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Wavelength (nm) 

- 850 nm, 1320 nm and 1550 nm 

- Some interest in the visible spectrum as well (400 to 700 nm) 

- Silicon detectors: limited to 1040 nm (bandgap edge) 

JPh Wavelengths of Interest 
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$PL Particles in Space Environments 

Trapped Particles in the Van 
Allen Belts 
- Electrons with energies 

up to several MeV 

Solar Particles (Coronal Mass 
Ejections) 

Galactic Cosmic Rays 
- Heavy particles 
- Extremely high energies 
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$IF=%& Typical Proton Spectrum 

The peak in the 
proton energy - - 
spectrum is 

d 

typically between 
20 and 50 MeV 

Adding shielding Li 

causes the peak 
energy to 
increase 
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JPL Energy Dependence of Proton Damage in LEDs 
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JPlL Proton Spectrum Corrected for NlEL 
Dependence 
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dpL Heavy Ion Distribution in Space 
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Optical Emitters: 
Light Emitting Diodes and Laser Diodes 

Si02 

dPL An Amphoterically Doped LED 

Simple process devetoped in 1960's 

Highly efficient: 860 - 930 nm 

Temperature 
Anode p-n junction 

Light 
emission 

can be n- or p- fype 
impurities (depends on n - GaAs (Si doped) 

Cathode 
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dslPL I-V Characteristics of an LED 
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JPL A Double-Heterojunction LED 

Complex fabrication process with many layers 
Produced LEDs with fast response times 

n-electrode 

Light 
emissio 

12 



JPL Degradation of LEDs after Proton Irradiation 
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JpL Annealing of Amphoterically Doped LEDs after 
Proton lrradiation 

Annealing does not occur until forward current is applied 
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Jpk Comparison of LED Annealing with Different 
Forward Currents 

To first order, annealing depends on injected charge 
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JpB, Recovery of LED Damage in Galileo Tape 
Recorder 

Tape recorder stopped 
working after 34'h orbit 0.6 

around Jupiter 

Caused by LED 
degradation in control 
circuitry 

Operation was 
successfully restored 
after forward biasing 
the LED to anneal the o 0.2 0.4 0.6 0.8 1 .o 1.2 
damage Charge (104 Coulombs) 

After G. Swift, ef a/., IEEE Trans. Nucl. Sci., December, 2003 16 



JPL Absorption and Emission Processes for Lasers 

Current 

back facet Partially reflective 
front facet 
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$Pk Laser Diodes 

Basic five-layer laser 
Current is confined to narrow stripe 

Metal 

Active Region 
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JLDh Proton Degradation of a Laser Diode 
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JPL Semi-logarithmic Plot of Laser Degradation 

1 10 100 
Forward Current (mA) 

20 



JP& Annealing of Laser Damage 

Annealing proceeds more rapidly when 
lasers operate above threshold 
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JPL Degradation of Various Types of Lasers 
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J8=sL Photodiode Degradation 

Many lasers contain internal diodes 
to monitor output power 
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Monbr 
Internal monitor in - horndiode 

5 0.5 - Silicon detector 

JPL Optical Emitter Degradation: Summary 

Arnphoterically doped LEDs are one of the most 
sensitive components that can be used in space 
Often used in optocouplers 
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Device Type 

Amphotericat[y 
Doped LED 

Heterojunction 
LED 

Laser Diode 

at 930 nm Internal monitor in - 
Lumex laser diode 

(1300 nm) 
- 
- 
- 

0 . 0 0  
10" 1012 1013 1014 

Fluence ( p i d )  
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Approximate 
Threshold for 
Degradation 

p,cm~ 

1 x 10" p/cm2 

1 x lo'* p/cm2 

Annealing 
Properties 

Strong 

Very weak 

Very Strong 

Comments 

Extremely sensitive to 
radiation damage 

Monitor diode 
degradation may be 
more significant 



Optocou plers 

JPk Optical Couplers 

Permanent damage IF 
effects are covered in 
the notes 03 '0 

"0 

We will concentrate on 
transient effects during 
the presentation (a) Basic optocoupler 

Usually dominated by 
charge collection in 
the large area 
photodiode VCC 
Only important for 
optocouplers with "0 
high-gain amplifiers 

Optocouplers are High gain amplifier 
heavily overdriven (b) Integrated amplifier 

(on or o v  
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JPL Transient Sensitivity of High-Speed Optocouplers 

TRANSFER CHARACTERISTICS OF 
HP134 OPTOCOUPLER 

power 
transfer B 
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Charge sensitivity for an optocoupler with 20 ns 
response time is - 100 femtocoulombs! 

Heavy-ion upset at LET values - 0.1 MeV-cm2/mg 
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JpL Dependence of Optocoupler Cross Section on 
Angle During Proton Testing 
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jpL Two Mechanisms Contribute to the Angular 
Dependence of the Cross Section 

Direct ionization LET is - 0.0$ MeV-cm2/mg 

Long path length provides significant total charge at extreme angles 

ffective diameter 530 prn 

I 
50 pm 
depth 

T 
Direct ionization along 
extended track range recoil adds to direct 

ionization component 
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JPL Summary (displacement damage) 

Optical Emitters 

- Discussed operating principles 

- Emphasized importance of proton displacement damage 
*Some ty pes of optical emitters are severely degraded by 

protons with an effective total dose of 1-2 krad 
-Cornpar ed degradation of LEDs and lasers 
*Discu ssed injection-enhanced annealing 

Optocoupler Displacement Damage 

- Strongly affected by the type of LED used in the optocoupler 

- Decrease in diffusion length of conventional photodetectors 
and phototransistors dominates damage for optocouplers 
with less sensitive LEDs 
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JPL Summary (transient effects) 

Optocouplers 
- Very basic subsystem 
- High-bandwidth optocouplers are extremely sensitive to SEU 
- Dominated by charge collection in the phototransistors 

Proton Upset Has Strong Angular Dependence 
- Caused by direct ionization along the large track length 
- Requires testing at different angles 
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