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Abstract—New mission concepts are increasingly 
considering the use of ion thrusters for fuel-efficient 
navigation in deep space. The development of new low-
thrust mission concepts requires efficient methods to rapidly 
determine feasibility and thoroughly explore trade spaces. 
This paper presents parallel, evolutionary computing 
methods to access a trade-off between delivered payload 
mass and required flight time. The developed methods 
utilize a distributed computing environment in order to 
speed up computation, and use evolutionary algorithms to 
find approximately optimal solutions. The methods are 
coupled with the Primer Vector theory, where a thrust 
control problem is transformed into a costate control 
problem and the initial values of the costate vector are 
optimized. The developed methods are applied to two 
problems: 1) an orbit transfer around Earth and 2) a transfer 
between two distance retrograde orbits around Europa. The 
optimal solutions found with the present methods are 
comparable to other state-of-the-art trajectory optimizers 
and to analytical approximations for optimal transfers, while 
the required computational time is several orders of 
magnitude shorter than other optimizers thanks to the 
utilization of the distributed computing environment, the 
significant reduction of the search space’s dimension by the 
Primer Vector theory, and the efficient and synergistic 
exploration of the reduced search space by evolutionary 
computing.  
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1. INTRODUCTION 

 
The high fuel efficiency of low-thrust propulsion 
technologies enables new kinds of missions, since a 
delivered mass can be increased and/or a trip time can be 
reduced over chemical propulsion systems. While being 

highly fuel efficient, the thrust provided by the low-thrust 
propulsion system is relatively small, typically on the order 
of one Newton. As a result, any significant maneuver of a 
spacecraft with the electric propulsion system requires 
continuous thrust over long periods of time. This makes the 
low-thrust trajectory optimization more challenging than the 
chemical-propulsion spacecraft trajectory optimization 
where only a few impulsive maneuvers need to be 
optimized.  
 
The development of new low-thrust mission concepts 
requires methodologies to rapidly determine feasibility and 
thoroughly explore trade spaces.  In particular, a broader 
assessment of the feasible trade space during early mission 
design reduces the risk of proceeding with a point-design 
solution that may be sub-optimal or difficult to implement. 
The broad assessments also mitigate the risk of missing 
important design trades that could reduce cost and schedule 
risk in later mission design phases.   
 
In a prior study, Lee et al. demonstrated that parallel, 
evolutionary computing methods reliably assess a trade-off 
between flight-time and propellant mass for low-thrust 
missions. In the current study, the developed method is 
further applied to a different mission scenario, and the 
performance of the developed methodologies is analyzed in 
comparison with state-of-the-art tools and current practices. 
  

2. METHODOLOGIES 

In the problem of finding optimal trajectories for low-thrust 
missions, a common goal is to find the minimum-time, 
minimum-fuel, or Pareto-optimal trajectories, where the 
Pareto-optimality means that no other solutions are superior 
to them in terms of both flight time and fuel consumption. 
When maximizing the deliverable payload mass is an 
equally attractive mission objective as minimizing time of 
flight, the Pareto-optimal solutions that demonstrate the 
trade-off between flight time and deliverable payload mass 
are desired. In general, these optimization problems are 
difficult to solve not only due to continuous thrust over long 
periods of time but also due to the search for Pareto 
optimality.   
 
Various methods have been used to solve this optimization 
problem. A majority of the work has utilized either direct or 
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indirect methods.1 The direct method approaches the 
problem by adjusting the control variables iteratively to 
reduce a performance index such as flight time and 
propellant mass.2,3 The continuous control and state 
variables are often discretized, which results in a nonlinear 
programming. The indirect method, on the other hand, 
makes use of the control law that arises when the low-thrust 
spacecraft problem is formulated using calculus of 
variations.4 A co-state vector is introduced and the thrust 
history is completely determined by the initial values of the 
co-states.  These initial values become the optimization 
parameters and the only remaining constraint is to hit a 
specified terminal condition. 

 
For the nonlinear programming problems in the direct 
method and the indirect method, local gradient-based 
algorithms such as Newton’s method and sequential 
quadratic programming are popular because they are widely 
available and proven very effective for many applications. 
However, the traditional algorithms find locally optimal 
solutions typically in the vicinity of the initial guesses. 
Additionally, the algorithms are unstable when the objective 
function is rugged and the function gradient is discontinu-
ous. The trajectory optimization problem tends to have 
many locally optimal solutions, which makes it difficult to 
find the globally optimal solution. Furthermore, the 
traditional optimization algorithms do not directly handle 
the multi-objective problem but convert it into a single 
scalar objective, the so-called weighting method. The 
resulting solution is highly sensitive to the weighting factors 
and is a single solution rather than a set of Pareto-optimal 
solutions. Therefore, the low-thrust orbit transfer problem 
calls for a more robust, global, and Pareto-optimal 
optimization algorithm. 
 
This paper presents innovative methods to solve the 
nonlinear programming problems of the indirect method, so 
called the Primer Vector theory, for low-thrust mission 
trade studies involving orbit transfers. The present methods 
consist of two global-search algorithms: a genetic algorithm 
and simulated annealing. Neither algorithms require the 
objective function gradient and are likely to find a globally 
optimal solution in a rugged search domain, as opposed to 
gradient-based algorithms. Additionally, the genetic 
algorithm takes advantage of a population-based search to 
directly solve the multi-objective optimization problem in a 
single run. Moreover, the simulated annealing algorithm 
exploits a highly non-local ensemble search namely 
“shotgun” mode (described in later section) to efficiently 
solve the problem in a single parallel run, which exhibits a 
perfect linear speed-up on a cluster computer due to no 
communication overhead. Each component of the 
complementary methods is described below in detail. 
 
Primer Vector Theory 

 The Primer Vector theory introduces a co-state vector and 
“indirectly” optimizes the thrust control variables by 

adjusting the initial values of the co-state vector. This 
method uses the optimality conditions that arise from 
calculus of variations to transform the control vector to a 
function of the initial values of the co-states only. 
Traditionally, this transformation combined with the Euler-
Lagrange boundary conditions, or the so-called transversal-
ity conditions, leads to a two-point boundary-value 
problem, whose solution inherently satisfies the conditions 
for local optimality. In the current approach, the 
transversality conditions are ignored, and the initial values 
of the co-states are iterated to directly optimize the desired 
objective. This hybrid method is termed indirect however, 
because the co-states are the control parameters in lieu of 
the thrust vector itself. The approach as stated is well suited 
for integration into any general constrained optimization 
framework, such as the current multi-objective evolutionary 
computing approaches. This approach is particularly 
attractive because it avoids one of the problems typically 
associated with indirect methods: i.e. gradients and 
transversality conditions must be tediously re-derived each 
time when an objective or constraint is changed. The 
transversality conditions are indirectly satisfied by 
optimizing the initial co-states, and the gradients are not 
required for the proposed evolutionary optimization 
methods. Therefore, the problem can be tailored for custom 
applications with relative ease compared to traditional 
methods. 
 
Global Optimization Methods 

In order to solve the global optimization problems, which 
appear in the nonlinear programming problem of the Primer 
Vector theory, the present method uses a genetic algorithm 
and simulated annealing. The genetic algorithm is inspired 
by the natural selection and sexual reproduction process of 
living organisms, and the simulated annealing mimics the 
thermodynamic process of cooling molten metals. Both 
methods have mechanisms to escape from local minima in 
order to find a globally optimal solution. The global search 
mechanism is a reproduction operator with a stochastic 
selection mechanism in the case of the genetic algorithm 
and a mutation operator with the Metropolis algorithm in 
the case of the simulated annealing.  
 
For the genetic algorithm, the following parameters are 
typically used: the population size of 1000, the maximum 
number of generations of 100, the crossover probability of 
0.8, the mutation rate per gene of 1/N, where N is the 
number of genes, the elitist fraction of 30%.  
 
For the simulated annealing, a “shotgun” approach is 
applied to improve the computational efficiency. In this 
mode, we start with a random set of values for the co-state 
parameters and expose them to a fixed (user-defined) 
number of iterations while the “temperature” of the 
annealing process is oscillating. If, within the specified 
iterations, the target orbit is reached with a user-defined 
accuracy based on the current set of parameters that 
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prescribe an optimal trajectory, then a "solution" is found 
and stored. Otherwise, the algorithm starts over with 
another set of random initial values for parameters to 
optimize. In the results presented here, the number of 
simulated annealing iterations used for the indirect method 
optimization was 100.  
 
Pareto Optimization Methods 

For the Pareto-optimization, the genetic algorithm handles 
directly multiple objectives with non-dominated sorting in a 
single run. The non-dominated sorting uses the concepts of 
non-dominance and dominance to rank the population 
composed of candidate solutions. When comparing two 
solutions, a solution is termed dominated if the solution is 
inferior to the other solution in all objectives. Otherwise, the 
solution is termed non-dominated.  The non-dominated 
sorting finds solutions that are non-dominated in 
comparison with the rest of the candidate solutions in the 
population. The non-dominated solutions constitute a first 
Pareto-front and are assigned the best fitness value. The 
sorting continues with the dominated solutions (i.e., the 
complement of the non-dominated solutions) by finding the 
next Pareto-front and assigning a slightly worse fitness 
value. Since the non-dominated sorting does not involve a 
weighting process of aggregating the multi-objectives into a 
single scalar objective function, a careful, educated initial 
guess of the weighting factors is not needed. The genetic 
algorithm accompanied by the non-dominated sorting can 
generate Pareto-optimal solutions in a single synergetic 
optimization run.  
 
In addition to the nondominated sorting, fitness-sharing 
mechanisms are applied to the genetic algorithm in order to 
encourage the wide and uniform spread of the Pareto 
optimal solutions. The candidate solutions are divided into 
several groups according to their flight times, and the fitness 
values of the solutions in the same group are shared in a 
way such that the sum of the fitness values in every group is 
the same. 
 
The concepts of non-dominated sorting and fitness sharing 
do not apply to the simulated annealing approach used here. 
Instead, a traditional weighting method is used to guide the 
multi-objective optimization process. 
 
Constraint Handling Methods 

The low-thrust trajectory optimization problems involve not 
only multiple objectives but also multiple constraints such 
as the boundary condition for a spacecraft final state to meet 
a given target state. Typically, the constraints are treated 
with a penalty function as part of the fitness/energy 
function.14 The penalty function approach requires a 
weighting process when combining the penalty function and 
the objective function into a single scalar fitness function. 
This approach is used for the simulated annealing 
application. A different approach named stochastic ranking 
is used in the genetic algorithm application. The stochastic 

ranking method strikes a balance between the objectives and 
the constraints in their contributions to the population 
ranking process by randomly choosing the ranking criterion 
between the two. A user-defined parameter determines how 
probable it is to choose one criterion versus the other.  
 
Parallel Computing Methods 

The genetic algorithm uses a population-based search and 
thus is amenable to parallel computing. When the fitness 
evaluation is one of the computationally more expensive 
parts, the parallel computing becomes an ideal choice to 
reduce the computation time. The fitness evaluation of the 
candidate solutions in the population is distributed among 
several processors in the distributed memory system. The 
evaluation result is sent to the master processor on which 
the rest of the algorithmic process such as parent selection, 
offspring creation, and population replacement is executed. 
The fitness-value passing is the only message passing 
between the processors in the genetic algorithm run. As a 
result, the computational overhead due to the parallel 
computing is marginal. 
 
For the simulated annealing, an “embarrassingly” parallel 
approach is taken for parallel computing. A perfect linear 
speed up is demonstrated since each processor performs an 
independent optimization run without cross-communication 
(message passing) between processors. We have 
demonstrated a 1002 CPU run on JPL’s institutional cluster 
computer (Cosmos, 37th largest super computer in the world 
to date).  

3. MISSION TRADE STUDY RESULTS 

The present method is applied to two types of trajectory 
problems: A) two-body orbit transfer problem and B) 
restricted three-body orbit transfer problem. The 
optimization results are presented and compared with 
solutions found with other state-of-the-art optimizers in 
terms of solution optimality and computational efficiency.  
 
Orbit Transfer around the Earth 

As an example of two-body orbit transfer problems, a low-
thrust orbit transfer around the Earth, is considered. The 
Earth is the only gravitational body in this problem and is 
approximated as a point mass. The optimization problem is 
to find Pareto-optimal solutions for the transfer from a low-
eccentricity, small orbit to a high-eccentricity, coplanar, 
larger orbit. The initial orbit has a semimajor axis of 9,222.7 
km and an eccentricity of 0.2, and the final orbit has a 
semimajor axis of 30,000 km and an eccentricity of 0.7. A 
relatively high thrust magnitude of 9.3 N is used for this 
transfer problem. The specific impulse of the thrust engine 
is set to 3,100 s. The initial mass of the spacecraft is 300 kg. 
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Figure 1 shows the Pareto-optimal solutions found with the 
present methods. The Pareto-optimal solutions are obtained 
with various error tolerances between the computed final 
orbit and the given target orbit, ranging from 1 to 10 
percent. As the error tolerance decreases, the obtained 
solutions converge to “accurate” solutions, which require 
more flight time and propellant mass as shown in Figure 1.  

The present solutions are compared with the solutions found 
with GA-Q-Law, which is an optimized heuristic control 
law based on a Lyapunov feedback control law named Q-
law and a genetic algorithm. It has been demonstrated that 
the GA-Q-Law finds nearly Pareto-optimal solutions in a 
reasonable computation time. The present method 
efficiently yields solutions comparable to GA-Q-law 
solutions for a wide range of flight times. Note that GA-Q-
law solutions (error<0.03%) have a lower error tolerance 
than the present solutions. Figure 2 shows four Pareto-
optimal trajectories selected among the Pareto-optimal 
solutions found with the present indirect method. As the 
flight time increases, several coast (no-thrust) arcs (green 
dashed lines) are inserted around the apoapsis. 
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The computational time used to obtain the Pareto optimal 
solutions is very comparable between GA-Q-Law and the 
present methods. Both methods utilize parallel computing. 
With Intel 3.2 GHz Xeon processors, GA-Q-Law used 
about 5 minutes in wall-clock time on 8 processors, while 
the present methods used about 5 minutes on 16 processors 
for each of the 1%, 5%, and 10%-error solution sets.  

Distant Retrograde Orbit Transfer around Europa 

As a restricted three-body orbit transfer problem, a DRO 
transfer around Europa, the icy Galilean moon closest to 
Jupiter, is considered. The gravitational fields of Jupiter and 
Europa are included as point masses while the gravitational 
fields of the other moons are excluded. The dynamics of the 
spacecraft is described in the rotating frame where Europa 
is at the center, the x-axis points along the Jupiter-Europa 
line, and the z-axis points along Europa’s angular 
momentum vector with respect to Jupiter. The initial DRO 
is given by the position vector (0.07518, 0) and the velocity 
vector  (0, -0.14992) in the x-y plane with the unit length of 
67,0988 km and the unit time of 48831.6 seconds. 
Similarly, the final DRO has the position vector (0.03067, 
0) and the velocity vector (0, -0.07274). The spacecraft is 
modeled with the specific impulse of 7,365 s, the thrust 
magnitude of 4.984 N, and the initial mass of 25,000 kg, 
which is a spacecraft mass typical for a JIMO (Jupiter Icy 
Moon Orbiter) Mission.  

Figure 3 shows the Pareto-optimal solutions found with the 
direct and indirect methods. The Pareto-optimal solutions 
are obtained with error tolerances between the computed 
final state and the given target state, ranging from 1 to 5 
percent. As the error tolerance decreases, the obtained 
solutions converge to “accurate” solutions. The present 
optimization results are compared with the solutions found 
by Mystic, which is a high-fidelity trajectory optimization 
software package based on the static/dynamic control 
algorithm. The present method yields results that are 
comparable to optimal Mystic solutions. Figure 4 shows the 
variations of the trajectory and control profile for a few 
selected Pareto-optimal solutions. As the flight time 
increases, several coast arcs (green dashed lines) are 
inserted around the y-axis. 

The computation time used for the Pareto-optimal solutions 
compares as follows: With Intel 3.2 GHz Xeon processors, 
Mystic used about 360 minutes on one processor for each of 
the 0.1%- and 5%-error solution sets, while the present 
indirect method used about 5 minutes in wall-clock time on 
16 processors for the genetic algorithm and 300 minutes on 
256 processors for the simulated annealing for each of the 
1%- and 5%-error solution sets.  

4. PARALLEL COMPUTING PERFORMANCE  

The parallel-computing performance of the present methods 
is analyzed in terms of load balance among processors, 
message passing overhead, and computational speed-up. For 
the parallel-computing implementation, the genetic 
algorithm uses the master-slave architecture, while the 
simulated annealing uses the embarrassingly parallel 
architecture.   Therefore, load balance and massage-passing 
overhead should be carefully supervised in the genetic 
algorithm. On the other hand, they are irrelevant in the 
simulated annealing, since there is no master processor 
playing a different role among processors and there is no 
massage-passing overhead.  

Figure 5 shows the load distribution among 8 processors in 
a genetic-algorithm optimization run. The master node 
(processor ID =1) has about 10% more load, and slave 
nodes  (processor ID >1) have uniform load. Since the 
master node plays a different role in the master-slave 
architecture, the 10% overload in the master node is 
reasonable. The computational time distribution between the 
message-passing-related work (MPI functions) and the rest 
of the work is analyzed for 8 processors in Figure 6. The 
master node has a different time distribution than other 
nodes do. The master node spends about 95% of time in 
MPI functions, while the slave nodes spend only about 8% 
in MPI function and the rest of time in fitness function 
evaluation. These distributions are anticipated since the 
main role of the master node is to distribute the fitness-
function evaluation work to slave nodes, to collect the 
results, and to proceed with ranking and reproduction for 
the next generation/iteration.  

Finally, the computational speedup obtained with the 
parallel computing is plotted in Figure 7 for both a genetic-
algorithm and simulated-annealing optimization runs. The 
simulated-annealing run demonstrates an almost ideal 
speedup thanks to no message passing between processors. 
The genetic-algorithm run shows an 85x speedup with 128 
processors. The speedup is reasonable as there is a marginal 
message passing between master and slave nodes. The 
speedup of the genetic-algorithm run is directly determined 
by the ratio of the fitness-evaluation time to the message-
passing time. As the ratio increases, the speedup becomes 
more ideal.       

5. COMPARISON WITH CURRENT PRACTICES 

To date, there are three low-thrust missions (Deep Space 1, 
Dawn, JIMO) that have been developed with guidance of 
available low-thrust design tools. The Deep Space 1 used 
SEPTOP (Solar Electric Propulsion Trajectory Optimization 
Program) as the preliminary design tool and NAVTRAJ as 
the final targeting tool. For Dawn, all the mission design is 
being done using Mystic. Before being canceled, 
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Prometheus/JIMO used MALTO (Mission Analysis Low 
Thrust Optimization program) for broad searches and 
preliminary design of low-thrust gravity-assist heliocentric 
trajectories to Jupiter. These current tools have also been 
used on a variety of concept studies and proposals. As an 
emerging capability, (GA)-Q-Law  has been developed to 
trade studies and preliminary design of planetocentric 
trajectories, and been integrated into Mystic to assist in 
generating starting guesses. 

The present methods are compared with the current 
practices in terms of design capability, computational 
efficiency, and domain expertise requirement. Table 1 
highlights several aspects of the direct comparison between 
the present method and other tools: SEPTOP, Mystic, 
MALTO, and GA-Q-Law. The design capability of the 
present method is currently limited to planetocentric and 
restricted-three-body trajectories, but can be extended to 
heliocentric trajectories where SEPTOP has demonstrated 
the applicability of the indirect method (i.e. calculus of 
variations or Primer Vector theory).   

For trade studies, the present method and GA-Q-Law can 
conduct the study in a single synergistic run while other 
tools require either multiple independent runs or a single yet 
parametric run. Although the per-study time varies widely 
with the type and extent of studies, it can be as long as 
several months for one broad trade sturdy. By utilizing 
distributed computing resources, which are abundant 
nowadays, the prolong per-study time can be reduced to 
several hours or even several minutes. Both the present 
method and GA-Q-Law utilize the parallel computing 
resources. 

The complexity of using current low-thrust mission 
design tools often arises from the extensive requirement of 
domain expertise.  Current tools such as SEPTOP, Mystic, 
and MALTO require an initial guess to start their 
optimization processes. The total computational times of 
these tools greatly depend on the quality of the initial guess. 
Without an educated guess, the computational time may 
increase by up to several orders of magnitude or may fail to 
converge entirely. In contrast, the present method 
automatically conducts an optimization process with 
minimal domain expertise for a reasonable bound of each 
variable. Furthermore, the computational efficiency and 
solution optimality are less sensitive to the quality of the 
inputs in the present method.  
 

5. CONCLUSIONS 

We have developed a robust and efficient method for low-
thrust mission trade studies by applying a genetic algorithm 
and simulated annealing to the Primer Vector theory. The 
present method introduces a co-state vector and “indirectly” 

optimizes the thrust control variables by adjusting the initial 
values of the co-states. The investigated mission scenarios 
demonstrate that this method finds nearly Pareto-optimal 
solutions with a high computational efficiency and minimal 
guidance from domain expertise. The high computational 
efficiency is obtained by taking advantage of the utilization 
of the distributed computing environment, the significant 
reduction of the search space’s dimension by the Primer 
Vector theory, and the efficient and synergistic exploration 
of the reduced search space by evolutionary computing. 
Future applications of the present method include the 
optimization of more complex and realistic mission 
scenarios.    
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