,9), and Test-Leaf [kl, 
UJ = False, thus this node has two children: Node 3 and Node 4. The column 8 of the 
matrix A,, which is the 9" column of the original matrix A*, has the maximum weight. 
Then 

= A,, 



Rcmove - 0 [ A , ,  81 = 

and 

None of the Rules 1-5 can be applied on the matrix A3 = Remove-0 [AI, 81, and only Rule 
4 can be applied to Remove-1 [A1, 81, because 4fh column of this matrix, which is also the 
4th column of the original matrix A,, is an all-zero vector. After applying this rule, we get 
the following matrix 

Therefore, the labels of the children of Node 1 are 

Node 2. Its label is A2, The updated lower and upper bounds are Lower-Bound = 4 and U 
= Upper-Bound = 4. Since Lower-Bound = U, Test-Leaf [A2, U] = True, thus this node is a 
leaf of the search tree. 

Node 3. Its label is h3. The updated lower and upper bounds are Lower-Bound = 2 and U 
= Upper-Bound = 3, the upper bound is realized with the set f6, 11,121, and Test-Leaf [h3, 

Uj = False, thus this node has two children: Node 5 and Node 6. The column 9 of the 
matrix A,, which is the I lth column of the original matrix Ao, has the maximum weight. 
Then 



Remove - 0 [A , ,  91 

and 

None of the Rules 1-5 can be applied on the matrix Remove-0 [A3, 91 and Remove-1 [A3, 
91. Therefore, the labels of the children of Node 3 are 

As = (As, 0, 18,9, ll)), 

A6 = (A6, (11), {a, 91). 

Node 4. Its label is h4. The updated lower and upper bounds are Lower-Bound = 3 and U 
= Upper-Bound = 3. Since Lower-Bound = U, Test-Leaf [A4, U] = True, thus this node is a 
leaf of the search tree. 

Node 5. Its label is As. The updated lower and upper bounds are Lower-Bound = 3 and U 
= Upper-Bound = 3. Since Lower-Bound = U, Test-Leaf [A5, U] = True, thus this node is a 
leaf of the search tree. 

Node 6. Its label is A,. The updated lower and upper bounds are Lower-Bound = 3 and U 
= Upper-Bound = 3. Since Lower-Bound = U, Test-Leaf [k, = True, thus this node is a 
leaf of the search tree. 

Therefore, the minimal hitting set is (6 ,  11, 12) which produced by Node3. Figure 6 
shows the search tree of this example. 



Figure 6. The search tree 

7. Summary and Conclusions 

We proposed a new approach to overcome one of the major limitations of the 
current model-based diagnosis techniques, that is, the exponential complexity of 
calculation of minimal diagnosis set. To overcome this challenging limitation, we have 
proposed a novel algorithmic approach for calculation of minimal diagnosis set. Starting 
with the relationship between the calculation of minimal diagnosis set and the celebrated 
Hitting Set problem, we have proposed a new method for solving the Hitting Set 
Problem, and consequently the diagnosis problem. This method is based on a powerful 
and yet simple representation of the problem that enables its mapping onto another well- 
known problem, that is, the 011 lnteger Programming problem. 

The mapping onto 011 Integer Programming problem enables the use of variety 
of algorithms that can efficiently solve the problem for up to several thousand 
components. Therefore, these new algorithms significantly improve over the existing 
ones, enabling efficient diagnosis of large complex systems. In addition, this mapping 
enables a priori and fast determination of the lower and upper bounds on the solution, 
i.e., the minimum number of faulty components, before solving the problem. We exploit 
this powerful insight to develop yet more powerful algorithm for the problem. This new 
algorithm is a new version of the well-known branch-and-bound method. We present the 
results of the performance of the new algorithm on a set of test cases. These results 
clearly show the advantage of our new algorithm over the traditional branch-and-bound 
algorithm; more specifically the new algorithm has achieved more than 10 times 
speedup over the standard algorithms. 
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