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Abstract 

-A composite clock created from a local cloclc ensemble is Itnown by its time offsets from 
the ensenible clocks. By a geometrical argument, estimate for the instability of the composite 
cbck are calculated from the  instabilities of the ensemble clocl<s, individually and against the 
composite cloclc. The method is illustrated by examples using sinlulated and real ensembles. 

Suppose that we have a local ensemble of mcorrelated clocks ill, ..., A,, called the base clocks. 
Their instabilities are assumed to be known, where instability is defined by any of the deviations 
(Man, modified Allan, Kadamard) c.ustommily used for clocks. In addition, there is anotlxx cloclr 
X whose offset from each Ai is I(flo'i5m as a function of time. Iu particular, X could be a composite 
clock that is formed from some timescale algorithm operating on measmements of the differences 
Ai - Aj of the base clocks. Waving estimated the instabilities of the base cloeks At and of the 
offsets - Ai, how much caa we find out &bout the instability of X itself? There has to be some 
information about it, but is it good enough to be usefd? 

By a geometrica'l argument, we m i l l  show horv to compui;e the range of possible instabilities 
of X without using any outside comparisons and without knoakg anflhing about  the algorithm 
that produces X. For one or two clocks, the geometry can be shorn by a simple diagram; for 
any number of clocks, the argnment is carried out by dgebra, and the resdts are given. by simple 
formulas. There is a minimum instability, a maximum instability, and an intermediate "mid" 
estimate. 

After developing the fomdas  isve show three examples, two from simuIatims and one horn real 
clocks, and discuss the limitations of the method that are inherent in ooze imperfect knowledge of 
the required data. 

Any RMS instability measure, fur a s i~gle  averaging time, can be regarded as a norm generat.4 
by an inner product on a vector space of random phase residuals. To be specific, consider Allan 
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deviation ~cr, (71, where T is fixed in this discussion. If A azd 3 are two clocks wit]-i phase deviations 
XA (t) and zg (t), define the inner product 

where it is assumed that the expectatmion does not depend on t. Then cg (7) for clock A is the norm 
llA1lT generated by this imer product: 

Each .r determi~es a diEerent norm', or metric. The instability of A and B relative to each other is 

/ ] A  - the distance between the two points in this metric space. The clocks are orthogonal in 
this inner product, (A, H}, = 0, if the clodcs are nncorrdated and [E a $ x n  (t)] [E A;sB (t)] = 0. 

TVe may now use the algebraic machinery of imer product spaces to ~%d om way a b o ~ t  . Became 
we are dealing with a finite number of "t-ectors" , this algebra is the same as the algebra of Euclidean 
spaces and can be interpreted gmmetrically. In the follom~ing arguments, the base subspace is 
defined as the space of linear combinations of the base clocks, which are assumed to be orthogonal. 

2.1 One base clock 

Silly as it may seem, we can begin with just one base clock A and the other dock X. Let a = IlA/[,, 
2 = IIXllr, d = 11 X - Aftr. We know a and d and wark to estimate z. In Figure I, the point X is 
somewhere on a circle with radius d and center at a on tlie baseline, and x is the length of OX. 
The maximum and minimt~m of 3: are a + d and la - dl (whethex or not a 2 d l .  The intermediate 
estimate xdd comes from the asswnptio~i that cloclr X equals dock A plus something o~-thogonal 
to A. Thus for one base clock we express the results as 

F i p e  I : One base clock. 

2.2 Two base cE~cks 

For two base clocks, thee dimeusions are needed. Figwe 2 (which lacks the third dimemion) shows 
the geometry. The orthogonal base clocks AI arid A2 have norms a1 and a2. We also know the 

'Strictly speaking. this is a senlinorrn because llAll = 0 if the clock has constant frequelrey. Or m e  can idedtifj- 
clocks that differ only by a constaut frequency. 



distances dl and d2 of X from A1 and A2. The possible values d cc = llX/lT are realized by rotating 
X out of the plane about the axis A1A2, lreeping the distances dl and d2 fixed. The pictwe shotvs 
x - ~  and x,,, svhic'a are the d u e s  of z when X is in the plane, that is, in the base subspace. 
(In the picture, X is at the mar; position.) When X is directly above or below a point on A1A2, 
then is as far from the plane as it can be, and X is a weighted average of the base clocks plus 
a vector A\ orthogonal to the base subspace. We define xmid to be the length of either of these 
two X's. (In an extreme case, one of the two weights can be negative, though their sum is 1.) The 
author feels intuitively t.hat this solxition has special value for estimating the noim of a composite 
clock, simply because timescale algorithm express the composite clock phase or its increment as 
a ~veigl~ted ayerage of the betrended base clocks. The author has no further argument to sr~ppofl 
this i~ltuition, however. 

Figure 2: Two base clocks. The point X is rotated out of the plane. 

2.3 Any number of base clocks 

For n base clocks the ar,o;umut can be carried out algebraia11jr The clocks Aa are assumed to be 
orthogonal. Given a; = l l T  > 0 itnd r& = 1IX - Ai for all i ,  we wish to estimate x = I(X'j/,. 
We can represent X by the orthogond expansion 

where is a vector that is orkhogond to the base s&spa;ce. Let eL = ?;xifly The2 

Now 
2 2 2 2 

di = IIX - A+,llT = x - 2 (X, Ai>T + = x2 2a,izi + a:, 



Square both sides of ('I) and sum over i. By ( 5 ) ,  

Espand the terms in this sum a.nd coiltect powers of x. Setting 

we ge% 
2 2 x4xa,2 - 22"2 - En) c X G ~  c, + 4x1 = 0. 

To simplify this equation fr?rther, set 

Then 
2 Y - 2 B y + C + 4 y L  =O, 

where 
B = 2 - CE~,  C = (zar2) (C,f&?) . 

The solutions of (10) are 
Y = ~ f  J B ' - C - - ~ ~ ~ ,  

with corresponding solutions for x according to (9). 
A necessary and d c i e n t  condition for meaningful solutions to exist is 

If (13) holds and 0 5 y _ ~  5 4 (H2 - C) then there are nonnegative y of.utions corresponding to 
the paints X that are the same distance X _ L  above and below the base subspace. I'Vhen y~ = 0 we 
have the extremd solutions 

y- = 3 - 1/=, pmax - - B C  d z ,  (14) 

for which X is in the base subspace. When 91 takes its maximum va.Iue a (H2  - C ) ,  we have the 
intermediate estimate 

gmid "= B. (15) 
Xi For this specid solution, C- = 1. In fact, if y = 3 then r2 = B/ c ay2. By (7) and (8), 
ai. 

and ~2 = 1 foUows from (11). Then (4) says thaA X i n  a. weighted average of the Ai plus a vector 
a,. 

orthog-&a1 to the base subspace. (Again, some of the weights can be ~egat~ive.) 
If B < there are no mea~ingfid solutions; thexe is no point X at the given &stances di from 

orthogonal vectors Ai having given Ieagtbs at. In Figure 2, the two pivoting rods fastened to A1 
and Az are too short or too mismatched for their free ends to meet a.t a common point X. 

The reader is rembded that this calculatiorl bas to be carried out anew for each averaging time 
r. 



The first example (Figure 3) is from an eight-dock simula%ion [I]. The duration d the simulated 
run is 1.44 x log s. The clocks are all simulated with white FM plus randam walk FTVI. The odd- 
numbe~ed cloclcs are statistically identical to clock 1, Ille evell-numbered clocks to clock 2. The 
dotted curves show tlze measured Allan deviation (Adev) of clocks 1 and 2. The black curve with 
the asterisks is the measured Adev of the actual composite dock (CC) phase, which was produced 
with a modified K a h a n  filter algorithm. Not shown is the Adev of the base clocks against the 
CC, c& in the previous section. The blae curves with the plus signs, labeled "True", show the min, 
mid, and max CC estimates using the measured Adev of the true simulated clocks for a%. These 
curves end when the condition (13) is vi01ai;ed. Because stability measurements of the individual 
base docks xrould not be directly available in reality, Bmes's  n-cornered hat formulas [21[3] mere 
also -its& to gererzdi-le values ;or ai from the measwed Adevs cf dl Ease clock pairs. The res~diing 
CC estimates are show by the geen curves with the open circles, labeled "ITCH". These curves 
end when some of the variance estimates from the n-comered hat are negative. The NCH mid 
and rnax estimates agree well with the True estimates where they both exist. The mid estimate is 
at most 2.25 times tbe actual CC Adev; the max estimates are less tIaan 1.6 times the actual CC 
,4dev. The min estimates m e  too tow and variable *to be usem.  

i h /;-s mid MCH 
' ~ - 3  ---@- min 

I . . . . .d . . . . . . . .  v . . . .  f . . . . . . . .  I . . . .... 
I o4 1 0' .I o6 I 0' I a8 

averaging time / s 

F$pre 3: An eight-clock simulation 

The second example (Figure 4) is from a fom-dock simulation [dl, in which the CC phase was 
also generated by a modified Kalmxran algorithm. The simulated duration is 10's. The ratio of mid 
estimate to actud CC A6w is between 9.95 a d  1.12. 

The third example (Figure 5) uses actual data from a comparison of t hee  hydrogen masers 
at National Physical Laboratory, UK, beheen MJD .53005 mii MJD 53160 [5]. To e l i h a t e  the 
effect of linear f f q t e ~ c y  hie, I7admiad deviation (Hdev) is used fer tlle instability measure. The 
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Figure 4: A forrr-clock simulation 

. . . - - - .  clock 1 

. .* . - . .  clock 2 

dotted curves are the three-cornered hat Hdev estimates of the base clocks. The CC phase (relative 
to the base clocks) is generated by a novel Kalman algorithm, In which the frequency state of each 
clock is represented as the sum of independent stationary h/la;t1cov processes. Here we do not know 
the actual CC Cdev, but the bla.ck curve shou~s a theoretical computation of its Hdev, obtained 
from an auxiliary Kalman Bter [5]. The mid estimate agrees remarkably well with the theoretical 
CC Rdev. Furthemore, the min and max estimates are relatively tight. GeometricaUy, the point 
X has Go stay close to the plane of weighted averages of the thee docks. For two clocIcs (Figure 
2), would be close .Do the line AIA2; this woilld happen if dl + d2 were only ssghtlv greater than 
JW 

4 DISCUSSION 

We have shown n method for calculating estimates fir  the instability of a composite clock from 
knowledge of the instability of the base docks an& of -their o se t s  from the composite clock. Like 
the n-cornered hat, this method needs a long data interval for a given averaging time to give useW 
results. The theory behind the calculation assimes that we h o w  the exact expected values of the 
required instsbllities, and that the base clocks are u~lcorrelated stochastic processes. Of course, the 
values have to be estimated from E t e  data; moreover, the base eloclr instabililies a$ themselves 
often come from an n-cornered hat calculation. The base clocks may also be physically col~elat&. 
[fn any case, their finite samples almost always have nonzzro correIations.) Nevertheless, in the 
exsmples that were tried, the method gkes practical mar: and mid estimates whenever they can be 
calculated at all, a ~ d  the mld estimate tends to be sligl~tly conservati\~e. 

The author's experience with t3Gs method is limited to a few examples in which the composite 
clcrcXr mras generated by a modified Kalmm zlgorithrn. Users of other timescde algorithms should 



. . . . . . . HM3 

CC theory 

max 

averaging time / s 

Figure 5: An ensemble of thee  hydrogen masers 

try the method on simulated data before trusting it to give useM results for real clocks. 
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One base clock 

I A = base clock 1 

Statement of problem 
Situation 

Local ensemble of clocks A,, ..., A, (base clocks) 
Assume they are uncorrelated. 
Know stabilities for interval z. 
Measire relative phases of A, - Aj 
Calculate colnposite clock (timescale) X: 
Know stability of X - Ai for z, 

Problem 
Estimate stability aEX for T. 

Two base clocks 



Geometrical approach 
An RMS stability measure for a given z is the lzom fiom 
a11 iin~er product, Take Allan deviation: 

where the inner product of two clocks A and B is 

Algebra = Geometry 
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Solution 

n base clocks 
Base clocks: A ,,..., A,$. Assume (A,, A ~ ) ~  = 0 for i ;t j 

Composite clock: X 

Givm a, = l / ~ ~ l \ ~  , di = IIx - Al l l r  
Estirniife x = \ /x I I ,  
We will obtain 

A lower bound xlni,, 

A1 upper bound x,,, 

An intermediate estii~late xm, 
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Example from simulation 
8-clack simulalon (FJTTI 2001) 

. . . . . . . . . clock I 

......... clock 2 
+ CC 
t-- max 
--t- mid True 
-t- min 

max 

mid NCH 
--+ min 

L . . ' . . ' - n L  . -1- . . .'....I * . . ' . * ( I 1  . 0 . d 
1 o3 I 4 I o5 I 0" 1 o7 I o0 

averaging time I s  
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Example with. real clocks 

1 di6 
to2 I 1 o4 I o5 1 o6 

averaging time / s 
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Limitations 

Base clocks might be physically correlated; not 
orthogonal. 

Don't know I ~ A ~ I ~  or I ~ x  - All[, exactly; 11~,ll~ma~be 
fi-om n-cornered hat. 

Need a lot of data for each T. 

Try on simulated data before using on actual clocks. 




