
DEEP SPACE NETWORK TURBO DECODER IMPLEMENTATION

Jeff €3. Berner('), Kenneth S. Andrews(*), Scott If. Bryant(')
Jet Propulsiun Laboratory

California Institute of Technology
('IMS 238- 73 7
"MS 238-420

4800 Oak Grove DP.
Pasadena, CA 91109

U.S. A.
jefpi. 6ms ef$&jpl. f8aslz~mJ, ~~ SC@bf* h. ~~~~~~~~~~~~~. m%Sa.Z# $7

ABSTRACT

A new decoder is being developed by the Jet Propulsion Laboratory for NASA's Deep Space Network. This unit will
decode the new turbo codes, which have recently been approved by the Consultative Committee for Space Data
Systems (CCSDS). Turbo codes provide up to 0.8 dB improvement in E n o over the current best codes used by deep
space missions.

The new decoder has been implemented in software running on commercial Digital Signal Processor @SP) chips,
removing the need to design complicated and expensive hardware as was the case with the previous generation of codes.
The decoder time-tags the data frames, performs a buffered frame synchronization in the symbol domain (as opposed to
the current bit domain synchronization), distributes the turbo coded frames among several DSPs working in parallel for
decoding, and releases the decoded bits in the CCSDS Standard Formatted Data Units format. The decoder uses a
stopping rule to detect convergence, decreasing the average number of decoding iterations required. The decoder
currently decodes at rates up to 700 kbps (depending on frame length and SNR), and will increase in rate as DSP clock
rates increase. The implementation wilI go operational in October, 2003.

1.0 INTRODUCTION

In 1993, a new cIass of error correcting codes was developed [l]. These codes provide up to a 0.8 dB improvement
over the current best codes used by deep space missions. The Consultative Committee for Space Data Systems
(CCSDS) has recommended a set of these codes for use in future missions. These codes are different from the turbo
codes used for third-generation wireless applications.

The Jet Propulsion Laboratory (JPL) is developing a turbo decoder for use in the Deep Space Network (DSN) that JPL
manages for NASA. This decoder not only decodes the turbo encoded data, but also performs time-tagging and frame
synchronization as part of the decoding process. As opposed to previous decoder implementations, this decoder is
implemented in software that runs on commercial Digital Signal Processor (DSP) chips. This provides a quicker
development time, a cheaper production implementation, and an easy upgrade path for future DSPs.

This paper is divided into three parts. First, we describe turbo codes and how they are used. Next, we show the
advantages of turbo codes versus the currently used deep space error correcting codes. Finally, we describe the design
and implementation of the turbo decoder that is being developed by JPL.

2.0 DESCRIPTION OF TURBO CODES

Turbo codes are block codes. That is, the encoding is done on one block of data at a time. A transfer frame (as defined
by [2]) is the basic block. As part of the transfer frame, the 16-bit Frame Error Control Field (FECF) at the end of the
frame is required; the FECF is a Cyclic Redundancy Code (CRC). After the encoding is done, the frame
synchronization marker is attached to the beginning of the block. This is different than the sequence for the
concatenated convolutional / Reed-SoIomon encoding that is currently done for deep space systems. In that case, the
transfer frame is Reed-Solomon encoded (which is a block code), has the frame synchronization marker attached, and
then is convolutionally encoded. The stages in generating the encoded output data stream are described below.

2.1 Frame Error Control. Field

One feature of the Reed-Solomon coding is its use as a final "good frameibad frame" indicator. The decoder either
corrects the frame or indicates that it cannot decode the frame. The probability of its making an error in that process is
very small (approximately the Bit Error Rate (BER) of the code divided by 16!, or 4 . 8 ~ 1 0 . ~ ~ BER), so it can be used as a
reliable frame "goodness" indicator.

Unfortunately, by itself, a turbo code does not have that property. Its error floor on the decoded frame is higher than
what the Reed-Solomon code provides. However, when using the FECF, as defined in the Transfer Frame specification
[2] (where it is specified as optional), this problem is alleviated. The FECF is a 16-bit CRC that is used after the turbo
decoding to detect remaining bit errors. When used as a frame "goodness" indicator, the prubability of an erroneous
frame being accepted as a good frame is very small (approximateIy the BER divided by 216, or 1 . 5 ~ 1 0 - ~ BER). The next
revision of the telemetry channel coding recoinmendation [3] will specify that the FECF always be used with turbo
encoding.

2.2 Encoding Algorithm

Turbo encoding is very straightforward. It uses two constraint length 4 convolutional codes to generate the encoded
symbols. The process is as follows:

The transfer frame is input to the encoder. There are four frame sizes defined: 1784, 3568, 7136, and 8920 bits (a fifth
frame size, 16384 bits, is defined, but the encoding parameters have yet to be specified). Note that the frame sizes
correspond to the Reed-Solomon frame's data allocation (the same amount of data is sent per frame). The frame of data
(of length k bits) is input to one of the convolutional encoders. An interleaved (permuted) version of the data frame is
input to the second encoder. For a code rate of lin, the original bit and n-1 coder tap outputs are output as the encoded
symbols (this means that the unencoded bits are available, if necessary). The CCSDS recommendation defines turbo
codes for n equal to 2, 3, 4, and 6. After the k bits are clocked into the encoders, four flush bits are input; these flush
bits clear out the coder memory (also known as trellis termination). Thus, for a k bit frame, we get n(k+4) symbols
output. Fig. 1 sliows the turbo encoder structure. For every input (either an input bit or a flush bit) to the shift registers,
n symbols are output. The output sequence is from top to bottom in the figure (e.g., for rate 116, the output sequence is
Oa, la, 2a, 3a, Ib, 3b).

The interleaving is a fixed sequence, which is on a bit-by-bit level (as opposed to the Reed-Solomon interleaving on a
byte-by-byte level). The interleaving is described algorithmicaIly in [3] ,

2.3 Pseudo Randomization

If sufficient data transitions (which are required to lock up the receiving system) are not guaranteed, either by the
modulation scheme or the data stream, then the CCSDS recommends that a Pseudo Randomizer be used on the encoded
data. This means that a pseudo noise (PN) sequence is exclusive-ORed bit by bit with the encoded data. A PN
sequence 255 bits long is repeated until it fills the encoded block. The sequence is defined by the following generator
polynomial:

h(x) = x* + x7 +x5 -k a? + 1

The sequence generator is always initialized to the all-ones state for the beginning of each encoded block. Although it
is currentby an option, it is expected that, in the next revision of the standard, pseudo randomization will be required.

2.4 Frame Synchronization Marker

Once the frame is encoded, a frame synchronization marker must be applied. This is similar in concept to what is
currently done with the Reed-Solomon encoding. The o d y difference here is that the encoded block is already in the
symbol domain, so the frame marker must be applied in the symbol domain. Thus, the 32-bit marker is appended as a
32n-symbol marker (e,g., 96 symbols for rate 1/3, 192 symbols for rate 1/6). The markers for the different code rates
are defined in [3] . If pseudo randomization is used, the synchronization marker is not exclusive-ORed with the PN
sequence.

3.0

0 = Exciusive OR

=Take every symbol

8 = Take everj other symbol

a+ =Single bit delay

Fig. 1. Encoding Diagram

PERFORMANCE GAIN

The perforniance of a code can be judged by the ratio of the energy-per-bit to the noise spectral density (E f lo) needed
to achieve a desired probability o f error (P,); P, is also known as the Bit Error Rate (BER). The Iower the E a o
required for a given P,, the better the code's performance.

Fig. 2 provides a comparison of the two standard codes currently used for deep space and the new turbo codes. The
current codes are the constraint length 7 , rate 1/2 convolutional code (denoted as the (7, 112) code), concatenated with
the (255, 223) Reed-Solomon code, and the constraint length 15, rate 116 (15, 1/6) convolutional code, also
concatenated with the (255, 223) Reed-Solomon code. The comparison is for a frame size of 8920 bits, which
corresponds to a Reed-Solomon interleave factor of 5. As can be seen, for a BER of the rate 1/6 turbo code
provides approximately 0.8 dE% improvement over the (15, 1/6) concatenated code, the rate 114 code provides 0.6 dB
improvement, the rate 1/3 code provides 0.4 dB improvement and the rate 1/2 is 0.3 dB worse. Comparing the (7, 1/2)
code with the turbo codes, we see improvements of 2.4 dl3,2.2 dB, 2.0 dB, and 1.3 dB for the rate 1/6, 114, 113, and 1/2,
respectively.

4.0 TURBO DECODING

On the receiving side, the turbo decoder takes %bit quantized symbols from the receiver and produces the decoded bits,
along with time-tag information. The process is described below.

4.1 Description

The turbo decoder actually encompasses several functions: time tagging, frame synchronization, pseudo
derandornization, turbo decoding, and CRC checking. More detail is available in [4].

Time tagging is accomplished by counting the cycles of the 10 MHz reference signal, using a 1 pulse per second (pps)
timing reference to zero out the count (the 1 pps occurs on the second boundary). Each symbol clock, which clocks the

1.000E-01

1000E-02

1.00DE-03

K
D

1.00QE-04

1.000E-05

1 OWE-06

, I -a- Rate 116 Turbo

+Rate 113 Turbo

+Rate 112 Turbo

-5 000E-01 0.000E*00 5 OOOE-01 1 OOOEtOO 1.500E+00 2 000E+00 2.500E+00

EblNO [del

Fin. 2 . Code Performance (8920 Bit Frames)

symbol into the decoder, latches this count. This process gives a 24-bit count of the 0.1 psec o f the current second. The
I/O processing of the decoder adds the current second to the count. Thus, each symbol has a time tag associated with it.

Next, frame synchronization is performed. The frame synchronizer searches for the frame synchronization marker that
was appended to the coded block. The frame synchronizer checks for both normal and inverted polarity in the marker;
if it detects the inverted polarity, the encoded block is marked for inversion before being sent to the decoding task. The
synchronizer can buffer a minimum of four frames. This allows the system to acquire synchronization and then apply it
backwards to the previous frames, reducing loss of data during the lock up period. Also, due to the fact that the
synchronization search is done in the symbol domain (as opposed to the bit domain as has aIways been done for
convolutionalReed-Solomon coding), the SNR that the synchronizer operates at is lower; this requires that multiple
frames be summed to achieve high enough SNR for determining synchronization.

Each synchronized block is passed to a decoder element, along with a flag indicating whether or not the block is
inverted. Unlike the convolutionaI/Reed-Solomon codes, turbo codes are not transparent; the inversion of a codeword is
not a codeword. So, if indicated, the decoder must invert the block prior to decoding. Also, if pseudo randomization
was applied to the codeblock, it must be removed.

The turbo decoder itself is an iterative decoder. Each of the two component codes (non-interleaved and interleaved) are
alternately decoded, with the results being passed back and forth between the two. Eventually, the decoder produces an
output. The decision on when to stop iterating can be achieved either by performing a fixed number of iterations or by
using a metric to determine that the decoder has converged to a result. These methods are described in section 4.4. The
data blocks are output to the project as Standard Formatted Data Units (SFDUs), a standard format, based on a CCSDS
recommendation [SI. The format is defined in [6].

Since the decoder operates on blocks (frames), higher speed can be achieved by having multipIe decoder elements. The
total speed of the decoder is the product of the number of decoder elements and the average speed of an individual
element. The current requirement for the first turbo decoder implementation is a 365 kbps rate.

The turbo decoder is implemented on commercial Digital Signal Processor (DSP) boards. There is a total of eight
Texas Instruments (TI) TMS320C6000 family DSPs available for use on a board. The design of the DSP usage is
provided in the next section.

4.2 Software System Architecture

The primary computational tasks of the decoder are frame synchronization, turbo decoding, and control and
coordination. These tasks are divided among the eight DSPs as shown in Fig. 3. The Control DSP handles data transfer
and coordination among the DSPs, and performs various other minor tasks. The Frame Sync DSP identifies the
embedded synchronization markers to determine the location and polarity of each turbo coded block. These blocks are
distributed to six Decoder DSPs, each of which runs identical software and performs the iterative turbo decoding. At the
200 MHz clock rate, each Decoder DSP can maintain a data rate of 50 kbitsisecond while performing ten iterations on
each block. This gives a system throughput of 300 kbitshecond at ten iterations, and this increases proportionally as the
clock rate is increased, and as the average number of iterations is decreased with a stopping rule.

The basic skeleton of the turbo decoder algorithm is written in C to preserve readability of the code and to permit minor
modifications; all the computation routines are written in optimized assembly. All the software for the Frame
Synchronizer DSP is in assembly; the skeleton is not optimized but all the computation is. Software for the Control
DSP is written in assembly language because it deals extensively with interrupts and hardware resources which higher
level languages do not handle as readily; the assembly is not optimized because speed is not critical.

4.2. I The Turbo Decoder DSPs

Turbo decoding is performed iteratively. A simple description wilI be provided here; details of the algorithm are
available in [4]. In the first half iteration, an attempt is made to decode the first constituent convolutional code using its
received data independent of information from the second code, using the BCJR soft-decision algorithm (named for
Bahl, Cocke, Jelinek, and Raviv [7], and aIso known as the "forward-backward" algorithm). This algorithm works both
forwards and backwards, through the block, performing iterative calculations. These are combined to form
"reliabilities" representing the estimated probability that the jth bit is a binary 1. These probabilities are modified by
subtracting a term common to both constituent decoders, and the resulting "extrinsic" information is "interleaved"
(permuted according to the permutation algorithm) and used as an aid in decoding the second convolutional code during
the second half iteration. A new set of extrinsic information is computed, de-interleaved, and passed back to the first
decoder €or use in the second iteration. This process is repeated for some number of iterations, and usually the message

i LYTEKFACE BOARD ~ CONTROL DSP , FRAME SYNC DSP

TlMMETAC SC*LE FRAME SYNC
B L O C K Y
RECElYER

CONTROL DSP

Fig. 3 . Decoder Block Diagram

estimates converge to the correct decoded sequence. The number of iterations can be fixed, or determined by a
"stopping rule" based on the reliabilities at the end of each iteration. Upon completion, a final estimate is computed.

While implementation of the algorithm is essentially straightforward, efficient memory use and numerical precision
require consideration. Each DSP contains 64 kbytes of internal data RAM which it can access in a single clock cycle
(technically, internal data RAM requires no wait states (assuming bank hits are avoided), so while load instructions
involve four delay slots, the carefully written program executes at full speed). Megabytes of off-chip memory are
available, but they impose 16, 18, or more wait states, entirely wasting that many clock cycles. Thus it is very desirable
to perform all computation using internal memory. Simultaneously, the data for future computations can be transferred
from external to internal memory by DMA in the background, without imposing any significant penalty on the CPU
speed. Because the CCSDS codes use 16-state (constraint length 4) convolutional encoders, decoding a codeword of N
message symbols requires regular access to well over 16N intermediate values. The internal memory is too small to
hold this many 16-bit quantities, even for the smallest turbo codes. The solution to this memory problem is to break
each block of data into a sequence of "windows".

All computation is done using fixed point arithmetic for speed. The received symbols are scaled as required by the first
step of the decoding algorithm and quantized to preserve about three bits of "soft" information by setting the nominal
BPSK values to kIO/d, where cr i s the standard deviation of the synibol noise. The BIock V receiver must do at least
part of this scaling because cr is not known to the decoder; scaling by constant factors can be done by the receiver, the
decoder, or both. To avoid quantization losses at both the receiveddecoder interface and after scaling by the decoder, it
can be shown that the decoder's scale factor should be close to the reciprocal of an odd integer.

As decoding proceeds, the extrinsic information exchanged between decoders usually grows in magnitude with each
iteration, and this must be restricted to prevent numeric overflow. There are anecdotal research results that show that
"clipping" the extrinsic values to some limit also improves decoder performance, and increases immunity to outlying
received noisy symbols (due, perhaps, to non-Gaussian data errors). For these reasons, clipping of the extrinsics is
implemented, with a programmable level to permit making trades among performance, required renormalization rate,
and immunity to outlying symbol values.

4.3 Decoder Speed

Decoder speed has several potential bottlenecks: the syinbol input, the frame synchronizer, and the decoder dements.
All of the processing ate functions of the DSP clock speed. Current development is on 200 MHz boards; all of the
numbers quoted in this section are for these boards. (The implementation in the DSN will use 300 MHz boards, so a 1.5
times speed improvement is expected).

Input rates of 16 MHz have been successfully demonstrated. This would give a symbol input rate of 16 Msps, which
translates to 2.67 Mbps for a rate 1/6 code. It is expected that higher speed processors will be able to handle higher
rates, up lo a maximum input rate of 26.4 Msps (the maximum output rate of the receiver). However, even at the
current speed, the symbol input will not be a bottleneck.

The frame synchronizer must be run in serial with the data stream (as opposed to the parallelism that can be achieved
with the decoder elements). Current projections from the prototype indicate that it m s at a rate of 4.5 Msps for the
worst case (192 symbol frame marker and an 8920 bit frame). This corresponds to a bit rate o f 750 kbps for a rate 1/6
code. This will increase with faster speed processors. In addition, if a higher throughput is needed, there are some
additional tricks that can be done for higher symbol rates (e.g., checking every other frame).

The decoder elements are the main bottlenecks in the speed equation. There are three ways to increase the speed of the
decoding. First, the processor speed can be increased; the decoder speed is basically linear with the processor speed
(doubling the speed doubles the decoding rate). This is definitely a viable option; as mentioned earlier, while the
current development has been done on 200 MHz DSPs, 300 MHz DSPs will be fielded, and TI has announced part
numbers for 600 MHz parts and has promised a 1 GHz DSP in the future. Secondly, more DSPs can be added to the
system.

The final way to increase the decoding rate is to use stopping rules in the decoding process. As described earlier, the
decoder is an iterative process that can run for a fixed number of iterations, or can be stopped when convergence is
detected. The method for determining the convergence is called the stopping rule. Stopping rules are described below.

4.4 Stopping Rules

When decoding a block o f data, the reliabilities of the message bits generally improve with each iteration. Depending
on the particular values of the received noise, the estimated message is often entirely correct after a few iterations, but
may not be until ten or more, or never, in which case a decoding error i s unavoidable. One could perfomi a fixed
number of iterations on each block (typically ten), knowing that most decodable blocks will be correctly decoded by
then. A superior method is to iterate only until the decoder is sufficiently "confident" in its estimates, or until some
maximum number of iterations is reached. In this way, most blocks are decoded in a few iterations, and the time saved
can be used to perform extra iterations on the difficult blocks, resulting in a better decoder, or a faster one, or both.

This technique requires a stopping rule to determine when a sufficient confidence has been reached. Balancing
implementation issues against performance, we consider Rule Sz from [X I which stops decoding when all the extrinsic
values have a magnitude exceeding some fixed threshold 8. This test is performed after odd half iterations, and when
satisfied, decoding is stopped at the end of the iteration (Le., half an iteration later).

With a stopping rule, any two of the four parameters of frame error rate (FER), decoder speed, SNR, and threshold 9
can be determined from the remaining two. In Fig. 4, frame error rate is plotted parametrically against decoder speed
(measured as the reciprocal of the average number of iterations performed times the speed per iteration), as the SNR and
B are varied. For a fixed SNR, we see that as 6' is reduced from infinity, a marked increase in speed is realized with
virtually no penalty in FER, then there is a "knee" in each curve, afier which the FER increases rapidly with modest
increases in speed. By choosing a B of 100 (in its essentially arbitrary units), the decoder operates near these "knees",
achieving the best speed consistent with a minimal FER penalty.

In Fig. 5 , speed is plotted parametrically against SNR for four of the CCSDS codes as B is varied, with the FER fixed at
This shows the SNR required to achieve a particular data rate. The expected operating point is the knee of the

curve. However, the figure shows that an increase in the data rate can be achieved at the cost of a higher threshold
SNR.

5.0 IMPLEMENTATION STATUS

A prototype has been developed and the implementation work for installing into the DSN has started. The prototype
uses two boards with four DSPs on each to implement the turbo decoder. This implementation was developed under the
Telecommunications and Mission Operations Directorate (TMOD) Technology (TMOT) program. This decoder has
successfully interfaced with the DSN's Block V Receiver (BVR) in the Telecominunications Development Lab (TDL).
The processor speed is 200 MHz. It implements the symbol input, the fractional time tagging, the frame
synchronization and six decoder elements. The decoder element speed is about 54 kbps (without stopping rules - 10
iterations are done), for an aggregate rate of 324 kbps, far exceeding its initial goal of demonstrating a 250 kbps
decoding rate. Stopping rules have been implemented and are showing the expected speed improvement. Extensive
BER testing shows excellent agreement with theory.

The turbo decoder will be installed into the new Downlink Tracking and Telemetry @TT) subsystem that is being
deIivered as part of the DSN's Network Simplification Project (NSP). Specifically, the decoder boards will be installed
in the new Telemetry Processor (TLP) and controlled by the Downlink Channel Controller (DCC). This equipment will
be installed in the DSN in the 2002-2003 time frame. The decoding capability will be operational at all sites by October
2003. Implementation across the DSN will be staggered over the year 2003, so capability to support missions will be in
place at some antennas before October. Full compatibility testing capability will be available in January 2003 and
limited compatibility testing will 'be available prior to that date, using prototype and first production units. Two
missions, MESSENGER and STEREO, have already committed to using turbo coding.

6.0 CONCLUSION

The turbo decoder being developed at JPL for deep space missions has been described. The decoder allows missions to
use the new CCSDS turbo codes, which provide up to 0.8 dE3 improvement over the best coding that is currently used.
The initial implementation will support at least 700 kbps and will be available for use at all DSN antennas by October
2003.

Fig. 4. Frame Error Rate V.S. Decoder Speed

EWW, bB

Fig. 5. Decoding Speed vs SNR

REFERENCES

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-Correcting Coding and Decoding:
Turbo-Codes,“ IEEE International Conference on Communications, pp. 1064-1070, May 1993.

Consultative Committee for Space Data Systems, Recommendation for Packet Telemetry, CCSDS 102.0-B-4,
Blue Book, November 1995.

Consultative Committee for Space Data Systems, Recommendation for Telemetry Channel Coding, CCSDS
101.0-E-4, Blue Book, May 1999.

K. S. Andrews, J. E. Bemer, V. Stanton, V. Chen, and S. Dolinar, “Turbo Decoder Implementation for the
DSN,” submitted to Telecommunications and Mission Operations Progress Report.

Consultative Committee for Space Data Systems, Standard Formatted Data Units - Structure and Construction
w, CCSDS 620.0-B-2, Blue Book, May 1992.

Module TLM-3-29, Deep Space Mission System External Interface Specification, Document 820-013, June 15,
2000, Jet Propulsion Laboratory, Pasadena, CA (an internal document).

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear Codes for Minimizing Symbol Error
Rate,” IEEE Transactions on Information Theory, IT-20, pp. 284-287, March 1974.

A. Matache, S. Dolinar, and F. PolIara, “Stopping Rules for Turbo Decoders” Telecommunications and Mission
Operations Progress Report 42-142, April-June 2000, pp. 1-22, August 15,2000.

ACmOWLEDGEMENTS

The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space Administration.

We would like to acknowledge all of those who have contributed to the design and implementation of the turbo decoder:
Samuel Dolinar, Dariush Divsalar, Fabrizio Pollara, Valerie Stanton, David Wotola, Victor Chen, Jim Weese, Adina
Matache, and Todd Chauvin.

