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ABSTRACT

We have developed a concept design for a large (~10k x 10k) CMOS imaging array whose elements are grouped in
small subarrays with NV pixels in each. The subarrays are code-division multiplexed using the Hadamard Transform (HT)
based encoding. The Hadamard code improves the signal-to-noise (SNR) ratio to the reference of the read-out amplifier
by a factor of N'2. This way of grouping pixels reduces the number of hybridization bumps by N. A single chip layout
has been designed and the architecture of the imager has been developed to accommodate the HT base multiplexing into
the existing CMOS technology. The imager architecture aliows for a trade-off between the speed and the sensitivity. The
envisioned imager would operate at a speed >100 fps with the pixel noise <20 ¢". The power dissipation would be ~ 100
pW/pixel. The combination of the large format, high speed, high sensitivity and low power dissipation can be very
attractive for space reconnaissance applications.
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1. INTRODUCTION

The most demanding space reconnaissance applications require very large format, fast operating, and sensitive
imaging cameras. The major target figures of performance can be summarized into the following. The desired imager
should have a format of at least 4k x 4k pixels. This very large array should support a very high frame rate (at least 100
frames per second) while providing noise performance approaching that of photon noise limited performance.
Additienally, the detector should have a quantum efficiency approaching 100% over the entire visible spectrum, and
should be capable of internal electronic snapshot shuttering. Finally the imaging system should dissipate a low level of
power and should operate at or near room temperature. Neither currently existing CCD, nor CMOS imagers can
simultaneous provide all of the required operation features. Both these types of imagers have pros and cons. For example
! CMOS imagers are superior to CCDs in responsivity and speed. Also, because of the possibility to directly address
individual pixels via a transistor circuit integrated with the light sensor on the pixel, CMOS imagers are naturally capable
of doing windowing. They generally have natural blooming immunity and generally operate with a single bias voltage
and clock level (CCDs require a few high voltages). In its turn, CCDs have high dynamic range, better uniformity and
better shuttering ability. A more detailed comparison of these imaging technologies is given below.

1.1 CCDs

CCDs have been in existence since the earty 1970°s and are detectors of choice for most high performance and
scientific applications. Commercially available devices exist with array sizes of greater than 9k x 9k pixels 2. High frame
rates can be supported through the use of multiple (parallel) cutput ports on the same imager, which in effect break a
large array into some number of smaller arrays, which can be readout simultaneously. Near 100% quantum efficiency
can be obtained from CCDs by thinning the back surface of the array and illuminating from the backside. While CCDs
have many excellent performance characteristics, they cannot support all of the customer needs. While CCDs can
provide excellent quantum efficiency in a standard staring mode, problems arise with the additional requirement of
electronic snapshot shuttering. For effective shuttering at high frame rates it is necessary to make use of interline transfer
format CCDs. Interline transfer CCDs use a portion of each pixel as a photosite and the remainder of the pixel to support
charge transfer from the array. The portion supporting transfer must be opaque to the incident light in order to perform
shuttering. Hence, 100% quantum efficiency is not possible with this approach. Frame-transfer CCDs, devices, which
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use a secondary opaque storage region of equal size and shape to the imaging area for electronic shuttering, suffer from
other problems. There is a finite time required to transfer the integrated image from the imaging area to the shielded
storage area. To minimize image smear, this transfer time is typically less than 1% of the integration time. For large area
arrays this 1% transfer time requirement requires that the CCD gates be clocked at very high rates. These high rates
adversely affect the image quality through the reduction in charge transfer efficiency (image transfer smear) and require
the use of extreme amounts of current {(and hence power) to charge and discharge the CCD transfer gates. Furthermore,
backside thinned and illuminated imagers typically cannot support the required large current pulses since the thinning
process greatly increases the resistance of the ground plane of the CCD.

1.2 CMOS Imagers

CMOS imagers are a highly touted imaging technology, which came into the mainstream in the 1990°s. As such in
many ways they are still in their infancy. Typically CMOS imagers offer a lower levet of performance than comparable
resolution CCD imagers but several strong points such as inherent low power and device sub-circuit capabilities of the
fabrication technology make it attractive in some applications. In principle, large area CMOS imaging arrays can be
constructed through the use of photomask mosaicing. However, in practice, commercially available arrays tend to be
limited to the 1k x 1k pixel count. Very high frame rates can be supported through the use of multiple (parallel) output
ports on the same imager, which in effect break a large array into some number of smaller arrays, which can b¢ readout
simultaneously.

One of the major drawbacks to CMOS imaging technology is that of overall detectivity. All CMOS pixels contain
optically “dead” regions, which are related to active circuitry residing in the pixel and the metal interconnections
required to access each pixel. Hence quantum efficiency can never be 100%. Furthermore, backside thinning and
illumination, the process used to boost quantum efficiency in CCDs, cannot be easily used with CMOS imagers.
Complementary elements of CMOS devices require a low resistance path to ground in order to ¢liminate “latch-up”, a
well understood phenomenon of CMOS technology which causes very large amounts of current to pass through devices
in an uncontrolled manner. Latch-up can be fatal to CMOS devices. Finally electronic shuttering can be implemented in
CMOS imagers, but doing so increases the optically dead region, thereby reducing the overall quantum efficiency. Some
of the lost photons can be regained by using small lenses fabricated onte the top of each photosite. The microlenses focus
the incoming light into the active photosite area. The gain in quantum efficiency can be significant but is typically
wavelength dependent and non-uniform across the entire surface of the array.

1.3 CMOS/Photodiode Hybrids

Of the existing imager technologies, the CMOS/Photodiode hybrid comes closest to meeting the needs of the
customer. A CMOS/Photodiode hybrid is an imager constructed of two independent pieces: a photodiode array for
photon detection and a CMOS readout array that senses the captured signal and transfers it to the outside world for
readout. The two individual components are hybridized by means of a grid of indium bumps, which provide electrical
connection between them. Typically one indium bump is required for each pixel in the array. Hybrid arrays have been
used for many years in infrared imaging but have only recently been evaluated for use in the visible spectrum. The
approach provides many attractive performance features including high frame rate capability, low power operation and
electronic snapshot shuitering. Through the choice of an appropriate diode structure and material it is possible to provide
nearly 100% quantum efficiency over the visible wavelength range. Commercially available devices with snapshot
capability support array sizes as large as 1k x 1k pixels >

While the CMOS/Photodiode hybrid approach has many attractive features, there are issues with the technology,
which limjt the maximum number of pixels in an array as well as the minimum size of those pixels. Since an indium
bump is required for each pixel interconnection, the minimum pixel size is limited to that of the smallest repeatable
indium bump. At present this requires the pixel to be at least 18 microns per side. While this may be reduced somewhat
in the future, the indium bump will always represent a fundamental limit to the smallest possible pixel size and, hence
indirectly, the highest optical resolution. Another problem presented by the use of indium bumps is that of assembly
force. Each indium bump requires a minimum amount of force to properly form during the hybridization process. As the
number of pixel in the array grows, so does the force required for assembly. For large arrays on the order of 2k x 2k
pixels, this force can exceed the capability of material to withstand. In short, adding more pixels results in breakage of
the detector assembly. To bypass this limit it is possible to construct mosaics of individual detector arrays to increase the
overall pixel count. However, seams will always exist at the mosaic interface, which may be problematic from an
imaging perspective.
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In this paper we introduce a novel approach to the CMOS imager architecture that has a potential for overcoming the
many limitations which current state-of-the-art imager have. The main idea is to group signals from several (V) pixels of
a CMOS array with +1 or -1 weights in certain algebraic combinations. The algorithm for sequences of +1's amd -1's is
given by the Hadamard Transform (HT). The procedure represents some kind of the code-division multiplexing (CDM).
After N readings, NV original signals are restored with a suppressed contribution of the readout amplifier by a factor of
N"?. The proposed array architecture also reduces the number of hybridization indium bumps by N. In the following
sections we decribe the mathematical foundation for the novel CDM technique and the results of the design study and
modeling for a large (4k x 4k) HT multiplexed CMOS array.

2. HADAMARD TRANSFORM AND HADAMARD MULTIPLEXING

Hadamard Transform based techniques have been used for various scientific measurement applications for years and
the mathematical theory is well established. Yates * seems to have been the first to point out that by weighing several
objects together instead of separately it may be possible to determine the individual weights more accurately. The idea is
applicable to various types of measured quantities.

2.1 Hadamard matrices.

Suppose 4 quantities are to be measured using an instrument, which makes an error £ each time it is used. Assume
that € is a random variable with mean zero and variance ¢. First, suppose the objects are measured separately. If the
unknown quantities are x;, X, X5 X, the measurements are y; ¥; Vs Vs and the errors are &, &, &, &, the four
measurements give four equations:

yi=x+tg,1=1.4 1)

The best estimates of the unknown quantities are the measurements themselves:

X;=y; =X +g 9]

Since we assume the expected value (or average value over a large number of experiments}) of the error to be zero,
Efe} =0, then E{%}=x and E{(%-x)*}=E{e"} =07
For the second experiment, let’s measure x; in combinations:

Vi T XXXt TE
Y2 = X1~ X2tX3- Xyt (3)
Vs =x;HXz-X5- %4183
Ve =X1-X3-X3TxgtEy

or in the matrix form y = Wx +&.

The valid question to ask is: how should one chose the matrix W? If the number of measurements equals to the
number of unknowns then W should be invertable, that is X = W“ly. The mean square error of the estimate of the ith
unknown x; is

5 = E{(3,-x,)") ©)

Ideally one would like to minimize simulteneously all &. The most important result is due to Hotelling °, who

showed that for any choice of matrix W with !W"il =1, the & are bounded by £, = (02/N ) (¥ =4 in our example), and

that it is possible to have ¢, = (OZ/N ) for all ;= 1..N if and only if a Hadamard matrix Hy of order N exists (by taking

W = Hy). In our example above the Hadamard matrix Hy of order 4 was used.
A Hadamard matrix of order N is an NxN matrix Hy of +1's and —1's that satisfies HyHpy = N - Iy, Ly is the square
unity matrix. These matrices are thought to exist if and only if ¥ =1,2, or a multiple of 4. Numerous constructions are

known and a plentyful supply of Hadamard matrices is available ¢, One simple construction which generates Hadamard
matrices of orders 1, 2, 4, 8, 16, 32, ..., is the following:
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o1 [Hy Hy] -1 1 -1 (Hxz Hyp
H [1 mJ’ * [HZ —HJ_I R ‘[HN/Z “Hy, | ®)

These are called Sylvester-type Hadamard matrices.

2.2 Hadamard Transform based multiplexing
The multiplexing algorithm based on the Hadamard Transform is, in general, rather simple. Indeed, if we want to
multiplex N signal sources we need to encode them using a Hadamard matrix Hy, to measure the algebraic sums of the
signal N times and then to decode the original signal using the inverse Hadamard Transform. The noise undergoes a
similar procedure except the squares of noise voltages are always added.

2.2.1 Recovery of the signals

Let Sig be the vector whose elements correspond to the electrical signals generated in N pixels. Instead of reading all
Sig-elements one by one N times, the Hadamard multiplexer reads algebraic combinations of all N signals N times. The
rule on should an individual signal be added or subtracted in a given reading event is set by the Hadamard matrix.
Correspondingly, let Read be the vector whose elements correspond to the algebraically summed outputs for each of the
Nreading events. Then Read is the Hadamard Transfrom of Sig:

Read = % H, + Sig 6)

For example, for a 4-element array,
Read, = Sig,+Sig,+Sigs+Sigy
Readz = Sig1“5ig2+Sig3—Sig4 (7)
Read: = Sig,+Sig—Sig;—Sig,
Read, = Sig,—Sig,— Sigs+Sig,

Sig; = 1/4-(Read,+Read;+Read;+Ready)
Sigy = 1/4‘(Read1*Read2+Read3—Read4) (8)
Sig; = 1/4-(Read;+Read,—Read;—Read,)
Sig; = 1/4-(Read,—Read,-Read;+Read,).

The generation of the Hadamard matrices using instrumentation can be done differently depending on the type of
detector elements. For multiplexing of elements in a CMOS array, a scheme of Fig. 1 can be used. It implies a
connection of each photosensor to either plus- or minus-bus via two switches. The order of connection is given by the
Hadamard code. At each bus, the signals from all sensors
are added and, after that, a differential amplifier puts out a
difference of plus and minus outputs.

Summing minus-bus

L
bl
\5? 52153154
F

Summing plus-bus

2.2.2 Modification of the noise

Noise modification is important for multiplexed
detector arrays. In the case of grouping elements (like the
HT MUX does) a multiplexer folds noise from all
detectors into one readout amplifier. So, depending on the
dominating noise source, multiplexing speed and
presence/absence of the output filters on the detector
elements the de-multiplexed noise associated with a single
pixel can be very different from that in the non-

Output

multiplexed case. Let’s first consider the situation when
the noise originates in pixels and the readout amplifier

Fig. 1. Switch-encoded HT multiplexing scheme. Each pixel
connects four times to either plus- or minus-bus to generate vector
Read of Eq. 6.
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noise is negligibly small. We will consider three noise bands:

LF. This is the band with an upper cutoff frequency of 2/(Nz), where T is the single-measurement integration time.
This low-frequency noise is unchanging during the course of the N measurements. The LF noise "cross-talk” does not
represent a problem. The LF noise which is contributed by all N-1 detector elements to element j is completely removed
by the Hadamard de-multiplexing. Indeed, a single measurement result would be:

N
Read,, = Elh j,k(Sig ; +LFj). 9)
Jj=

Since LF}, just like the signal Sig;, does not change over the time scale of the measurements the inverse Hadamard
Transform fully recovers Sig+LF;.

MF. This is the medium-frequency range where the noise of each detector element remains nearly constant during
the single-measurement integration time 7 but varies during the time for N single-measurements. During a single-
measurement integration time, the MF noise voltages are statistically independent from detector element to detector
element. For each detector element the MF noise voltage varies slightly from single-measurement to single-
measurement. Thus, MF noise of successive single-measurements has a high degree of correlarion. The degree of
correlation decreases between single-measurements as they are more widely separated in time. MF noises of
measurements 1 and N are completely uncotrelated. Let index 7 identify the detector elements when they are read out in
series and index j identify the single-measurements of series (summed) signals + noises. MF;; is the ensemble of noise
values that contributes to the entire Hadamard measurement scheme. The Hadamard extraction process sums over all

. 1 ¥ X . .
these values: Sig, = T 2 2~y iy MF, ; The sum over i adds N uncorrelated numbers that results in N numbers that are
Jj=li=1

weakly correlated. A careful rigorous analysis of the degradation to SNR caused by MF noise was not possible at this
time. It is, however, unlikely that the Hadamard-extracted single-element SNR may be somewhat degraded by a yet to be
determined quantity of time-correlated noise compared to the previous cases.

HF. This is the high-frequency band where the noise varies substantially during a single-measurement integration
time. If the HF noise "cross-talk" is present the noise for each detector element changes completely and randomly from
single-measurement to single-measurement. The HF rms noise voltage on a single measurement Read; is N'” times that
on a single detector element. But the N readings reduce this noise by N7 so once again the HT de-multiplexing process
returns the individual signal values plus an HF noise component equal to that of a single measurement of an isolated
detector element. Depending of the nature of the array, the HF noise can be dealt with using low-pass filters (LPF) at
each element. The white noise in the pixel above the filter cutoff will not cross-contaminate the signals.

Now let’s consider the noise modification when the amplifier noise dominates. The LF noise, which is not different
from the signal, recovers completely and, thus, the SNR, remains unchanged. The HF noise of the amplifier adds just
once per each reading event, that is

N
Read,, = Zlh 45ig ; + HF ., (10)
j:

After the HT, its rms value reduces by N2, Indeed, during the inverse HT we have to algebraically add Read; (the
noises add as squares) and then to divide the result by N. Therefore, the SNR increases by N'°. This is a great
improvement of the performance. For very large N, this creates a large room for trading off the sensitivity increase vs the
multiplexing speed.

3. HADAMARD TRANSFORM HYBRID IMAGING TECHNOLOGY (HT-HIT)

This is the approach proposed in this work. The HT-HIT overcomes all of the performance issues described in the
Section 1. An HT-HIT array is a hybrid, which uses HT multiplexing of groups of pixels on the imaging chip. A
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significant advaniage is that this requires just two indium
bumps per group, not per pixel. It reduces the bonding force
and the bump capacitance and allows for a larger array.

The imaging array was assumed to be fabricated using
“standard” 0.8 um CMOS process with a 150 A oxide
thickness, 1 level of polysilicon and 3 levels of metal
interconnection, stacked contact and via technology. The
hybridized CMOS Signal Processor uses “standard” 0.35 um
CMOS process, 70 A oxide thickness, 2 levels of polysilicon,
4 levels of metal interconnection, and stacked contact and via
technology. The simulations were performed using a
combination of Tanner Software T-Spice and a proprietary
software program by Tangent Technologies..

The pixel layout is shown in Fig. 2. From the point of
view of electrical schematics, it follows the circuit of Fig. 1.
The integration of pixels into a group of 16 is shown in
Fig. 3. The group uses just two indium bumps to connect to
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Fig. 2. The layout of a CMOS imaging pixel with the
contro! gates for HT multiplexing,

the CMOS processor chip. Figure 4 shows the organization of the corresponding circuitry on the signal processor chip.
Based on this topological solution, the following “strawman detector” concept has been evaluated:

4096 % 4096 Pixels

Frame Rate = 100 fps

Shuttering Time = 100 us (1% of integration)
N =16 (16 Pixels per HT Group)

Pixel Size =10 um x 10 um

Total Number of Hybrid Bumps = 2.1 x 10°

Place I ADC for Each 64 Element Subsection

The differential amplifier noise is 25 nV/Hz"?

The ambient temperature T=300K

Use one sampling capacitor per pixel for “snap-shot” imaging (Csampling = 500 {F)
Group N Pixel Sections into Groups of 64 Subsections

Use additional multiplexing to reduce number of outputs

With these parameters the capacitance of the pixel is 50 {F and the Pixel Full Well = 26,000-30,000¢ . The pixel
noise reduces by a factor of 4 to ~15 ¢ in comparison with the design not using the HT. This corresponds to the dynamic

range >1500.
The power balance of the imager is the following:
Pixel Clocking 72 mW
HT Analog 84 mw
Peripheral Analog 1089 mW
HT Digital 2 mW
ADC 350 mW
Total Estimated Power 1.6 W

This is 25 times less that than the expected dissipation in a
CCD imager with similar performance figures.

The actual performance Hmitations of the HT-HIT approach
will be determined by the processing technology used for device
fabrication. Specifically, process factors, which affect low
frequency noise, maximum current capacity per unit area of
transistors and density of metal interconnects will have major
impacts upon the performance of the imager.

The maximum pixel count of the HT-HIT imager is
controlled by the same issue that limits the size of
CMOS/Photodiode hybrids - maximum hybridization force.
However, since the HT-HIT approach requires fewer indium
bumps for a given pixel count than a CMOS/Photodiode hybrid,
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Fig. 3. A 16-pixel HT group. The topology of the design
allows for the HT multiplexing using switching gates.
The multiplexed signals are read by a differential
amplifier on a separate chip connected via indium
bumps.



DRAFT 2/17/05 1:20 PM

40unmy

40um
~60mm

m Array of 8K paratiel ADCs |11 I

' Mutﬁglexers

Output
Driver

~50 mm

Fig. 4. The architecture of the CMOS signal processor. Left panel: the CMOS signal Imager Group contains 2 40 um x 40 pm array
of sampling capacitors, which matches to the 16-pixel HT group of Fig. 3, a differential amplifier, switching' controls and a

Correlated Double Sampling (CDS) circuit. Right panel: the CMOS Signal Imager Processor integrates ~ 1.05 million of HT groups
with peripheral circuitry in the 5 cm x 6 ¢m area.

HT-HIT can support arrays with larger pixels. Furthermore, as connections are not required for individual pixels, the
minimum pixel size is not controlled by the minimum indium bump size. Based on the results of this study the HT-HIT
approach can support arrays of greater than 10k x 10k pixels with pixel sizes on the order of 10um x 10um.

4. CONCLUSIONS

We have proposed a new multiplexing techniques for CMOS arrays based on the Hadamard Transform encoding of
the pixels. The HT MUX offers an almost 100% duty cycle and, as a result, a N7 SNR improvement when the readout
amplifier is the main source of noise.

A 4k x 4k HT-HIT detector has been designed and evaluated. The HT-HIT approach supports

frame rates of 100 {ps or greater

inherent internal snap-shot shuttering

read noise of less than 20 e- (rms)

dynamic range greater than 10 bits

power of less than 100 nW/pixel at 100 fps operating rate

HT-HIT is well suited for larger format devices since i) very large imagers will make use of larger N values ii) larger
N values reduce the number of hybrid bumps. i

The new approach promises to improve state-of-the art for visible range imagers. In particutar, the HT-HIT approach
has the following advantages over the existing imagers:

- In comparison with the best CCD imagers, the HT-HIT approach allows for similarly large array formats
~10k » 10k but with more than an order of magnitude less dissipated power and better shuttering capabilities;

- In comparison with the CMOS imagers, the HT-HIT approach allows for much larger array formats due to
reduced number of hybridization indium bumps and it also reduces the pixel noise by a factor of N,
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ABSTRACT

We have developed a concept design for a large (~10k x 10k) CMOS imaging array whose elements are grouped in
small subarrays with NV pixels in each. The subarrays are code-division multiplexed using the Hadamard Transform (HT)
based encoding. The Hadamard code improves the signal-to-noise (SNR) ratio to the reference of the read-out amplifier
by a factor of N'7. This way of grouping pixels reduces the number of hybridization bumps by N. A single chip layout
has been designed and the architecture of the imager has been developed to accommodate the HT base multiplexing into
the existing CMOS technology. The imager architecture allows for a trade-off between the speed and the sensitivity. Ths
envisioned imager would operate at a speed >100 fps with the pixel noise <20 ¢". The power dissipation would be ~ 100
pW/pixel. The combination of the large format, high speed, high sensitivity and low power dissipation can be very
attractive for space reconnaissance applications. '

Keywords: CMOS irﬁager, Hadamard Transform, code-division multiplexing
1. INTRODUCTION

The most demanding space reconnaissance applications require very large format, fast operating, and sensitive
imaging cameras. The major target figures of performance can be summarized into the following. The desired imager
should have a format of at least 4k x 4k pixels. This very large array should support a very high frame rate (at least 100
frames per second) while providing noise performance approaching that of photon noise limited performance.
Additionally, the detector should have a quantum efficiency approaching 100% over the entire visible spectrum, and
should be capable of internal electronic snapshot shuttering. Finally the imaging system should dissipate a low level of
power and should operate at or near room temperature. Neither currently existing CCD, nor CMOS imagers can
simultaneous provide all of the required operation features. Both these types of imagers have pros and cons, For example
', CMOS imagers are superior to CCDs in responsivity and speed. Also, because of the possibility to directly address
individual pixels via a transistor circuit integrated with the light sensor on the pixel, CMOS imagers are naturally capable
of doing windowing. They generally have natural blooming immunity and generally operate with a single bias voltage
and clock level (CCDs require a few high voltages). In its turn, CCDs have high dynamic range, better uniformity and
better shuttering ability. A more detailed comparison of these imaging technologies is given below.

1.1 CCDs :

CCDs have been in existence since the early 1970°s and are detectors of choice for most high performance and
scientific applications. Commercially available devices exist with array sizes of greater than 9k x 9k pixels %, High frame
rates can be supported through the use of multiple (parallel) cutput ports on the same imager, which in effect break a
large array into some number of smaller arrays, which can be readout simultaneously. Near 100% quantum efficiency
can be obtained from CCDs by thinning the back surface of the array and illuminating from the backside. While CCDs
have many excellent performance characteristics, they cannot support all of the customer needs. While CCDs can
provide excellent quantum efficiency in a standard staring mode, problems arise with the additional requirement of
electronic snapshot shuttering. For effective shuttering at high frame rates it is necessary to make use of interline transfer
format CCDs. Interline transfer CCDs use a portion of each pixel as a photosite and the remainder of the pixel to support
charge transfer from the array. The portion supporting transfer must be opaque to the incident light in order to perform
shuttering. Hence, 100% quantum efficiency is not possible with this approach. Frame-transfer CCDs, devices, which
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use a secondary opaque storage region of equal size and shape to the imaging area for electronic shuttering, suffer from
other problems. There is a finite time required to transfer the integrated image from the imaging area to the shielded
storage area. To minimize image smear, this transfer time is typically less than 1% of the integration time. For large area
arrays this 1% transfer time requirement requires that the CCD gates be clocked at very high rates. These high rates
adversely affect the image quality through the reduction in charge transfer efficiency (image transfer smear) and require
the use of extreme amounts of current (and hence power) to charge and discharge the CCD transfer gates. Furthermore,
backside thinned and illuminated imagers typically cannot support the required large current pulses since the thinning
- process greatly increases the resistance of the ground plane of the CCD.

1.2 CMOS Imagers

CMOS imagers are a highly touted imaging technologyv, which came into the mainstream in the 1990’s. As such in
many ways they are still in their infancy. Typically CMOS imagers offer a lower level of performance than comparable
resolution CCD imagers but several strong points such as inherent low power and device sub-circuit capabilities of the
fabrication technology make it atiractive in some applications. In principle, large area CMOS imaging arrays can be
constructed through the use of photomask mosaicing. However, in practice, commercially available arrays tend to be
limited to the 1k x 1k pixel count. Very high frame rates can be supported through the use of multiple (parallel) output
ports on the same imager, which in effect break a large array into some number of smalier arrays, which can be readout
simultaneously.

Ome of the major drawbacks to CMOS imaging technology is that of overall detectivity. All CMOS pixels contain
optically “dead” regions, which are related to active circuitry residing in the pixel and the metal interconnections
required fo access each pixel. Hence guantum efficlency can never be 100%. Furthermore, backside thinning and
illumination, the process used to boost quantum efficiency in CCDs, cannot be easily used with CMOS imagers.
Complementary elements of CMOS devices require a low resistance path to ground in order ¢ eliminate “latch-up”, a
well understood phenomenon of CMOS technology which causes very large amounts of current to pass through devices
in an uncontrolled manner. Latch-up can be fatal to CMOS devices. Finally electronic shuttering can be impiemented in
CMOS imagers, but doing so increases the optically dead region, thereby reducing the overall quantum efficiency. Some
of the lost photons can be regained by using small lenses fabricated onto the top of each photosite. The microlenses focus
the incoming light info the active photosite area. The gain in quantum efficiency can be significant but is typically
wavelength dependent and non-uniform across the entire surface of the array.

1.3 CMOS/Photodiode Hybrids

Of the existing imager technologies, the CMOS/Photodiode hybrid comes closest to meeting the needs of the
customer. A CMOS/Photediode hybrid is an imager constructed of two independent pieces: a photodiode array for
photon detection and a CMOS readout array that senses the captured signal and fransfers it to the outside world for
readout. The two individual components are hybridized by means of a grid of indium bumps, which provide electrical
connection between them. Typically one indium bump is required for éach pixel in the array. Hybrid arrays have been
used for many vears in infrared imaging but have only recently been evaluated for use-in the visible spectrum. The
approach provides many attractive performance features inclading high frame rate capability, low power operation and
electronic snapshot shuttering. Through the choice of an appropriate diode structure and material it s possible to provide
nearly 100% quantum efficiency over the visible wavelength range. Commercially available devices with snapshot
capability support array sizes as large as 1k x 1k pixels .

While the CMOS/Photodiode hybrid approach has many attractive features, there are issues with the technology,
which limit the maximum number of pixels in an array as well as the minimum size of those pixels. Since an indium
bump is required for each pixel interconnection, the minimum pixel size is limited to that of the smallest repeatable
indium bump. At present this requires the pixel to be at least 18 microns per side. While this may be reduced somewhat
in the future, the indium bump will always represent a fundamental limit to the smallest possible pixel size and, hence
indirectly, the highest optical resolution. Another problem presented by the use of indium bumps is that of assembly
force. Each indium bump requires a minimum amount of force to properly form during the hybridization process. As the
number of pixel in the array grows, so does the force required for assembly. For large arrays on the order of 2k x 2k
pixels, this force can exceed the capability of material to withstand. In short, adding more pixels results in breakage of
the detector assembly. To bypass this limit it is possible to construct mosaics of individual detector arrays to increase the
overall pixel count. However, seams will always exist at the mosaic interface, which may be problematic from an
imaging perspective.
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In this paper we introduce a novel approach to the CMOS imager architecture that has a potential for overcoming the
many limitations which current state-of-the-art imager have. The main idea is to group signals from several (V) pixels of
a CMOS array with +1 or -1 weights in certain algebraic combinations. The algorithm for sequences of +1's amd -1's is
given by the Hadamard Transform (HT). The procedure represents some kind of the code-division multiplexing (CDM).
After N readings, NV original signals are restored with a suppressed contribution of the readout amplifier by a factor of
N2 The proposed array architecture also reduces the number of hybridization indium bumps by N. In the following
sections we decribe the mathematical foundation for the novel CDM technique and the results of the design study and
modeling for a large (4k = 4k) HT multiplexed CMOS array.

2. HADAMARD TRANSFORM AND HADAMARD MULTIPLEXING

Hadamard Transform based techniques have been used for various scientific measurement applications for years and
the mathematical theory is well established. Yates * seems to have been the first to point out that by weighing several
objects together instead of separately it may be possible to determine the individual weights more accurately. The idea is
applicable to various types of measured quantities.

T

2.1 Hadamard matrices.

Suppose 4 guantities are to be measured using an instrument, which makes an error € each time it is used. Assume
that ¢ is a random variable with mean zero and variance . First, suppose the objects are measured separately. If the
unknown quantities are X, X; X3 Xy the measurements are y; yi, Vi Vs and the errors are g, £, &, &, the four
measurements give four equations:

y=xte, i=1.4 (1)

The best estimates of the unknown quantities are the measurements themselves:

X, =y = X, +E (2)
Since we assume the expected value (or average value over a large number of experiments} of the error to be zero,
E{e}=0,then E{%}=x and E{(x-x)*} = E{e*} =0".
For the second experiment, let’s measure x; in combinations:

Vi = XXX g
Vo = Xp-X;vXz- Xyt Es (3)
V3 T X)Xy~ X3- X0 E;
Py = Xp-Xp-X3Tx,t g

or in the matrix form y = Wx +&.
The valid question to ask is: how should one chose the mafrix W? If the number of measurements equals to the

number of unknowns then W should be invertable, that is X = Wmly. The mean square error of the estimate of the ith
unknown x; is
~ 2 -
& = E{(xi - Xf) ¥ 4)
Ideally one would like to minimize simulteneously all s. The most important result is due to Hotelling °, who

showed that for any choice of matrix W with !Wii‘ =1, the & are bounded by £, = {UZ/N) (N=4 in our example)}, and

L \ . Lo . . L 3
that it is possible to have &; = (0'2/[]\7) for all = 1..N if and only if a Hadamard matrix Hx of order N exists (by taking
W = Hy). In our example above the Hadamard matrix H, of order 4 was used.

A Hadamard matrix of order & is an NxN matrix Hy of +1's and —1's that satisfies HyHE = N -1y, Iy is the square

unity matrix. These matrices are thought to exist if and only if N = 1,2, or a multiple of 4. Numerous constructions are
_known and a plentyful supply of Hadamard matrices is available ¢, One simple construction which generates Hadamard
matrices of orders 1, 2, 4, 8, 16, 32, ..., is the following:
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U H, H,} & -1 1 = [Hyp Hyp
H,= H, =2 = B ; " 5
: L -1} 4 [Hz —HJ ’1 S | [HN/, ~Hyy, ©)
-1 -1 1

These are called Sylvester-type Hadamard matrices.

2.2 Hadamard Transform based multiplexing
The multiplexing algorithm based on the Hadamard Transform is, in general, rather simple. Indeed, if we want o
nal sources we need to encode them using a Hadamard matrix Hy, to measure the algebraic sums of the
signal N times and then to decode the original signal using the inverse Hadamard Transform. The noise undergoes a
similar procedure except the squares of noise voltages are always added.

xxxxx [

multiplex A si

2.2.1 Recovery of the signals

Let Sig be the vector whose elements correspond to the electrical signals generated in N pixels. Instead of reading all
Sig-elements one by one N times, the Hadamard multiplexer reads algebraic combinations of all N signals N times. The
rule on should an individual signal be added or subiracted in a given reading event is set by the Hadamard matrix.
Correspondingly, let Read be the vector whose elements correspond to the algebraically summed outputs for each of the
Nreading events. Then Read is the Hadamard Transfrom of Sig:

1
Read=—H *Si 6
N g (6)
For example, for a 4-element array,

Read,; = Sig;+8ig,+Sig;+Sig,

Readg = Slgl—Slg2+Slg3~Slg4 (7)

Read; = Sig;+Sig—Sigs—Sig,

Read, = Sig;—Sig;— Sigs+8igy

Sig) = 1/4-(Read,+Read,+Read;rRead,)

Sig, = 1/4-(Read;—Read,+Read;—Read,) (8)

AT

Sigs = 1/4-(Read;+Read,—Read;—Read,)
Sig, = 1/4-{Read,;—Read,—Reads+Read,).

The generation of the Hadamard matrices using instrumentation can be done differently depending on the type of
detector elements. For multiplexing of elements in a CMOS array, a scheme of Fig. 1 can be used. It implies a
connection of each photosensor to either plus- or minus-bus via two switches. The order of connection is given by the
Hadamard code. At each bus, the signals from all sensors
are added and, after that, a differential amplifier puts out a {
difference of plus and minus outputs.

Summing minus-bus

2.2.2 Modification of the noise {

Noise modification is important for multiplexed ~ ~ ~ —{\
detector arrays. In the case of grouping elements (like the 1 LT LTt :F“‘t/‘ ‘ F—V
HT MUX does) a multiplexer folds noise from all - o 5 | o

detectors into one readout amplifier. So, depending on the
dominating noise source, multiplexing speed and
presence/absence of the output filters on the detector
elements the de-multiplexed noise associated with a single
pixel can be very different from that in the non-

.

]

Summing plus-bus

multiplexed case. Let’s first consider the situation when
the noise originates in pixels and the readout amplifier

Fig. 1. Switch-encoded HT multiplexing scheme. Each pixel
connects four times to either plus- or minus-bus to generate vector
Read of Eq. 6.
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noise is negligibly small. We will consider three neise bands:

LF. This is the band with an upper cutoff frequency of 2/(Nt), where 7 is the single-measurement integration. time.
This low-frequency noise is unchanging during the course of the & measurements. The LF noise "cross-talk” does no

represent a problem. The LF noise which is contributed by all N-1 detector elements to element j is completely removed
by the Hadamard de-multiplexing. Indeed, a single measurement result would be:

N .
Read,, = S h;,{Sig; + LF;). ©)
=l

Since LF}, just like the signal Sig,, does not change over tie time scale of the measurements the inverse Hadamard
Transform fully recovers Sig+LF;.

MF. This is the medium-frequency range where the noise of each detector element remains nearly constant during
the single-measurement integration time t but varies during the time for N single-measurements. During a singie-
measurement integration time, the MF noise voltages are statistically independent from detector element to detector
element. For each detector element the MF noise voltage varies slightly from single-measurement to single-
measurement. Thus, MF noise of successive single-measurements has a high degree of correlation. The degree of
correlation decreases between single-measurements as they are more widely separated in time. MF noises of
measurements 1 and N are completely uncorrelated. Let index i identify the detector elements when they are read out in
series and index j identify the single-measurements of series (summed) signals + noises. MF,; is the ensemble of noise
values that contributes to the entire Hadamard measurement scheme. The Hadamard extraction process sums over all

N N
L 2 2k ME, ; The sum over § adds N uncorrelated numbers that results in N numbers that are
j=li=l
weakly correlated. A careful rigorous analysis of the degradation 10 SNR caused by MF noise was not possible at this
time. It is, however, unlikely that the Hadamard-exiracied single-element SNR may be somewhat degraded by a vet to be

determined quantity of time-correlated noise compared to the previous cases.

these values: Sig, =

HF. This is the high-frequency band where the noise varies substantially during a single-measurement integration
time. If the HF noise "cross-talk” is present the noise for each detector element changes completely and randomly from
single-measurement to single-measurement. The HF rms noise voltage on a single measurement Read, is N7 times that
on a single detector element. But the N readings reduce this noise by N7 s0 once again the HT de-multiplexing process
returns the individual signal vaiues plus an HF noise component equal to that of a single measurement of an isolated
detector element. Depending of the nature of the array, the HF noise can be dealt with using low-pass filters (LPF) at
each element. The white noise in the pixel above the filter cutoff will not cross-contaminate the signals.

Now let’s consider the noise modification when the amplifier noise dominates. The LF noise, which is not different
from the signal, recovers completely and, thus, the SNR, remains unchanged. The HF noise of the amplifier adds just
once per each reading event, that is

amp.

N
Read, = 3 h;,Sig; + HF, (10)
j=1

P o1 v wes n + 1 a2 oy oa 3 . v - e ¥ . 1 ] - T 13 7o
After the HT, its rms vaiue reduces by V', Indeed, during the inverse HT we have to algebraically add Read, (the
. o o 5 1/2 9. g
noises add as squares) and then to divide the result by N. Therefore, the SNR increases by A", This is a great
improvement of the performance. For very large N, this creates a large room for trading off the sensitivity increase vs the

multiplexing speed.
3. HADAMARD TRANSFORM HYBRID IMAGING TECHNOLOGY (HT-HIT)

This is the approach proposed in this work. The HT-HIT overcomes all of the performance issues described in the
Section 1. An HT-HIT arrav is a hybrid, which uses HT multiplexing of groups of pixels on the imaging chip. A
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significant advantage is that this requires just two indium
bumps per group, not per pixel. It reduces the bonding force
and the bump capacitance and allows for a larger array.

The imaging array was assumed to be fabricated using
“standard” 0.8 wum CMOS process with a 150 A oxide
thickness, 1 level of polysilicon and 3 levels of metal
interconnection, stacked contact and via technology. The
hybridized CMOS Signal Processor uses “standard” 0.35 wm
CMOS process, 70 A oxide thickaess, 2 levels of polysilicon,
4 levels of metal interconnection, and stacked contact and via
technology. The simulations were performed using a
combination of Tanner Software T-Spice and a proprietary
software program by Tangent Technologies..

The pixel layout is shown in Fig. 2. From the point of
view of electrical schematics, it follows the circuit of Fig. 1.
The integration of pixels intw a group of 16 is shown in
Fig. 3. The group uses just two indium bumps i0 connect to

1330,
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Fig. 2. The layout of 2 CMOS imaging pixel with the
control gates for HT multiplexing.

the CMOS processor chip. Figure 4 shows the organization of the corresponding circuitry on the signal processor chip.
t

Based on this topological solution, the following “strawman detector” concept has been evaluated:

e 4096 x 4096 Pixels

*  Frame Rate = 100 fps

*  Shuttering Time = 100 us (1% of integration)
e N =16 (16 Pixels per HT Group)

#  PixelSize =10 um x 10 um

¢ Use one sampling capacitor per pixel for “snap-shot” imaging (Csampling = 500 {F)

»  Total Number of Hybrid Bumps = 2.1 x 10°

*  Group N Pixel Sections into Groups of 64 Subsections

¢ Place 1 ADC for Each 64 Element Subsection

»  Use additional multipiexing to reduce number of cutputs

©  The differential amplifier noise is 25 nV/Hz'"?

= The ambient lemperature T-300K

With these parameters the capacitance of the pixel is 50 fF and the Pixel Full Well = 20,000-30,000¢ . The pixel
noise reduces by a factor of 4 to ~15 e in comparison with the design not using the HT. This corresponds to the dynamic

range >1500.
The power balance of the imager is the following:
Pixel Clocking 72 mW
HT Analog 84 mW
Peripheral Analog 1089 mW
HT Digital 2mW
ADC 350 mW
Total Estimated Power 1.6 W

This is 25 times less that than the expected dissipation in a
CCD imager with similar performance figures.

The actual performance limitations of the HT-HIT approach
wiii be determined by the processing technology used for device
fabrication. Specifically, process factors, which affect low
frequency noise, maximum current capacity per unit area of
transistors and density of metal interconnects will have major
impacts upon the performance of the imager.

The maximum pixel count of the HT-HIT imager is
controlled by the same issue that limits the size of
CMOS/Photodiode hybrids - maximum hybridization force.
However, since the HT-HIT approach requires fewer indium
bumps for a given pixel count than a CMOS/Photodiode hybrid,

Fig. 3. A 16-pixel HT group. The topology of the design
allows for the HT multiplexing using switching gates.
The multiplexed signals are read by a differential
amplifier on a separate chip connected via indium
bumps.
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40um

40um :
F~60mm
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Output . | j Mulfiplexers .- BB .+
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Fig. 4. The architecture of the CMOS signal processor. Left panel: the CMOS signal Imager Group contains a 40 um x 40 um array
of sampling capacifors, which matches to the 16-pixel HT. group of Fig. 3, a differential amplifier, switching controls and a
Correlated Double Sampling (CDS) circuit. Right panel: the CMOS Signal Imager Processor integrates ~ 1.035 million of HT groups
with peripheral circuitry in the 5 cm x 6 cm area.

HT-HIT can support arrays with larger pixels. Furthermore, as connecticns are not required for individual pixels, the
minimum pixel size is not controlled by the minimum indium bump size. Based on the resuits of this study the HT-HIT
approach can support arrays of greater than 10k » 10k pixels with pixel sizes on the order of 10um * [0um.

4. CONCLUSIONS

We have proposed a new multiplexing techniques for CMOS arrays based on the Hadamard Transform enceding of
the pixels. The HT MUX offers an almost 100% duty cycle and, as a result, a N'° SNR improvement when the readout
amplifier is the main source of noise.

A 4k = 4k HT-HIT detector has been designed and evaluated. The HT-HIT approach supports

frame rates of 100 fps or greater

inherent internal snap-shot shuttering

read noise of less than 20 e- (fms}

dynarnic range greater than 10 bits

power of less than 100 nW/pixel at 100 fps operating rate

HT-HIT is well suited for larger format devices since i) very large imagers will make use of larger N values iI) Iarger

N values reduce the number of hybrid bumps.

The new approach promises fo improve state-of-the art for visible range imagers. In particular, the HT-HIT approach
has the following advantages over the existing imagers:

- In comparison with the best CCD imagers, the HT-HIT approach allows for similarly large array formats
~10k % 10% but with more than an order of magnitude less dissipated power and better shuttering capabilities;

- In comparison with the CMOS imagers, the HT-HIT approach allows for much larger array formats due to
reduced number of hybridization indium bumps and it also reduces the pixel noise by a factor of N,
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