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Abstract-Rover traverse distances are increasing at a faster 
rate than downlink capacity is increasing. As this trend 
continues, the quantity of data that can be returned to Earth 
per meter traversed is reduced. The capacity of the rover to 
collect data, however, remains high. Ths circumstance 
leads to an opportunity to increase mission science return by 
carefully selecting the data with the highest science interest 
for downlink. We have developed an onboard science 
analysis technology for increasing science return from 
missions. Our technology evaluates the geologic data 
gather by the rover. This analysis is used to prioritize the 
data for transmission, so that the data with the highest 
science value is transmitted to Earth. In addition, the 
onboard analysis results are used to identify science 
opportunities. A planning and scheduling component of the 
system enables the rover to take advantage of the identified 
science opportunity. 

Although our techniques are applicable to a wide range of 
data modalities, our initial emphasis has focused on image 
analysis, since images consume a large percentage of 
downlink bandwidth. We have fkther focused our 
foundational work on rocks. Rocks are among the primary 
features populating the Martian landscape. Characterization 
and understanding of rocks on the surface is a-first step 
leading towards more complex in situ regional geological 
assessmeats by the rover. 
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1. INTRODUCTION 
Of great importance to NASA’s program of exploring the 
Solar System, and Mars in particular, is the development of 
intelligent rover control and science analysis systems 
capable of autonomous operations. Improvements in the 
acquisition of data with a corresponding increase in the 
number of planned missions means that the constraints on 
the volume of data will be governed not just by windows of 
opportunity or transmission, but by the limits on 
communication via the Deep Space Network. 

We have developed technology for increasing science return 
from missions by prioritizing geologic data for transmission, 
leading to data with higher science value being transmitted 
to Earth. The result is an onboard system that can axa!yze 
collected data to identify targets and prioritize the data for 
transmission. 

In this paper, we will describe our methods for the 
prioritization of geologic data acquired by an in-situ rover. 
Our techniques are applicable to a wide range of data 
modalities, however ow initial demonstration is focused on 
image analysis, as images consume a large volume of the 
downlink bandwidth for such missions. 

Image prioritization involves two processes: the detection of 
scene features and the use of these features to assess the 
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scientific value of the scene. The first step in image 
evaluation is the extraction of features of interest from the 
scene depicted. Our w=rk has focused on properties of 
rocks in the scene, and thus we begin by locating rocks in a 
stereo image pair. Rock properties including albedo and 
visual texture are then extracted from the rocks identified. 
The properties extracted from a group of images are then 
used to prioritize the images. Three prioritization methods 
are discussed: identification of key target signatures, novelty 
detection, and sampling by clustering. 

Without extensive ground testing and validation, scientists 
will be extremely reluctant to use autonomous, on-board 
prioritization of data for downlmk. Our first challenge was 
acquiring representative rover traverse data sets. We then 
prioritized the data within each set and validated our results. 
We have developed a robust method for quantifylng the 
correlation between our automated prioritization and a 
scientist’s prioritization of the same data set. 

Finally, prioritization can be used for more than just data 
downlink decisions. It can also be used for opportunistic 
science. Targets of high science value can be identified for 
additional instrument measurements. 

As NASA ventures into an era of longer mission timetables 
with increasing requirements on downlink bandwidth for 
data acquisition, a mechanism for prioritization of data 
onboard will be critical. A prioritization process that can be 
used to reduce the volume of data returned, while increasing 
the science content of the returned data, is a necessity for 
maintaining an expanding program of missions exploring the 
Solar System. 

2. DATA ANALYSIS 

Feature Extraction 

The first step in image prioritization is the extraction of 
features of interest from the scene. Our work has focused on 
properties of rocks in the scene, and thus we begin by 
locating rocks in a stereo image pair. Previms methods fer 
locating rocks in an image have used shadows and 
information about the sun angle [l]. Our technique for 
locating rocks is based on finding objects above the ground 
plane. 

We begin by determining the ground plane from the stereo 
range data, which is already calculated for navigation 
purposes. We then produce a height image, in which the 
value of each pixel represents the elevation of the point 
above the ground plane. Level contours in the height image 
are calculated and then these contours are connected from 
peaks to the ground plane to identify the rocks [2]. 

Rock properties including albedo, visual texture and shape, 
are then extracted from the rocks identified. We measure 
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Figure 1. Examples of visual texture providing 
information about the geologic texture of rocks. (a) 
original image (b) image segmented based on texture. 

albedo, an indicator of the reflectance properties of a 
surface, by computing the average gray-scale value of the 
pixels that comprise the image of the rock. The reflectance 
properties of a rock provide information about its 
mineralogical composition. Shadows and sun angle can 
both affect the gray-scale value of a pixel. Although this can 
be corrected by using the range data along with knowledge 
of both the sun angle and the camera orientation, this 
foundational work does not address these specific issues. 

The secmd rock property extracted is visual texture. Visual 
texture can provide valuable clues to both the mineral 
composition and geological history of a rock (see Figure 1). 

These igneous and metamorphic rocks have the same 
mineral composition but have undergone different 
geological processes. Using visual texture, we are able to 
distinguish between the two different rocks. 

Visual texture can be described by gray-scale intensity 
variations at different orientations and spatial frequencies 
w i t h  the image. We measure texture using a bank of 
Gabor filters [3, 41. Gabor filters scale and orientation 
specific, properties that make them successful in 
discriminating between different textures. Due to onboard 
computational constraints, a compromise must be made 
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between the number of filters used and the. discriminatory 
power of the filter bank. We have found that 12 filters (four 
orientations and three scales) are effective withoxt being 
computationally prohibitive. 

Another important and geologically useful feature of rocks is 
their inherent shape. For example, a rock that is highly 
rounded may have undergone fluvial processing and traveled 
far from its source while a rock that is highly angular is 
likely to be close to its source and has undergone minimal 
secondary processing. The shape of a rock is a complex 
property which is oftentimes difficult to describe precisely. 

Our system describes the shape of a rock in an image using 
three parameters which capture how close to circular and 
how angular the rock is [S, 61. We begin by fitting an 
ellipse to the boundary points of the identified rock in the 
image. Our first shape measure is the eccentricity of this 
ellipse. Our second measure is the error between the 
boundary points and the ellipse. The third and final 
measure is angularity, which is measured as the standard 
deviation of the angle of the edge at each boundary point. 
Image analysis is two dimensional, however rocks are three 
dimensional objects. From the range data, we have 
information about the 3D shape of the rocks. We have 
developed methods for estimating the sphericity and 3D 
angularity, and we are in the process of incorporating these 
into our system. 

Rock Prioritization 

The features extracted from a group of images are then used 
to rank the images using the three distinct prioritization 
algorithms described in this section. 

Prioritization: Key Target Signature 

Scientists have studied areas extensively and have an idea of 
what they expect to see or encounter during an in situ 
mission, On a mission, the instruments have all been 
carefully selected to collect information that will provide 
valuable insight into the history or current conditions on the 
planet. They have specific clues that they are looking fer. 
Examples of what they are loolung for include any signs of 
life past or present and signs of water, past or present. Each 
of the instruments is will have a specific signal signature 
indicating the presence of key evidence. Thus, when only 
limited data can be sent to Earth, it is very important to 
scientists that any data containing these signatures is among 
the data that is returned. 

rocks as a function of the distance of their feature vectors 
from the feature vector of the selected rock. 

Prioritization: Novelty Detection 

We have developed three methods for detecting and 
prioritizing novel rocks. They will have general utility for 
other novelty detection tasks as well, but are specifically 
designed with onboard computing constraints and the 
possibility of large feature spaces in mind. 

First, we have a distance-based k-means clustering 
approach, in which a set of rocks are clustered. A new rock 
that is a great distance from any of the cluster centers is 
considered novel. In the second method, the probability 
density over the feature space for a set of rocks is 
approximated using a Gaussian mixture model. The novelty 
of a new rock is inversely proportional to the probability of 
that rock being generated from the learned mixture model. 

The third novelty detection method uses a discrimination- 
based kernel one-class classifier approach. In this approach 
we treat all previous rock data as the "positive class" and 
learn the discriminant boundary that encloses all that data in 
feature space. Future rocks with features falling outside the 
boundary are considered novel. 

These three approaches represent the three dominant flavors 
of machine learning approaches to novelty detection: 
distance-based, probability-based (i.e. "generative"), and 
discriminative. Considering all three types in one hybrid 
approach allows us to tradeoff their respective advantages 
and disadvantages. 

Prioritization: Representative Sampling 

One of objectives for rover traverse science is to gain an 
understanding of the region being traversed. As such, it is 
desirable to have information on representative rocks, not 
just potentially very interesting unusual rocks, returned to 
Earth. A region is likely to be populated by several types of 
rocks with each type having a different abundance. A 
uniform sampling will be biased towards the dominant class 
of rock present and may result in smaller classes not being 
represented at all in the downlinked data. 

We have implemented a method for enabling scientists to 
efficiently and easily stipulate the value and importance to 
give each feature. Rocks are then prioritized as a h c t i o n  of 
the distance of their extracted feature vector from the 
specified weighted feature vector. Scientists can either 
manually specify a feature vectors, or they may select a rock 
from among the set of rocks already identified and rank the 
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To provide an understanding of the typical characteristics of 
a region, rocks are clustered into groups with similar 
properties and the data is then prioritized to ensure that 
representative rocks from each class are sampled. The rocks 
are clustered into groups based on the features extracted 
from the image data for each rock. To determine the classes, 
the property values are concatenated together to form a 
feature vector and a weight is assigned to the importance of 
each property. Different weight assignments can be used as 
a function of the particular properties that are of interest. 
For example, albedo and texture are typically used to 
distinguish types of rocks, but rock size may be used if 
sorting is of interest. Unsupervised clustering is then used to 
separate the feature vectors into similar classes. We 
currently employ K-means due to its relatively low 
computational requirements, although any unsupervised 
method could be used. For each class of rocks we find the 
most representative rock in the class, i.e., the single rock in 
any image that is closest to the mean of the set. We give a 
high priority to the image containing this rock. The optimal 
number of classes can be determined using cross-validation 
techniques [7]. 

In the future we will use the spatial location of the rocks in 
addition to their property values to enable expanded 
analyses, including characterizing local surface regions and 
sorting which requires size and location information. 

3. PRIORITIZATION FOR DOWNLINK 

Image prioritization 

The initial approach to image prioritization has been to 
assign image priorities based on the rock rankings, i.e., the 
image containing the highest ranked rock is given the 
highest priority. In the near future this will be expanded so 
that all rocks in an image are taken into consideration in 
assigning the priority of the image. 

Expert Validation 

One of' o x  prima?] concerns in this projec: is ta deveiap 
techniques for validating the results of our autonomous 
prioritization algorithms. In particular, we would like to 
ensure that the prioritizations that our algorithm produces 
are comparable to those made by planetary geologists. We 
want a quantitative measurement so that we can gauge how 
closely our algorithms match the priorities of experts, and so 
that we can track progress that we make during 
development. 

Our approach for validation is to gather sample 
prioritizations from expert planetary geologists on various 
collections of images. We use statistical methods to 
combine these expert prioritizations and compare them with 
the prioritizations produced by our algorithms [SI. The 
major advantage of this approach is that it is based on 
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Figure 2: Example results for expert prioritization of a 
set of five images. 

accepted statistical methods for combining and comparing 
ranlungs, and it provides a quantitative measure of how well 
our algorithms are matching expert rankings. 

The implementation of our approach includes a web-based 
application to enable experts to prioritize images and add 
annotations for their decisions. The implementation also 
includes a set of statistical methods for comparing 
consistency across experts and measuring how well our 
rankings match expert rankings. An example ranking by an 
expert for a set of images is shown in Figure 2. The display 
includes the rank and score of each image. In this case, the 
score is the number of times it was preferred by the expert in 
a pair comparison. An alternate statistic is used when 
combining results from multiple experts. 



4. OPPORTUNISTIC SCIENCE 

In addition to prioritization for downlink, the feature 
extraction and rock ranking can be used to identify science 
opportunities along a traverse. In particular, additional data 
may be collected on rocks that conform to key target 
signatures or that appear to be novel. 

Once the data analysis software has identified a set of new 
science targets, these targets can be passed to other onboard 
autonomy software that will modify the onboard command 
sequence in order to collect the new science data. This 
capability is currently provided in our system by the 
CASPER planning and scheduling system [9, 101, which 

Autonomously evaluate whether new science 
targets can be achieved given the state of the rover, 
Modify the current command sequence to 
incorporate new targets, and 
Monitor execution of that sequence in case further 
adjustments are necessary. 

By integrating data analysis and planning capabilities, the 
resulting system can operate in a closed-loop fashion. This 
framework enables new science targets to be addressed 
onboard with little or no communication with Earth. An 
important contribution of this work is closing the loop 
between the sensor data collection, science goal selection, 
and activity planning and scheduling. Current approaches 
require human analysis to determine goals and to manually 
convert the set of high-level science goals into low-level 
rover command sequences. By integrating these components 
onboard, we enable a rover to function autonomously, as if a 
scientist were always in communication. This type of 
capability should dramatically increase the science return of 
future rover missions. 

The CASPER planning and system operates by evaluating 
an input set of goals and the rover’s current state and 
resource levels. Based on this information, CASPER 
generates a new sequence of activities that satisfies as many 
of the new goals as possible while obeying any rover 
resource 2nd operation constrziints. Goals are evaluated 
based on their priority (as assigned by the data analysis 
software), and if limited resources are available, then only 
the highest priority goals may be included in the new plan 
(i.e., command sequence). New plans are produced by using 
an “iterative repair” algorithm, which classifies conflicts and 
resolves them individually by performing one or more plan 
modifications. Once a new plan is produced, commands are 
sent to the rover’s low-level control software for execution. 
During execution, status updates are relayed back from the 
control software where they are monitored by CASPER. As 
information is acquired regarding command status and 
actual resource utilization, the planner can update the 
current plan. New problems may often arise, requiring the 
planner to replan in order to accommodate the unexpected 
events. 
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The CASPER planning and scheduling system is also 
interfaced to the CLARAty robotic architecture [ l l ,  121, 
which is being developed to support autonomous rover 
operations at the Jet Propulsion Laboratory and other NASA 
sites. CLARAty provides high-level decision-making 
software with a flexible interface to basic rover 
functionality. This functionality can range from low-level 
control of a motor or sensor or system level operations such 
as traversing a rover to a target location using obstacle 
avoidance. Currently, CLARAty provides a direct interface 
for the use of planning and scheduling software onboard the 
rover, and this interface has been tested in controlling two 
different rovers. We are currently extending the architecture 
to also accommodate data analysis methods and enable these 
methods access to data as well as the capability to 
communicate with planning and other relevant software 
systems. 

Testing and Validation 

The system will be tested using rover data taken under 
controlled conditions in which the science opportunities that 
are to be discovered are known a priori, The testing 
sequence will begin using data acquired from the rover, as 
described above, where the rover is in the P L  Mars Yard 
with hand-placed science targets. As the system becomes 
more advanced, it will be tested onboard the rover with the 
rover taking appropriate action upon identif9ng a new 
science opportunity. Testing will be performed in situations 
with well-defined science opportunities as well as situations 
in which there are no special science opportunities during 
the traverse. The performance of the system will be 
evaluated by comparing the false alarm rate to the science 
opportunity detection rate. This ratio will be evaluated for 
science opportunities of varying detection difficulties. 

5. CONCLUSIONS AND FUTURE WORK 

The Deep Space Network will remain a constraining 
resource for future deep space missions as the number of 
high bandwidth missions increases. Traditional data 
ccxpressior, c a ~  provide a vaktabk mechanism for 
increasing the amount of useful data returned, however a 
limited amount of compression is possible before distortion 
levels become intolerably high. Science return can be 
maximized by returning the data with the highest science 
content possible. This requires a measure of science interest 
that can be evaluated onboard and a prioritization 
mechanism to rank the data for downlink based on the 
measured science interest. We have described a system that 
implements this hctionality including extracting properties 
from image data and three methods of prioritizing the data 
that encompass the primary scientific exploratory objectives. 
We also described how the system can be validated by 
scientist and field tested. The use of onboard analysis to 
select the data with the highest scientific interest will be a 



critical functionality to maximize science return on future 
deep space missions with high data volume instruments. 
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