LLanguage Translation,
Domain Specific Languages,

and ANTLR

Loring Craymer

and

Terence Parr

Intro to ANTLR

PCCTS (now ANTLR) first published in SIGPLAN
Notices (1990)

Very powertful, easy to use:

“I' know how to use lex and yacc. What’s ANTLR” -- newbie to PCCTS news group
“I know how to use an axe. What’s a chainsaw?”— Gary Funck response

Development focus has been on building useful tools
Leading tool for Java translators

Supports rapid development of “little” languages
Domain-specific languages (DSLs)

— enabled by ANTLR and other modern “compiler construction” tools
— Are useful for avoiding repetitive coding.
— Provide custom solutions to otherwise difficult problems.

Terence’s Motto

"Why program by hand in five days what you can
spend five years of your life automating."

Languages, Languages,
Everywhere

* Very few people write compilers

* People build parsers for lots of things
— xml
— property, config files
— data formats
— scripting and domain specific languages
— latex, shells

The Nature of Computer
Languages

A language is simply a set of valid sentences; or "what
you can say"

Structure imparts meaning; |
— Terence says the emperor has no clothes versus
— Terence, says the emperor, has no clothes

Two problems: generation and recognition

Blue lyrics generation state machine; e.g., My dog is really

lazy and You was gone
I

~
i

wife really
brother
My is
You . are >
Your

was

OO e
amg
o

Cannot generate invalid: My are

The Big Picture

input gl lexer
language

token

stream
E——

parser

IR

P

translator

A translator is typically composed of the following elements:

output
language

« When you read, brain automatically converts letters into words then
applies grammatical structure to word stream

» Hawaiian state fish Humuhumunukunukuapua'a seen as one word

ANTR features

Can parse grammars for

— char streams lexer
— token streams parser
— 2D trees tree walker

EBNF syntax (consistent across 3 grammar types)
Automatic tree construction

Error recovery uses exception model

LL(k) vs LALR(1); advantage in attributes, actions
Context-sensitive parsing (semantic predicate)
Arbitrary lookahead (syntactic predicate)

Generates recursive-descent parsers implemented as class
with methods for rules

Sample ANTLR Parser grammar

class SimpleParser extends Parser;

program : (variable)* (method)+ ;
variable : "int" ID (EQUALS expr)? SEMI ;
method "method" ID LPAREN RPAREN

LCURLY (variable)* (statement)+ RCURLY ;

statement : ID EQUALS expr SEMI
| "return® expr SEMI ;

expr : ID | INT ;

Trees and Transformations

ANTLR uses Abstract Syntax Trees (ASTs) rather than
parse trees—simplifies rewriting

Child-Sibling format: #(A B C D) describes A

i

B—C—->D
Construction driven by simple annotation:

~ TOKEN" says make TOKEN the root of the current rule subtree.
— TOK! says “ignore” TOK | |

Translator phase is series of tree transformations, followed
by tree-to-output format conversion

Automating tree grammars

* Annotation solves most construction problems, but
not all

=> Added tree construction syntax:

A or conceptually: Y

! ¥\

B—C B C

Tree Grammar Automation (2)

* Default construction is to copy input structure to
output => no problem

* Problem: A(BC*"D)+E generates trees hke

Critical algorithm

* Note tree is recursively structured.

* Four subtree types: |
- ABC'"DE=>#CABDE) ,~#%:.
— Lowest subtree: #(CAB D)
— Middle subtrees: #(C childTree D B) Q”‘ S
— Top subtree: #(C childTree DE) L2

Where childTree is either a mid-subtree or the lowest
@;%ﬁ“ﬁ reec,

Recursive construction

R e

treeQ : #(Ctreel DE)

| #(C A B CE) // single iteration case
treel : #(Ctreel DB)

|#(CABD) // lowest subtree

2

Domain specific languages

Use domain-specific notation
~ Custom—ad hoc “notation” for ease of expression
— Predefined (e. g.: document format)

May or may not embed domain-specific processing in the
translator

May be used to
— Avoid repetitive coding
— Simplify problem expression
— Simplify problem solution

Familiar examples (complex!)
— spreadsheet

— word processor
— Matlab/Mathematica

®

N

DSLs translated with ANTLR

IVL

Cassin1 Command Language Specification
TML

Processing of binary data

IVL

* 2D diagrams are easy to build with editor,
3D are not. Placement, alignment are hard

* IVL: develop VRML models, scenes with
simple English-like descriptions

a = Cone

b = Sphere

¢ = Cylinder

d = Sphere

draw a

draw b to the left of a
draw c to the right of a
draw d above a

IVL Robot Example From "The
Inventor Mentor"

// Define a leg

thigh = Cube
thigh.scaleFactor = [.6 1.1 .6]
calf = Cube

calf.scaleFactor = [.5 1.1 .5]
foot = Cube

foot.scaleFactor = [.4 .4 1]
draw foot

draw calf above foot and -1
behind foot

draw thigh above calf

save as leg.iv"

// Construct robot

head = Sphere

head.scaleFactor = [1.5 1.5 1.5]
body = Cylinder

body.scaleFactor = [2.5 3 2.5]

draw head

draw body below head

class Leg = " leg.iv"

lleg = Leg

rleg = Leg

draw lleg below body and -2.25 to the
left of
body and -3.1 in front of body

draw rleg 0.5 to the right of lleg

IVL Robot Rendered

Cassini Command Language

e Problem: verify that imgplementation matches specification.
o Solution: machine translation

— Extract parametric descriptions from spec.
_ Generate machine-readable table for verification tools.

e Implementation:

— Export RTF version of spec.

— Recognize subset of RTF formatting commands
— Ignore others

— Identify formatting-+text sequences

6.8.2 SSR Command Listings

EX am p].e . 16CE_BKUP_PWROFF
Name: SSR-A/B Bkup Pwr Off -

Purpose: Enable Backup Power to SSR-A or SSR-B (o be tumed off

C 0 mmaIld Routing: Channel 0: CDS-A and CDS-B
Command Input Fields: 16CE_BKUP_PWROFF. Off Cmid Status

Input Parameter Descriptions:

Cmd Field Data Type L.eeal Values nits Accuracy

Off Cmd Status Enumerated ENABLE, DISABL na wna

Translation:

Word # Bit # Cmd Field Data Type Binary Data (MSB to E.SB) Hex

01 15 Off Cmd Status: ENABLE Enumerated 1 1
Off Cind Status: DISABLL 1} (4]

01 14-13 Unused 00 0

01 12-8 CRC Address Unsign Infeger 00110 6

o1 7-0 Discrete Bit Select Unsign Integer 0100 0000 40

Expanded Parameter Description:

Off Cmd Status - When this CRC bit is enabled ¢set to "1") in either CDS string the PPS will
accept an SSPS command to turn off backup power to either SSR A or SSR B.

CRC Address - The CRC address field selects which group of 8 CRC bits or CRC mask bits is to
be modified by the command. 16CE_BKUP_PWROFF is in the group of 8 CRC bits with a CRC
address field of 06 hexadecimal.

Discrete Bit Select - The Off Cind Status CRC bit selects the bit from the group 8 CRC bits in
which it resides. See also TBD.

Discussion:

TBD

Comments

» Grammar slightly larger than that for ANSI C
 Effort:

— 3 weeks for initial implementation

— 3 weeks for doc revisions and modifications to deal
with non-compliance of FrameMaker RTF output with
Microsoft RTF spec.

TML -- Terence's Markup
Language

Takes raw text with a few special symbols

and generates nice looking documents in
HTML or Lout (PS,PDF)

Reduces typing by about 50%
Extremely expressive, productive

Extensible "plugin" system; e.g., trees,
- syntax diagrams

I build my class notes and slides with TML

TML Example

##4H# TML Demo

o Simple

0 Powerful

o Immediately obvious syntax

o Plugin sample: %tree("(PLUS 3 (MULT 4 5))")

TML Demo
« Simple
« Powerful

« [Immediately obvious syntax
- Plugin sample: PLUS
P
3 MULT
¥\
4 5

Processing binary data

Binary formats are usually simple
— Type tags or numerical identifiers
— FElementary data types—characters, integers, floating point
— Packed or unpacked records (C structs)
— Packed or unpacked alternatives (C unions)
Processing is mostly “aspect-oriented”

~— “For each datum of type A, do XXX”
Manual code generation is repetitive and error-prone

~ Example: Matching reader/writer code

Automatically generated code is easily verified and code
generator can be rapidly developed for any new function.

!

Example binary format Spec

IDs {

}

n2 tag = ID_RECORD;
n2 parentNode;

n4 parentld;

n4 id;

strandID {

n2 tag = STRAND_ID_RECORD;
n2 parentNode;

n4 parentld;

n4id; .

n4 func;

parcellD {

}

endTime {

initSync {

n2 tag = PARCEL_ID_RECORD;
n2 node;

n4 parentld;

n4 id;

n4 func;

n2 tag = END_TIME_RECORD;
n4 id;

n2 tag = INIT_SYNC_RECORD;
n4 id;

n2 slot;

n4 count;

n4 reset;

n2 thread;

Comments

Originally written for SF Express project to translate
terrain data formats (not completed) from 32 to 64-bit

Generated efficient read/write code
— Packs/unpacks data items.
— Canonical BigEndian format

Generated logging code for SPP
New code generator takes one to three days to implement

ASN.1 (telecom data format spec) provides more general
formatting grammar

