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Frequency-dependent hydrodynamic inductance and the determination of the thermal and
guantum noise of a superfluid gyroscope
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We reexamine mass flow in a superfluid gyroscope containing a superfluid Josephson weak link. We intro-
duce a frequency-dependent hydrodynamic inductance to account for an oscillatory flow of the normal fluid
component in the sensing loop. With this hydrodynamic inductance, we derive the thermal phase noise, and
hence the thermal rotational noise of the gyroscope. We examine the thermodynamic stability of the system
based on an analysis of the free energy. We derive a quantum phase noise, which is analogous to the zero-point
motion of a simple harmonic oscillator. The configuration of the studied gyroscope is analogous to a conven-
tional superconducting RF SQUID. We show that the gyroscope has very low intrinsic (ibide
x 103 rad s1/\Hz), and it can potentially be applied to study general relativity, Earth science, and to
improve global positioning systen{&PS.
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The practical use of quantum interference has becomsensing loop have both a dc component, denoted by a sub-
widespread wit.h the development of theT superconducting inscript “o,” and an oscillatory component, denoted by a tilde
terference devicéSQUID). The recent discovery of the Jo- over the variable. Thu35:¢o+?j>, where ¢, is a dc phase

sephson effect in superfluittd makes a very sensitive super- bias d q ional 4% d
fluid gyroscope a possibility. Already, Simmonesal# and ~ P1as due to a steady rotational raik and ¢ denotes an

Mukharsky et al® have demonstrated gyroscopes based opscillatory component due to diaphragm osciIIatioqs. The

this effect. With sufficient resolution, a potential geodesy ap-Josephson-Anderson equation relateto ;1, by (ﬁ/m);bz
plication of this device is for real-time precise measurement.p ,=—AP/p=-xx/(pA), where AP is the pressure differ-

of the Earth’s rotation speed. Jitter in Earth’s rotation is agnce across the junction, and the contribution of temperature
source of uncertainty in real-time GPS. From the very 10nQyi¢terence toAu is neglected. The mass current driven by the

baseline interferometry measurements of Hide and Diékey, . . g . ,
the Earth’s rotation jitter causes an equivalent position jitteld""‘phr"jIgm is thereforep?A%xod/ (2mx). Assuming an ideal

of ~10 cm at the equator in a day. Precise measurement g°Se€Phson current-phase relation, the current through the
the jitter in real time will allow this error to be removed. junction with a critical current; is I¢sin ¢, where ¢ for
Another potential application is in tests of general relativity lockwise flow is positive. The superfluid and normal fluid
by precise measurement of the geodetic and the frame dra§urrent in the sense loop apgusa and p,ua, wherea is the
ging precession. Understanding the fundamental limits offoss-sectional area, apd p, are the superfluid and normal
these gyroscopes is therefore of both scientific and practicdiuid densities. Since the normal fluid velocity is not uniform
interest. In the following, we extend an earlier concept of thePVer the cross-sectional arag,is understood to be an aver-
fluctuations of the quantum phdsto treat the superfluid @gded value. Mass conservation requires that
gyroscope. We consider a readout scheme in which the rota-
tion rate is inferred from the measurement of the resonant
frequency of small-amplitude oscillations in a resondtor 3
set of Fig. 1 formed by a flexible diaphragm, a Josephson
weak link, and a sensing loop of turns. We find that in a
typical geometry, the normal component undergoes oscilla- 2
tory motion and is not viscously clamped to the walls of the
gyroscope’s sensing loop. We treat the normal fluid flow by
introducing a frequency-dependent hydrodynamic induc- 1~ Near optimal point
tance. We then explore how it affects the noise and stability of operation
of the gyroscope.

The flow of the normal component is coupled to the os-
cillatory superfluid flow through mass conservation. The cur-
rent driven by the diaphragm of aréds pAX, wherep is the

fluid denSity and is the displacement of the diaphragm from FIG. 1. Thee(¢,) function contains theb, dependent oAQ in
equilibrium, positive if displaced upward in Fig. 1. Both the Eq. (11). The top, middle, and bottom lines are f65=0.9, 0.999,
normal fluid velocityu, andx are oscillatory, while the su- and 1.1, respectively. The inset shows the three components of a
perfluid velocity us, the phase difference across the Jo- superfluid gyroscope. The sensing loop Masturns, but only one
sephson junction, and the phase differenfie across the turn is shown.
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- p?A2k I (2mK) = 1. SiN ¢ + puA + pyu,a+ ' ¢-drive,
(1)
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a closed loop, in the zeroth quantum stdtd=0) we
obtain (27/ k) $ (Us—QR)AE =p — P+ d=0, where ¢
=(2m/ k,)$ude, the integral across the Josephson junction

where the termy’ ¢ is due to all dissipative processes other91Ves d),zv_vhile b= (27 1) $ (AR)AC=27N, '/ o, Wherel’
than that due to normal fluid flow. The dissipative current=2{}7R" is the circulation. Usingg = ¢y~ ¢, and making

due to normal fluid flow is already included igg Im(u,)a. A

the expansionp=¢,+ ¢, Eq. (3) becomes

sinusoidal current drive term is also added to keep the oscil- - _ _
lator's steady-state amplitude constant; at resonance the p?A%kodl(27k) =1, SiN(¢ + B) + 1o — D)/ By + 1l By

drive term is imaginary. For oscillatory flow at frequenty
the extent of normal fluid flow in a tube of diameterde-
pends on the viscous penetration depthy 7/ (7p,f), where
7 is the viscosity of the normal fluid. For superfluféhe

(Ref. 8 near the lambda transition=74 ,um_/v"f. For super-
fluid *He (Ref. 9 at ~0.5 mK, \=1 cm/\f. At high fre-
quencies, whera <d, the fluid undergoes solid body mo-
tion, where u,=Us. At low frequencies where\>d, the
normal fluid is clamped to the walls, anfi=0. Sinceu, is
oscillatory, one can writel,=als, wherea is a proportion-
ality constant. Thust— 0 for low frequencies, and— 1 for

high frequencies; in both limits the flow is dissipationless. At

intermediate frequencieg; is complex; Infa) accounts for
the dissipation. We write pusa+ ppUna=plsAa+p Usa
+ip,uaIm(a), whereug, is the dc component ofi, and
pL=pstRel@)p, is an effective density of fluid participating

+ yES-drive. (4)
The dc phasep, can be found by setting drivd;, &, and¢
to zero. We then expand arouig to obtain the equation of
motion and the resonant frequency. The results are

sin ¢0+(¢o_ ¢x)/180:0' (5)

[Pk (27) [+ | LCOS o + 1B 1%+ v = drive, (6)

f2= f2(cos¢,+ 1IBL), (7)

whereffm:KIC/ (27kp°A?) is the resonance frequency if the
sensing loop is blocked. Notice that the crossover frequen-
cies forh=d in a tube of 1 cm diameter are55 uHz and

~1 Hz for *He and®He, respectively, while experimenty

in nondissipative motion. We also define a total dissipatioris 10—100 Hz. One should ug, for evaluatingf,. Prior to
parametery that includes dissipation due to normal fluid this work, normal fluid flow was ignorédand 8, was used

flow, so thatyp=7'¢+ip.liaIm(a). Equation(1) becomes

- p? A2k I (27K) = |, Sin ¢ + pls A+ p Ta + yp-drive.
2

It is possible to express, in terms of¢,, using the relation
U=k, VP/(27), and identifyingV®=¢, /€, whered is the
quantum phase of the superfluid wave functiof,is the
length of the sensing loop, and,=h/m is a quantum of
circulation,h is Planck’s constant, and is the mass of 4He
atom or the mass of a Cooper pairide. For sensing loops
of N_ turns with radiusR, ¢=2#N; R. Thus pus@a=
—l.bo/ Boy Where B,=2ml l./x, is the hysteresis
parameteé®!! as in RF SQUID, and.,=¢/(ap,) is the ordi-
nary superfluid hydrodynamic inductance. The tespia

can be written as k¢ /B, Where B, =27l I/ ko, and L,

=¢/(ap,) is the frequency-dependent hydrodynamic induc-

tance. At low frequencieg, —L,. At high frequencied |
—L,, where L,.,=¢€/(ap), and B —pB., where B,
=27L.l./ k,. We obtain

— pPA2kodl(27K) = 1 SiN = 1ol Bo — oL/ B + y¢p-dIrive.
3)

The sum of¢ and ¢, is related toQ). To obtain this
relation, we note that in a superfluid, while the relation
=(k,/27m)V® is applicable in a rotating laboratory frame,
the quantization conditiof@7/ k,) $u.d€ =27M, whereM is
an integer or zero, must be applied in an inertial frafae
reference frame that is not rotatingrhe velocityu; in an
inertial frame is related to the velocity; in the laboratory
frame by u.=us—QR. Performing the integral around

in Eq. (7), which predicts a much lowef, near the phase
transition.

Next, we derive the noise of the gyroscope by a procedure
similar to that for the displacement noise in a spring-mass
oscillator!® The Langevin equation i@ can be obtained by
replacing the drive in Eq(6) with a Langenvin equivalent
noise source s,

[P?A2i(2) [+ 1 [cOS o+ LIBTB+ v =1,  (8)

Since the thermodynamic conjugatef ¢ is #ig, whereig
=lg/m is the superfluid particle number curretiy is the
conjugate force to the generalized displacemgntve mul-
tiply Eq. 8 by #/m to transform it into a balance of the
generalized force. Comparing this to the spring-mass
systemt® the power spectral density of the Langevin force
maps into A% i, =4kgT(yA/m), and thus lg,l5,
=4kgT(ym/#), where a subscripta” on a variable denotes
its Fourier transform. Following the spring-mass oscillator
case'® the power spectral density @f and the variance op

are

«_ 2kgT/[7fQhi(COSh,+ 1/B))]
CTeT 1= ()R +[FI(F QP

9)

(Adimd?= f bub,df = ke T/[Ai(cOS, + LB,

(10

where Q=p?A%k w,/ (27yx) and assuming3, =f... To de-
rive an expression relatindy¢é, s to the noise in the measure-
ment of f,, we assume that the oscillator is driven at fre-
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quencyf,, so that at steady state= ¢ codw,t+6), where fo is much lower than 14y, where ¢ (the Landau-

&, is an amplitude and is a phase lag. Thermal noise ¢f Khalatnikov time is the time scale for equilibration. Both

can be decomposed into an amplitude noisegjpand a and I, can be considered as constant at any instant. This
phase noise in. Only the phase noise contributes to the MPlies that the total superfluid current o =mifsing
error in frequency determination. The noise energy is divided“‘k ﬁbxzfllﬁo], must also be_c%r;stanté Therefore, the stability
equally between the amplitude and the phase fluctuation€Ondition ™ is (dsioal 94)=(F1I¢,\1.1,x> 0. lead-
The single side-band phase noise £%f,)=(1/2)¢,(f, Ngt0 cos¢>~-1/p,. Whenpg,< 1, this condition is satisfied
) (F +fm)/(¢A/\E)2 For 0>1 L(f) for all possible values of), and the system is stable. How-

w\'0 / . ’ m

_ 5 2 . . _ ever, wheng,>1, there are regions ap where this condi-
=~ 270(A s/ ) /(1+47_127§fm), a _Lorer’1t2|§1n NOISE SPEC- 4isn is violated. When this happens, the system can jump
trum, wherer,=2Q/ w, is the oscillator’s ring-down time.

. - : = : , ~ spontaneously to another stable quantum stateggorl, it

By integrating 6,(fm)0,,(fm)=2L(fr), we obtain (Afmg is possible to have small-amplitude oscillations, but as the
=(Adms $a)*. Alternatively, one can represent the oscilla- amplitude increases, at some poifienters the unstable re-
tor’'s motion without noise by a unit vector rotating with an gion and a jump will occur. Therefore, the amplitude of the
angle ofw.t on a graph where the axis is ¢/ ¢, and they  oscillations is limited. At the instability point (¢) has a
axis i8¢/(wo¢A)- The resul(A 6,1,9°=(A ¢y dp)? is due to  maximum. Notice that the stability condition is unchanged
AH:A¢cos(w0t+0)/(w0¢A)—(A¢/¢A)sin(wot+0). Since Py the normal component flow. Howe\{er, cqqtrary to prior
two measurements of separated by a time interveimuch work, f does_ not tend to zero at the instability pojig.
shorter thanr, are correlated, their differencka(t) should (7)1 Instead, it tends too(pn/ pg)(1/5,)- 5

tend to zero as— 0. We have shown by numerical simula- At small amplitudes, the equation of motion ¢fis simi-

tion that for Lorentzian nOiS&W(t)=A9rms\fm ast—0. lartothatofa S|m~ple harmonic oscillator. There should be a
Now let the drive be turned off at timie=0, and a measure- quantum noise inj which is analogous to the zero point
ment begin where the time of zero crossing is measured totion of the displacemeumtgiven by(z%)=#/(m,w,), where
determine the period. After a time<r,, the accumulated m, is the mass. By analogy¢2>:h/(m¢wo), wheremy is a
error in the time of zero crossing i\t=A6(t)/w,  generalized mass. To find,, we multiply Eq.(8) by #/mto
=(AOms/ wo)\V2t/ 7. The uncertainty irf, for one such mea- transform it into a balance of the generalized force. By anal-
surement i\ f; =foAt/t=Adums(2/(75)/ (2mdp). After time  ogy, the coefficient of theb term ism, = k3p?A?/ (472k). We

t, the oscillator is re-excited and the measurement is repeatesbtain ($%) = 27rf ./ (i;VcOS ¢+ 1/, ). The rotational quan-
for N times for a total measurement time @&Nt. The  tym noise can be obtained by replacing the thermal noise
error in_the frequency is reduced taAf=Af;/\N  Ag in Eq.(11) by the quantum noise.
=Apme\2/(757) /(27 ¢p). It is possible to make a free run-  \We have expressed all quantities in terms of an effective
ning oscillator using feedback. A feedback scheme, whichondissipative fluid densityp, =ps+p, R&(@), where «
introduces an energy pulse at the zero crossings, wilky /Ti,. For intermediate frequencies, can be determined

not affect the phase evolution and will preserve the e~ ~ _ <
preceding expression fakf. Using Egs.(5), (7), and (10), s follows: Sincels=(%/m)(¢./€) and AP=—(fip/m)¢,

and the relations ¢,=(2m?N QR x, and AQ one can writeAP=—iwp{l,. The normal fluid experiences a

=(dQ/de,)(dey/de,)(dp,/df,)Af, we obtain partial pressure ofp,/p)AP. With this, one can solve the
o Navier-Stokes equation numerically to determine the normal

Ko 2kgT  &(¢ho, Bo) fluid velocity profile as a function diis, and hence determine
AQ z , , 1y
Tf o oQA T

TaNR o SR
To optimize the gyroscope, we plet¢,, 8,) of Eq. (12)
_ 1/4 . in Fig. 1, where¢, can be set by tilting the axis of the
8o Bo) = ol COS by + LIBLIT(COSho + 1IBo)Isin o, gyroscope relative to the axis of rotation. It divergessgt
(12 =0 and =, where df,/d¢,=0 according to Eq(7). One

~ - ; hould avoid operating near these points. The top, middle,
where 18, ~1/8.=(plps(11B,). Since p/ps>1, normal S . A _

fluid flow causes the noise to increase. The increase is pa nd bottom lines are fg8,=0.9, .0'99.9’ and 1.1, respectively,
ticularly large for“He near the lambda point. For,=0, a 'O plps=2. Forf,>1 (bottom ling), it appears that — 0 at

similar expression was given in Ref. 12 for a phase-sensitivgﬁ|e mstabthy pqlnt where(coso+1/6,) —0. As one ap-
detection scheme. proaches this poinip, must also be reduced to avoid jumps.

To explore thermodynamic stability, we write the free ltgﬁ tggrreelfgﬁr&g'giﬁtﬁf@m-egﬁ;ﬁa?—,%p:fa-cge;g: (;2”'
energy a8%!® dF=ti. sin ¢pdg+al pudus+alu,d(p,uy) : g o=t A~
+AfXd(px) + xkxdx, where €, is an effective length of the shown by the thick dot, we obtaiv ¢, ~1. For 5,<1 (top
drive chamber. Writingyg in terms of ¢, we obtain line), &(co) ha_s_a minimum within t_he range of 0 to. As

Bo—1, the minimum is lower and it occurs closer to If
dF =rifsing + (d— ¢/ B,ldd + €undl, + €,xdly + kxdXx, one operates near the minimum, the available range for lin-
(13) ear oscillation is also reduced. Agaia/ ¢, or AQ ap-
proaches a constant. Fgi,=0.97 and ¢,=0.07r, one ob-
wherel,=p,u,a and l,=pxA. We notice that during the os- tainse/¢,=0.8.
cillation, thermodynamic equilibrium is maintained, because We estimate the noise of a superflifide gyroscope by
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assuming that/¢$,~1 and B,=1. At T/T,=0.5, whereT,  inductance may have other important implications. For ex-
=0.929 mK, Backhaust al® reported that the critical cur- ample, Davis and Packafdsuggested that the ratio of hy-
rent is1.=0.093ugm/s ori;=9.3x10"/s. Thislc and T drodynamic inductances of the weak link to that of the sens-
implies that the following design would giv8,=1: Ni=1,  ing loop, also known as thR ratio, should exhibit a strong
R=7.5 cm, anda=1 cn?. We further assume thatis setto  jncrease as one approaches the superfluid transition due to
give f°°:.100 Hz, and thaQ=100. Fro_m Eq(ll},ﬂ*oi)taln suppression of the superfluid density by the finite-size effect
a “gta“o']‘i' rate - noise densny, of€},0,=2.6 in the weak link. It was not understood why the data of
X 10 "/ yHz, where () is the Earth's rotation rate. It %ukhatmeet al® did not show such an increase. We notice
|

houl ted that the diaph ispl t noi
i )?u:oéfzepzj)sg(ﬁ (; :18—9%‘?#2/:_{:‘3rgtTSp-?ﬁng%Tuen?lsse that theR ratio is the same as B(, and should therefore also
(o] (O ) (o)

achievable with SQUID electronics. For comparison, theP® @ frequency-dependent quantity. The decreasp, iat
quantum noise inQ) is 6.3x 107130, the geodetic and reduced frequency may partially cancel the depression by the
frame-dragging precessions are6.6x 10°0g and ~6.6 finite-size effect in the weak link, providing a plausible ex-
X 10710, respectively, and the Earth’s rotational jitter is planation

~2.5X10°0¢. In conclusion, we have shown that at its )

fundamental limit, the gyroscope can potentially be applied Ve thank Professor Goodstein for helpful comments on
to study general relativity, Earth science, and to improvethermodynamm stability. This work was carried out at the Jet
GPS. Propulsion Laboratory, California Institute of Technology,

As a side note, the frequency-dependent hydrodynamignder a contract with NASA.
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