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Abstract-A formulation of stability for a set of spacecraft 
in formation flight is presented. First, a formation is defined in 
a precise mathematical form in terms of control interactions. 
Then, stability is formulated based on input-to-output stability 
with respect to a partitioning of the formation dynamics. This 
formulation of stability is shown to be useful in characterizing 
disturbance propagation in the formation as a function of the 
partition interconnection topology, and also in analyzing the 
robustness of sensing, communication, and control topologies. 
Stability results are presented for hierarchical, cyclic, and 
disturbance attenuating formations. 

I. INTRODUCTION 

In this paper we develop a formulation of stability for a 
set of spacecraft coupled via control [l]. This research is 
motivated by NASA‘s formation flying missions (e.g., [2], 
[l]) in which several spacecraft operate in a coordinated 
manner to achieve a common objective. 

Spacecraft formations have two fundamental properties: 
(i) a set of spacecraft with completely decoupled dynamics, 
and (ii) a control law coupling their dynamics. These two 
properties are used to define a formation and derive a 
condition for spacecraft to be in formation. Once a set 
of spacecraft is determined to be a formation, stability 
notions can be applied to the overall, closed-loop formation 
dynamics. 

We formulate a definition of formation stability based 
on a specific form of input-to-output stability [3], [4], [5]. 
In standard application of a stability notion such as input- 
to-state or input-to-output, a set of stability conditions are 
required to hold for the entire formation dynamics. Forma- 
tion stability could simply be defined as the input-to-output 
stability of the entire formation. We additionally require 
the input-to-output stability of components of the formation 
dynamics. These components result from partitioning the 
overall formation dynamics, and this partitioning will be 
defined in the sequel. As a result, formation stability is de- 
fined with respect to a partitioning of the coupled formation 
dynamics. When we say “a formation is stable,” we mean 
“a formation is stable with respect to the partition.” 

In earlier related works [6], [7], [8], [9], the partitioning 
was prescribed based on a specific decentralized control 
architecture [lo], and stability was assumed for the compo- 
nents of the partition. Next, conditions were derived guar- 
anteeing overall formation stability in a particular sense. 
The decentralized control architecture used for a given set 
of spacecraft is the main system theoretic characteristic of 
a formation, and it has implications in terms of disturbance 
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attenuation, and robustness of the coupled sensing, com- 
munication, and control systems. Consequently, the specific 
decentralized formation control architecture must be part of 
the stability definition adopted for formations. To do so, we 
introduce the concept of formation stability with respect to 
a partition and utilize the notion of input-to-output stability 
described in [3]. This approach to formation stability is 
shown to be useful in characterizing both disturbance prop- 
agation within a formation and the robustness of coupled 
sensing, communication, and control architectures. It also 
leads to several results that have connections to earlier 
results in the theory of interconnected systems [ll], [12]. 

The following notation is used: R is the set of real 
numbers, IR” is the space of n dimensional vectors with 
real components, I denotes the identity matrix of appro- 
priate dimensions, Q = QT > 0 denotes a symmetric and 
positive definite matrix, 11x11 denotes the standard 2-norm 
of a vector x, M t 0 ( M  + 0) implies that all entries of a 
matrix M are non-negative (positive), M 5 0 ( M  4 0) 
implies the opposite, and w = max{u,v} implies that 
wk=max{uk, v k } ,  k = 1,. . . , n, for u, w E R”. 

11. SPACECRAFT IN FORMATION 

In this section, we give a precise definition of a formation 
of spacecraft. Consider a set of spacecraft S with dynamics 
given by 

where for each spacecraft x k  is the state, U k  is the control 
input, yk  is the output, and d k  is an exogenous input 
such as a disturbance. From (1) it can be seen that the 
spacecraft have decoupled dynamics in the absence of 
control inputs. The state vector can contain translational 
states (position and velocity), rotational states (quaternion 
and angular velocity), and other possible states relevant to 
the application (e.g., actuator dynamics). 

A dynamic feedback controller for spacecraft in S can 
be expressed in the following form, 

where we omit indexing individual controllers for clarity, 
xe is the controller state, yc  is the output of the controller, 
which is used to determine the control input for the space- 
craft, u, is the input to the controller, which is a function of 
the outputs of other spacecraft and controllers, and d ,  is an 
exogenous input, which can contain disturbances, reference 
commands, and measurement errors. 
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Fig. 2, A partitioning of the formation dynamics. 

give an equivalent characterization of input-to-state stability 
(ISS). See [14] for a proof, and [15] for a definition of ISS 

Remark 2: Ref. [3] introduces a variety of notions of 
IOS, and [4] discusses Lyapunov conditions for these differ- 
ent types of 10s. These Lyapunov conditions can be used 
to analyze a formation’s stability in terms of the input-to- 

Given a partition and the definition of IOS, we define 

Dejinition 4 (Formation Stabilig w.rt. a Partition): 

and the statement of the equivalence. 0 

output stability notion given in Definition 3. 0 

formation stability with respect to this partition. 

Formation S with dynamics (6) is formation stable with 
respect to a partition (FSP) of the form (8) if  

There exist class K: functions X and p such that (6) is 
10s from z to d with X and p. 
For each k = 1, . . . , q,, there exist class K functions 
X k ,  PI,  such that (8) is IO§ from the vector [w:, v:IT 
to Zk  With X k  and pk .  0 

z -plane 

Fig. 3. An illustration of input-to-output stability. 

In the definition of formation stability, the first condition 
requires the input-to-output stability of (6) independent of 
the partition. The second condition requires the input-to- 
output stability of each component of the partition, where 
a component’s input consists of both exogenous inputs and 
signals from other components. Note that if a formation is 
stable with respect to a given partition it does not imply that 
the formation is stable with respect to another partition. 

Examples of formation dynamics, partitions, and stability 
analysis are given in Section V. 

Iv. AN ANALYSIS OF FORMATION STABILITY AND 
DISTURBANCE PROPAGATION 

The main result of this section is a sufficient condition 
for formation stability with respect to a partition given the 
stability properties of each partition and the characteristics 
of the interconnections. This result is used to characterize 
disturbance propagation within a formation. In the sequel 
the following condition is needed: 

Condition 1 (Component Interconnection IOS): Given a 
partition (8) of the formation dynamics (6), each partition 
r k ,  k = 1,. . . , q, is 10s from (wI,, vk) to r k  with XI, and 
P k  . 

Remark 3: Consider a partition r k ,  k = 1,. . . , q, that 
is 10s from (wk, V k )  to zk (or T k )  with X I ,  and PI,.  Since, 

lim SUP 1 1 (t)  1 I 5 
t-w 

max(2Xk(limsupl/wI,(t)lI), 2Xk(limsup lluk(t)ll) } . 
t i c €  t+m 

(12) 

We now present a general result on FSP where the gain 
functions are linear. In this theorem, we establish a stability 
criteria for the overall formation based upon knowledge on 
stability properties of individual portions in the partition 
and their interactions. This approach is also typical in the 
general theory of interconnected systems [ 111, [12]. 

Theorem 1 (FSP with Linear Gains): Consider a set of 
spacecraft in formation given by (6) with a partition as 
in (8). Suppose that (6) has well defined solutions for all 
initial conditions and exogenous inputs, and satisfies both 
Condition 1 and the second condition in Definition 4 with 

0 

X k ( S )  = a k s / 2 ,  X k ( s )  = b 1 , ~ / 2 ,  
q 

for d l  S 2 0 ,  (13) 

/ ( g k ( T l , . . . t T q ) ( (  < c c k j I \ T j \ \ ,  for all Tl,...,Tq, (14) 
j=1 



This characterization of the interconnections in the parti- 
tioned formation dynamics is used to define the following 
classes of formations, and establish specific stability results 
via Theorem 1. 

Dejnition 5: Given a partitioning and corresponding ad- 
jacency matrix for a formation E, and: 

A formation is hierarchical if C is lower triangular. 
A formation is cyclic if there exists some i and j such 
that E,, > 0 and E,, > 0. 

0 

A hierarchical control structure is also referred to as 
"leader/follower" control, and is commonly used for small- 
to-medium sized formations [ 11. 

Corollary 1 (Hierarchical Formation): Consider a for- 
mation (6) and a partition (8) that is hierarchical. Suppose 
that all conditions of Theorem 1 are satisfied. Then, the 
formation is FSP, and the propagation of any disturbance 
can be expressed by the following relations, 

4 5 max{e, sG, ~ 8 )  (23) 
400 5 max{em, se,, EO, (24) 

9- 1 

where E = S Rk , and R is defined by (15). 0 

k = l  
Pro08 Moreover, since all eigenvalues of R are zero, 

9-1 

( I  - Rq)( I  - R)-' = R k .  
k=O 

Since R E IRqxq is lower triangular with zero diagonal 
entries, it is nilpotent with a largest possible degree of 
nilpotence q, Le., Rq = 0. Consequently, 

4- 1 4 q-1 

R(I  - R ) - ~  = R C R ~  = C R ~  = CR". 
k=O k=l k=l 

By applying Theorem 1, we complete the proof. 
Corollary 2 (Cyclic Formation): Consider a formation 

(6) and a partition (8) that is cyclic. Suppose that all 
conditions of Theorem 1 are satisfied, and /lRl/ < 1. Then, 
the formation is FSP, and the propagation of any disturbance 
can be expressed by the following relations, 

$ 5 max(8, sG, E B )  (25) 
& 5 max{ e,, sew, EO, } (26) 

where E = S ( I  - R)-' - S ,  and R is defined by (15). o 
Pro08 Since JjRIl < 1, we have 

00 

( I  - R ) - ~  = R ~ .  
k=O 

This implies that 
00 00 

R(I  - q - 1  C ~k = ~k - I = ( I  - R)-1 - I 
k = l  k=O 

The proof is completed by applying Theorem 1. 

The interconnections between components of a forma- 
tion can have uncertainties, such unknown or time-varying 
system parameters. A natural question is to decide whether 
the formation remains stable under all variations of these 
interconnections. Under the hypothesis of Theorem 1, the 
interconnections are characterized by C k j ,  k, j = 1,. . . , q. 
The following corollary gives a condition under which the 
formation remains stable as the interconnections vary. 

Corollary 3: Consider a formation with dynamics (6) 
and a partition (8). Suppose that all hypothesis of Theorem 
1 are satisfied with c k j  = Ckj  (6) where 6 is an uncertain 
parameter. Furthermore, suppose that there exists Ckj  2 0 
such that 

11ckj(b)ll 5 E k j ,  for all 6 ,  k , j  = 1,. . . , q .  (27) 

Let R be defined as 

Then the formation is FSP if I - R is an M-matrix. o 
Proot I - R  is an M-matrix if and only if there exists 

some vector 5 0 such that ( I  - .r?)x + 0 [16]. Since 
R - R 2 0, we have ( I  - R ) x  + 0. Consequently, I - R 
is an M-matrix for all 6. The proof in now concluded by 
applying Theorem 1. 

A. Disturbance Attenuation 

Theorem 1 and its corollaries describe the propagation of 
disturbances through the formation for a given partition. In 
this section, we develop a technique to determine whether 
a disturbance is amplified or attenuated as it propagates 
in the formation. Disturbance attenuation can be formally 
described by the following definition. 

Formation S as given in (6) is disturbance attenuating 
with respect to the partition of the formation given in (8), 

Dejnition 6 (Disturbance Attenuating Formation): 

if  
e 

The 

It is stable with respect to the partition (8). 
If, for any given integer 1 I j 5 q, we have & ( t o )  = 
0 and Wk = 0 for all k = 1,. . . , q ,  k # j ,  then the 
following conditions also hold for any solution of the 
system (6) and for all k = 1,. . . , q, 

I l ~ k l l m  5 l l ~ ~ I l 0 0 ~  (29) 
limsup I l z k ( t ) / l  5 limsup llzj(t)l/. (30) 

t-+m t+m 

0 

following theorem gives a condition guaranteeing that 
a formation is disturbance attenuating. 

Theorem 2: Consider a set of spacecraft in formation 
with dynamics (6) with a partition as in (8) satisfying items 
1 and 2 in Definition 4, and Condition 1 with (13). Let 
matrices R and S given by (15), and matrix E given by 



Then the formation dynamics with control implicitly given 
by U k ( t )  = g k ( t , E ( t ) ?  

where r l ,  r2, r3 are the desired distances between each 
spacecraft pair in the formation. Clearly, the formation 
objective can be satisfied when the formation output z is 
regulated around the origin, and the partitioning above is 
useful to exploit the interactions between the components 
of the formation output and the corresponding dynamics. 

VI. CONCLUSIONS 

In this paper, a mathematical definition of a formation 
of spacecraft is presented that is based on the character- 
ization of the control interactions. A notion of formation 
stability is introduced based on a given partitioning of the 
formation dynamics, that establishes the standard conditions 
of stability of the overall formation dynamics, as well as 
stability conditions of each partition. We also generalized 
the concept of a disturbance attenuating formation in which 
disturbances attenuate as they propagate. This is a particu- 
larly desirable operational requirement for formations with 
Parge number of spacecraft. 
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