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Abstract

A composite clock created from a local clock ensemble is known by s time offsets from
the ensemble clocks. By a geometrical argument, estimates for the instability of the composite
clock are calenlated from the instabilities of the ensemble clocks, individually and against the
composite clock. The method is fllustrated by examples using simulated and real ensembles.

1 INTRODUCTION

Suppose that we have a local ensemble of uncorrelated clocks Aq, ..., Ay, called the base clocks.
Their instabilities are assumed to be known, where instability is defined by any of the deviations
(Allan, modified Allan, Hadamard) customarily used for clocks. Tn addition, there is another clock
X whose offset from each A; is known as a function of time. In particular, X could be a composite
clock that is formed from some timescale algorithm operating on measurements of the differences
A; — A; of the base clocks. Having estimated the instabilities of the base clocks A; and of the
offsets X — A;, how much can we find out about the instability of X itself? ‘There has to be some
information about it, but is it good enough to be useful?

By a geometrical argument, we will show how to compute the range of possible instabilities
of X without using any outside comparisons and without knowing anything about the algorithm
that produces X. For one or two clocks, the geomelry can be shown by a simple diagram; for
any nurber of clocks, the argument is carried ont by algebra, and the resulis are given by simple
formmlas. There is & minimimm instability, a maximum instability, and an intermediate “mid”
estimate.

After developing the formulas we show three examples, two from simulations and one from real
cdlocks, and discuss the limitations of the method that are mherent in our imperfect knowledge of

the required data.

2 A GEOMETRICAL ARGUMENT

Any RMS instability measure, for a single averaging time, can be regarded as a norm generated
by an inner product on a vector space of random phase residuals. To be specific, consider Allan
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deviation oy, (1}, where 7 is fixed in this discussion. If A and B are two clocks with phase deviations
24 (t) and zp (t), define the inner product

(A, B), = 57 B [A2ns ()] [Alws (1), | 1)

where it is assumed that the expectation does not depend on ¢. Then oy, (1) for clock A is the norm
| All.. generated by this inner product: '

ay () = Al = 1/ (4, A),.. 2

Each 7 determines a different norm?, or metric. The instability of A and B relative to each other is
|A — BJ|,, the distance between the fwo points in this metric space. The clocks are orthogonal in
this inner product, {4, B). =0, if the clocks are uncorrelated and |E A2z, ()] [EAZzg (3)] =0.
We may now use the algebraic machinery of inner product spaces to find our way about. Because
we are dealing with a finite mumber of “vectors”, this algebra is the samne as the algebra of Euclidean
spaces and can be interpreted geometrically. In the following arguments, the base subspace is
defined as the space of linear combinations of the base clocks, which are assumed to be orthogonal.

2.1 Omne base clock

Silly as it may seem, we can begin with just one base clock A and the other clock X. Let a == ||A]|,,
z=UXJj,, d=||X — All,. We know a and d and want to estimate z. In Figure 1, the point X is
somewhere on a circle with radius d and center at ¢ on the baseline, and z is the length of OX.
The maximum and minimum of = are a -+ 4 and |a — d| (whether or not @ > d). The intermediate
estimate Zp;q comes from the assumption that clock X equals clock 4 plus something orthogonal
to A. Thus for one base clock we express the results as

Tmax = 0+ d, T =|a—d|, Zma=+Va®+d. | (3)

Fig'ure 1: One base clock.

2.2 Two base clocks

For two base clocks, three dimensions are needed. Figure 2 (which lacks the third dimension) shows
the geometry. The orthogonal base clocks Ay and As have norms a; and ap. We also know the

IStrietly speeking, this is 2 seminorm because ||A]] = 0 if the clock has constant frequency. Or we can identify
clocks that differ only by a constant frequency.
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distances dy and dy of X from A; and Ap. The possible values of x = | X|.. are realized by rotating
X out of the plane about the axis A;As, keeping the distances d; and ds fixed. The picture shows
Eoin 80 Tomax, Which are the values of z when X is in the plane, that is, in the base subspace.
(In the picture, X is at the max position.) When X is directly above or below a point on AgAs,
then X is as far from the plane as it can bé, and X is a weighted average of the base clocks plus
a vector X | orthogonal to the base subspace. We define Zmiq to be the length of either of these
two X’s. {In an extreme case, one of the two weights can be negative, though their sum is 1.) The
suthor feels intuitively that this solution has special value for estimating the norm of a composite
clock, simply because timescale algorithms express the composite clock phase or its increment as
a weighted average of the detrended base clocks. The author has no further argument to support

+his intuition, however.

-0

Figure 2: Two base clocks. The point X is rotated out of the plane.

2.3 Any number of base clocks

For n base clocks the argument can be carried out algebraically. The clocks A; are assumed to be
orthogonal. Given o; = || 4], > 0 and d; = || X — Ai]|, for all ¢, we wish to estimate z = WX\,
We can represent X by the orthogonal expansion

X = (Zmﬁfsg + X, (4)

i=1
where X | is a vector that is orthogonal to the base subspace. Let z; = | X ||,. Then
) ,
7’ = (Z zf) k. (5)
i=1 :
where (X, A
s fdif -
by = 02 6
= )
Now .
& = || X — Al =a® = 2(X, A}, + o} =& — 20 + af,
24 02— g2
Y b (7)
@



Square both sides of {7) and sum over 4. By (5),

n 9 2 ?2
I Pl e

=1 4

Expand the terms in this swm and collect powers of z. Setting

2 .
i=1-4 ®)

a;

we gpi‘

24507 207 (2 — Ta) + Yoarer + 4o’ =0.
To simplify this equation further, set
y=2"Y0;?, yi =l (9)

Then
y? — 2By +C +4y, =0, (10)

where

B=2-%% C={(> a2 (Yall). ' (11)
y= B+ /B —C - gy, (12)

with. corresponding solutions for z according to (9).
A necessary and sufficient condition for meaningful solutions to exist is

B >VC. | (13)

If (13) holds and 0 <y, < 3 (B C') then there are nonnegative y solutions corresponding to
the points X that are the same distance z; above and below the base subspace. When y, =0 we
have the extremal solutions

Ymin =B — VB2 —C, Ymax =B+ vB2-C, (14)

for which X is in the base subspace. When y; takes its maximum value £ (82 C), we have the
intermediate estimate

The sohitions of (10) are

Ymia = B. _ : (15)
For this special soiution, Z% =1. In fact, if y = B then z* = B/ Zagz. By (7) and (8),

X, B n g3
a5 2@?2@}2 2’

and Z‘““ = 1 follows from (11). Then (4} says that X is a weighted average of the A; plus a vector

orthogonai to the base subspace. (Again, some of the weights can be negative.)

If B < +/C there are no meaningful sohitions; there is no point X at the given distances d; from
orthogonal vectors A; having given lengths a;. In Figure 2, the two pivoting rods fastened to Ay
and Ag are too short or too mismatched for their free ends to meet at a commeon point X

The reader is reminded that this caleulation has to be carried out anew for each averaging time
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3 EXAMPLES

The first example (Figure 3} is from an eight-clock simulation [i]. The duration of the simulated

run is 1.44 % 1088, The clocks are all simulated with white FM plas random walk FM. The odd-
numbered clocks are statistically identical to clock 1, the even-numbered clocks to clock 2. The
dotted curves show the measured Allan deviation (Adev) of clocks 1 and 2. The black curve with
the asterisks is the measured Adev of the actual composite clock (CC) phase, which was produced
with a modified Kalman filter algorithm, Not shown is the Adev of the base clocks against the
CC, d; in the previous section. The blue curves with the plus signs, labeled “True”, show the min,
mid, and max CC estimates using the measured Adev of the true simulated clocks for a;. These
curves end when the condition (13) is violated. Because stability measurements of the individuat
base clocks would not be directly available in reality, Barnes’s n-cornered hat formulas [2][3] were
also used to generate values for g; from the measured Adevs of s}l base clock pairs. The resulting
CC estimates are shown by the green curves with the open circles, labeled “NCH”. These curves
end when some of the variance estimates from the n-cornered hat are negative. The NCH mid
and max estimates agree well with the True estimates where they both exist. The mid estimate is
at most 1.25 times the actusl CC Adev; the max estimates are less than 1.8 times the actual CC
Adev. The min estimates are too low and variable to be useful.

8-clock simulation (PTT! 2001)
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Figure 3: An eight-clock simulation

The second example (Figure 4) is from a four-clock simulation [4}, in whkich the CC phase was
also generated by a modified Kalman algorithm. The simmlated duration is 10%s. The ratio of mid
estimate to actual CC Adev is between .95 and 1.12.

The third example (Figure 5) uses actual data from a comparison of three hydrogen masers
at National Physical Laboratory, UK, between MJD 53005 and MJD 53160 [5]. To eliminate the
effect of linear frequency drift, Hadamard deviation (Hdev) is used for the instability measure. The
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4-clock simulation (FCS 2003)
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Figure 4: A four-clock simuiation

dotted curves are the three-cornered hat Hdev estimates of the base clocks. The CC phase {relative
to the base clocks) is generated by a novel Kalman algorithm, in which the frequency state of each
clock is represented as the sum of independent stationary Markov processes. Here we do not know
the actual CC Hdev, but the black curve shows a theoretical computation of its Hdev, obtained
from an auxiliary Kalman filter {5]. The mid estimate agrees remarkably well with the theoretical
CC Hdev. Furthermore, the min snd max estimates are relatively tight. Geometrically, the point
X has to stay close to the plane of weighted averages of the three clocks. For two clocks {Figure
2), X would be close to the line A; As; this would happen if dq + dg were only slightly greater than

3 ]
v og + ag.

4 DISCUSSION

We have shown & method for calculating estimates for the instability of a composite clock from
knowledge of the instability of the base clocks and of their ofisets from the composite clock. Like
the n-cornered hat, this method needs a long data interval for a given averaging time to give useful
results. The theory behind the calculation assumes that we know the exact expected values of the
required instabilities, and that the base clocks are uncorrelated stochastic processes. Of course, the
values have to be estimated from finite data; moreover, the base clock instabilities a; themselves
often come from an n-cornered hat calculation. The base clocks may also be physically correlated.
(In any case, their finite samples almost always have nonzero correlations.) Nevertheless, in the
examples that were tried, the method gives practical max and mid estimates whenever they can be
calculated at all, and the mid estimate tends to be slightly conservative. =

The author’s experience with this method is limited to a few examples n which the composite
clock was generated by a modified Kalman algorithm. Users of other timescale algorithms should
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Figure 5: An ensemble of three hydrogen masers

try the method on simulated data before trusting it to give useful results for real clocks.
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Statement of problem

Situation
Local ensemble of clocks 4,..., 4, (base clocks)
Assume they are uncorrelated.
Know stabilities for interval .
Measure relative phases of 4, - 4,
Calculate composite clock (timescale) X
Know stability of X -4, for <.

Problem
Estimate stability of X for 7.
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One base cloclc

A = base clock
X = another clock

a=0,, (t), d=o,4.4 (r), x=0,, {t})

, % =a+d, Xg=Na+d

2004-12-09 C. GreenhaH, FTTI 2004

Xy = |a~‘d

Two base clocks
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- Geometrical approach

An RMS stability measure for a given < is the norm from
an inner product. Take Allan deviation:

o, () =4l =(4.4).”

where the inner product of two clocks A and B is
1
(4,B) = 5 EEACIESAG)

5 1n (V)= A B[ = Af ~2(4.BY, +|B"

»d-B

Then

Algebra = Geometry
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n base clocks
Base clocks: 4,,...,4, . Assume (Af,Aj)t =0 forij
Composite ¢lock: X
Givena, =4 , 4, =X -4],

Estimate x = ||X [

.55

T

We will obtain
A lower bound x,;,

An upper bound X,

An intermediate estimats X,

2004-12-09 C. Greenhall, PTTI 2004

Solution

o=1-2%, B=2-Ys C=(La’)(Tae)

H

Condition: B = \/E

Then

., BB -C , BF-C

2 -B
Xnin ™ - s xma - alix) ] xmid = -2
SRS VS VAR A
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Example from simulation

8-clock simulation (PTTI 2001)
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Example with real clocks
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Limitations
» Base clocks inight be physically correlated; not
orthogonal.

« Don’t know ||4,]] or X -4, ||t exactly; |
from #-cornered hat.

4| maybe

» Need a lot of data for each 1.

* Try on simulated data before using on actual clocks,
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