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Abstract 

This paper describes an approach for qualifying optimal technology portfolios obtained with 
a multi-attribute decision support system. The goal is twofold: to gauge the degree of confidence 
in the optimal solution and to provide the decision-maker with an array of viable selection 
alternatives, which take into account input uncertainties and possibly satisfy non-technical 
constraints. The analysis is presented in the context of the assessment of capability development 
portfolio for the NASA Aeronautics program. The results underscore the importance and the 
usefulness of the postoptimality study in augmenting the level of confidence in the technology 
portfolio recommendations. 

Introduction 

Owing to the increased need for consistent, transparent and auditable decision-making 
processes and tools (Silberglitt and Sherry 2002), our team is developing and utilizing START 
(STrategic Assessment of Risk and Technology), a quantitative multi-attribute decision support 
system (Weisbin et al. 2004, Weisbin et al. 2005, Elfes et al. 2006), to perform prioritization of 
advanced technology portfolios. Project investments are selected through optimization of net 
mission value as a function of capability level achieved, subject to cost and time constraints. The 
underlying data set, which quantitatively characterizes requirements (performance, cost, 
schedule, risk) and proposed technological solutions (achievable capabilities, resource 
requirements, degree of maturity, schedule), is replete with uncertainty. This inherent uncertainty 
of the input data must be combined into a global confidence range, which provides the decision 
maker with an overall sense of quality and likelihood of success of the investment strategy. 

We use two complementary methods to take a first step in evaluating the degree of 
confidence about the standard optimal investment portfolio and determining how the choice of 
capabilities is affected by variations in the information provided by the capability developers: 
parametric sensitivity analysis and k-best sets analysis. 

The parametric sensitivity analysis reveals whether a given uncertainty in a cost or expected 
utility might lead to a portfolio recommendation differing from the initial portfolio, and 
ultimately allows to categorize capabilities as “robustly chosen”, “robustly rejected”, or “trade 
candidates” (i.e., capabilities that were chosen or rejected with significant uncertainty). In 
addition to the parametric screening, a k-best analysis is performed to identify competitive 



  

portfolios and their common set of capabilities. This common set is in turn compared to the set of 
robustly chosen capabilities, while the k-best portfolios are presented as options to the optimal 
recommendation. 

The application of the postoptimal analysis presented here originates from a study conducted 
for NASA’s Aeronautics Research Mission Directorate (ARMD). The United States has set a 
goal of enabling a Next Generation Air Transportation System (NGATS 2004) by the year 2025 
to provide for substantially increased capacity while improving or keeping constant any harmful 
effects on the environment (emissions, noise), safety, and security. The Joint Program 
Development Office facilitates the multi-agency support of this effort. NASA contributes 
primarily as an R&D provider of enhanced capabilities, and its Aeronautics Research Mission 
Directorate (ARMD) has initiated an activity to formulate and assess the return on investment 
(ROI) for candidate capability-development tasks deemed necessary for the realization of the 
new system.  

Three scenarios were identified as potential elements of an overall architecture to address the 
country’s air transportation needs during the next several decades: (1) Linear extrapolation of 
today’s capabilities; (2) More large regional airports with more large airplanes using them; (3) A 
highly decentralized system in which considerable traffic is handled by small planes travelling 
directly point-to-point. 

Comparing the relative merits of these three approaches was not among the study’s 
objectives; our analysis included recommendations for capability investments (consistent with 
the data made available) for each of the three scenarios. Candidate capability areas were derived 
from programs in vehicle systems development, airspace control, safety, and security. A total of 
38 capabilities were specified and quantified in terms of state-of-the-art vs. required performance 
and maturity; system-level importance; estimated cost; time required for development; and 
uncertainties in meeting the technical performance objective (assuming full funding) and 
associated acceptance. The portfolio analysis targeted identifying the best set of capabilities that 
would support the implementation of desirable future scenarios that contribute to the high-level 
Joint Planning and Development Office (JPDO) goals, subject to performance requirements, and 
budget and development time constraints. Further details of this study are found in (Weisbin  et 
al. 2005, Manvi et al. 2005).  

Methodology  

The starting point in this analysis is the optimal portfolio for a given investment budget level. 
For each capability, the capability utility, probability of development success, and the probability 
of acceptance are combined to compute an overall expected utility of the capability (Elfes et al. 
2006). The expected utility, together with the development cost of the capability, are the key 
quantities used in computing an optimal portfolio. The optimal portfolio selection problem is to 
determine the set of capabilities that provide the maximum composite value while fitting within 
the available budget. In the START decision support system the solution is obtained by 
employing a knapsack algorithm (Martello and Toth 1990).  

Given the preponderance of input uncertainties and political constraints the optimal solution 
in itself is not very useful without other qualifying information. Generally, the decision maker 
needs to know about the robustness of the optimal solution and if there are alternative selections 
close to the optimal point (perhaps satisfying a non-technical preference). 

Parametric Screening Method. We employed two approaches to examine the robustness of 
our results.  First, we changed incrementally the cost and utility, one at a time, for each 



 

  

capability until a change in the resulting portfolio was observed with respect to the nominal 
solution.  This approach yielded the range within which the portfolio selections would be 
indifferent to a change in the specific value of a particular cost or utility. In other words, it 
revealed whether a given uncertainty in a cost or utility might lead to a portfolio different from 
the one computed as optimal. In Figure 1, for example, the green bars represent the range in 
which the expected utility can vary for selected capabilities without triggering a change in this 
particular optimal portfolio. The red bars denote the indifference range for the remaining (non-
selected) capabilities. The capabilities are sorted based on the expected utility/cost ratio in 
descending order. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
If the expected utility for a selected capability were reduced below the lowest value in the 

range, the capability would be rejected, possibly making room in the budget for the selection of 
one of the currently unselected capabilities represented by a red bar.  Similarly, if the expected 
utility of an unselected capability is increased beyond the limits of its indifference range it would 
become selected, possibly knocking one or more of the previously selected capabilities out of the 
portfolio. Changes in cost can be even more unpredictable.  For example, raising the cost of a 
selected capability beyond the limits of its range could cause it to become unselected—or it 
could be retained at the sacrifice of a different, less-valuable capability. 

 
Figure 1. Expected utility ranges for which the given optimal portfolio remains unchanged. The 
green bars indicate selected capabilities, and the red bars indicate those that were not selected.  



  

The above-mentioned procedure not only produces the indifference ranges for each 
capability, but also their individual tendencies to remain, enter or exit the portfolio. This 
information is the result of tracking and cumulating the observed changes in the portfolio at the 
edge of the indifference range.  Figure 2 depicts the cumulated tendencies for each capability 
during the parametric screening on the expected utility. The negative numbers represent exits 
from the original portfolio composition, while the positive numbers reflect entries.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
Note that the wider bars represent capabilities that entered or exited the portfolio more 

frequently in this study. Such behaviour characterizes the marginal groups, whose performance-
cost ratios made them expendable or marginally acceptable, subject to the vagaries of their own 
cost and performance expectations and those of the other capability groups. Although a 
univariate analysis such as this represents an “ideal case” in which only one parameter is 
uncertain, it does provide the decision maker with essential information regarding their 
technology portfolio. For example, some capabilities would require at least a doubling of their 
expected utility to get selected and consequently are definitely not a contender. 

Monte Carlo Analysis. In addition to this procedure, which dealt with the effect on a 
portfolio of only one variation in only one capability group at a time, we also performed a Monte 
Carlo simulation in which variations were applied to all capability groups simultaneously. In this 
study, the portfolio optimizations were run 1000 times with the cost and expected utility of each 
capability group varied randomly each time up to a 10% increase or decrease relative to its 
initially assigned value. Then an additional 1000 runs were performed with variations up to 25%.  

 
Figure 2. Individual tendencies of each capability during the parametric sweep.  The red/yellow 
bars denote the cumulated moves while decreasing/increasing the expected utility, respectively. 



 

  

There was little difference from the initial results either time, indicating that the initial results 
hold up reasonably well if the expected cost and utility have an uncertainty of up to +/- 30%.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Table 1: Recommended Portfolio Composition for the Next Generation Air 

Transportation System at a budget level of $15B.   

Less than 10 exits for a selected capability in the
deterministic analysis.

Greater than 85% selection record for a  selected
capability in the Monte Carlo.

2.1.1.A    Protect/Prevent Abnormal Operations
& System Failures

2.1.1.B    Detect & Mitigate Natural Hazards
2.1.1.C    Prevent Breakdown of Human/Machine

Interface
2.1.1.D    Integrity & Efficiency of Accepting

Advanced Software Systems
2.1.2.A    Detect & Inform Potential System

Vulnerabilities
2.1.2.B    Mitigate Consequences from

Intentional Attack
2.1.2.C    Detect & Contain Diseases & Bio/Chem

Agents
2.2.1.A    Low emission subsonic vehicles
2.2.1.D    Low emission personal air vehicles
2.2.2.A    Low noise subsonic vehicles
2.2.2.C    Low noise ESTOL vehicles
2.2.2.D    Low noise personal air vehicles
2.3.1.F     Increase Arrival/Landing Rates at

Commercial Airports
2.3.1.G    Commercial Operations from

Small/Underused Airport
2.3.2.E    Efficient all-weather rotorcraft
10.5.1.B  Conduct Routine UAV in NAS

Robust Selection

Less than 10 entries for a non-selected capability in the
deterministic analysis.

Less than 15% selection record for a non-selected
capability in the Monte Carlo

2.2.1.B   Low emission supersonic vehicles
2.2.1.F   Low emission UAVs

2.2.2.B   Low noise supersonic vehicles
2.3.1.B   General Aviation During Peak Demand
2.3.1.C   Public Service Aircraft During Peak Demand
2.3.1.E   Globally Harmonized Equipage & Operations
2.3.2.A   Efficient subsonic vehicles
2.3.2.F   Complete Decision Information to All in NAS
2.3.2.G   Low Cost Vehicles for Bulk Cargo
2.3.2.I     Minimum Impediments of Mode Change

10.5.2.A  Extended Autonomous Flight in Mars
Atmosphere

10.5.3.A  Incorporating Hypersonic Air-Breathing
Propulsion

Not Recommended

2.2.1.C   Low emission ESTOL vehicles
2.2.1.E   Low emission rotorcraft

2.2.2.E   Low noise rotorcraft
2.3.1.A   Capacity En-Route Commercial Operations in NAS
2.3.1.D   Minimize System-Wide Disruptions

2.3.1.H   Commercial Operations with short/no Runways
2.3.1.I     Incorporate Full Spectrum of Aircraft to NAS
2.3.2.D   Efficient easy-to-operate personal air vehicles

2.3.2.H   Increased Speed & Range for Pedestrian Travel
10.5.1.A  Autonomous high altitude long-endurance flight

Trade Candidate

 

 
 

Figure 3. Selection frequency for each capability in the Monte Carlo analysis.  The red bars 
indicate the percentage selection under varying parameters. The blue bars represent the nominal 

optimization. 
 



  

The status (in or out) of each capability is accumulated from each run such that a selection 
frequency is computed from this stage of the parametric screening. Figure 3 shows the selection 
frequency chart for the Monte Carlo runs with +/-25% variations (with capabilities sorted 
alphabetically).  

The results from the two parametric approaches are mutually calibrated in order to issue a 
common categorization of the projects sets as “robustly selected”, “robustly rejected”, and “trade 
candidates”. For example, we found that in this study that “robust selection” translates into “less 
than 10 exits for a selected capability” in the deterministic analysis and “greater than 85% 
selection record” in the Monte Carlo analysis. Illustrative results of this procedure applied to the 
NGATS 2004 system are shown in Table 1.  

Furthermore, these results can be summarized in a graph referred to as a “frontier plot”, 
where the capabilities are represented in the phase space (expected cost vs. expected utility) 
based on their selection and sensitivity state. The symbolic frontier (green dotted) line separates 
the selected set from the unselected set and the closed two curves, green and red, identify the 
robustly selected set and the robustly rejected capabilities, respectively. For a given set of 
capabilities the frontier moves down to the right with increasing budget. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
Figure 4 depicts the “frontier plot” for the case under consideration. The stable portfolio 

components (selected or not) are farther from the frontier than the trade candidates. This chart 
can be used not only as visual aid in the decision making process, but also for verification of the 

 
Figure 4. Optimal portfolio for a total investment of $15B. The capabilities shown in green on 

the left plot and on the table to the right are those that have been robustly chosen. The 
capabilities in red have been robustly rejected. The remaining capabilities highlighted in orange 

have been accepted or rejected with higher uncertainty, and could be subject to further 
assessment by the decision-maker.  



 

  

optimization runs. Furthermore, the trade candidates could be subject to further scrutiny by the 
decision-maker.  

K-best Analysis. The k-best sets analysis (Guikema and Milke, 2003) offers the “k” 
suboptimal portfolios closest to the optimal recommendation for a given budget level. Based on 
the k-best sets the decision-maker can take into account aspects of the problem that are not easily 
modelled quantitatively, as well as additional constraints important to the decision.  

When finding the k-best sets with the base case input parameters and then comparing the 
values of these sets over the entire range of possible values for the input parameters, competitor 
portfolios can be proposed. The intersection of the k-best portfolios with the optimal portfolio 
produces a set of project selections deemed as “persistent.”  

Figure 5 shows the relative positioning of the five closest competitive portfolios with respect 
to the optimal recommendation in an aggregated expected utility/total cost mapping. From the 
placement and composition of the suboptimal portfolios the decision-maker can fulfil 
supplementary requirements. For example, if the extra constraint is to spend most of the 
available budget, KB3 is the close to the optimal portfolio, but in addition it minimizes the 
budget slack.  

 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 2 identifies the actual 5-best portfolios and the categorization of the capabilities by 

their overall percent presence in the suboptimal portfolios (including the “persistent” set 
displayed in green colour). The colouring convention is similar to the one utilized in the 
parametric screening analysis. The colour green denotes the stable set, while the orange cells 
represent the trade candidates.  One final observation can be made at this point: the parametric 
sensitivity analysis and the k-best analysis generate consistent choices of “robust” and 
“persistent” recommendations. With two exceptions the robust recommendations from the 
sensitivity analysis are the same as the ones suggested by the k-best analysis. This information 

 
Figure 5.  “5-best” portfolios mapping in the aggregated expected utility/ total cost. The figures 

in parenthesis denote the budget slack. 



  

can be used to increase the level of confidence in the decision-making process and to provide 
valuable insights and choices to the results of the optimality analysis. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

  

Table 2: Identification of the common set of capabilities in the “5-
best” portfolios and their percent overall presence 

Capability Opt KB1 KB2 KB3 KB4 KB5 Overall 
2.2.2.D 1 1 1 1 1 1 100.00% 
2.1.2.A 1 1 1 1 1 1 100.00% 
2.1.1.A 1 1 1 1 1 1 100.00% 
2.1.1.B 1 1 1 1 1 1 100.00% 
2.2.1.A 1 1 1 1 1 1 100.00% 
2.3.1.F 1 1 1 1 1 1 100.00% 
2.3.1.G 1 1 1 1 1 1 100.00% 
2.2.2.A 1 1 1 1 1 1 100.00% 
2.1.1.D 1 1 1 1 1 1 100.00% 
2.1.2.B 1 1 1 1 1 1 100.00% 
2.1.1.C 1 1 1 1 1 1 100.00% 
2.2.1.D 1 1 1 1 0 1 83.33% 
2.1.2.C 1 1 1 1 1 1 100.00% 
10.5.1.B 1 1 1 1 1 1 100.00% 
2.2.2.C 1 1 1 1 1 1 100.00% 
2.3.2.E 1 1 1 1 1 1 100.00% 
2.3.2.D 1 1 1 0 1 0 66.67% 
10.5.1.A 1 1 1 1 1 1 100.00% 
2.2.1.C 1 1 1 1 1 0 83.33% 
2.3.1.D 1 1 1 1 1 0 83.33% 
2.3.1.A 0 0 0 0 0 1 16.67% 
2.2.2.E 1 1 0 1 1 0 66.67% 
2.3.2.H 0 0 0 1 0 0 16.67% 
2.3.1.H 1 0 1 1 1 0 66.67% 
2.2.1.E 0 1 1 0 0 0 33.33% 
2.3.2.I 0 0 0 0 0 0 0.00% 
2.3.1.I 0 1 0 0 0 1 33.33% 
2.2.1.F 0 0 0 0 0 0 0.00% 
2.3.1.E 0 0 0 0 0 0 0.00% 
2.3.1.B 0 0 0 0 0 0 0.00% 
2.3.2.F 0 0 0 0 0 0 0.00% 
2.3.2.G 0 0 0 0 0 0 0.00% 
10.5.2.A 0 0 0 0 0 0 0.00% 
2.2.1.B 0 0 0 0 0 0 0.00% 
10.5.3.A 0 0 0 0 0 0 0.00% 
2.2.2.B 0 0 0 0 0 0 0.00% 
2.3.2.A 0 0 0 0 0 0 0.00% 
2.3.1.C 0 0 0 0 0 0 0.00% 
 
 



 

  

Conclusions 

We presented an approach, based on two complementary methods - parametric sensitivity 
analysis and k-best sets analysis, for qualifying optimal technology portfolios. The parametric 
sensitivity analysis relies on two types of evaluation procedures: deterministic and statistical 
(Monte Carlo). 

The deterministic sampling yields the range within which the portfolio selections are 
invariant to changing cost or for the given budget. The statistical sampling expands the search 
domain with consideration of joint variation in capability input parameters. The change events 
are recorded and accumulated over the two parametric samplings. By performing a mutual 
calibration between the accumulated activities, the sets of projects “robustly selected”, “robustly 
rejected”, and “trade candidates” are identified. 

The k-best sets analysis offers the “k” suboptimal portfolios closest to the optimal 
recommendation for a given budget level. The intersection of the k-best portfolios with the 
optimal portfolio produces a set of project selections deemed as “persistent.” Although the two 
above approaches are complementary, their results are consistent, in that the “persistent” set is 
similar in composition to the “robust” set. 

The goal of the postoptimality study is to enhance and improve the decision-making process 
by providing additional qualifications and substitutes to the optimal solution. The methodology 
proposed here is demonstrated on a NASA technology project selection. The results highlight the 
importance and the usefulness of the postoptimality analysis in providing a higher level of 
confidence to the technology portfolio recommendations. 
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