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We present a method for designing quantum circuits that perform non-unitary quantum 
computations on n-quhit states prohabilistically, and give analytic expressions for the suc- 
cess probability and fidelity. Our scheme works by embedding the desired non-unitaiy op- 
erator within an anti-block-diagonal (n+l)-qubit Hamiltonian, H, which induces a unitary 
operator !J = exp(iEH), with E a constant. By using $2 acting on the original state aug- 
mented with an ancilla prepared in the 11) state, we can obtain the desired nowunitary 
transformation whenever the ancilla is found to be IO). Our scheme has the advantage that 
a "failure" result, i.e., fmding the ancilla to be 11) rather than 10) , perturbs the remaining 
n-qubit state very little. As a result we can repeatedly re-evolve and measure the sequence 
of "failed" states until we fmd the ancilla in the 10) state, i.e., detect the "success" condi- 
tion. We describe an application of our scheme to probabilistic state synthesis, 

I. INTRODUCTION 

In the traditional model of quantum computation one prepares an n-qubit state, evolves it under 
the action of a unitary operator representing the desired computation, and makes a projective 
measurement on the output state to obtain an answer [l]. In this view, measurement operations 
are a necessary evil required to extract an answer from the computer, typically at the cost of de- 
stroying valuable information encoded in the final superposition state. However, alternative mod- 
els of quantum computing are possible, which embrace non-unitary operations and elevate them 
to the status of legitimate gates in the toolbox of the quantum circuit designer [2, 3, 4, 5, 61. The 
importance of such non-standard models is that they may inspire new approaches to achieving 
universal quantum computing hardware that might be easier to implement than the traditional 
scheme, e.g., by trading quantum circuit complexity for success probability. 

Although there has been considerable prior work on designing circuits for performing uni- 
tary quantum computations deterministically [7, 8, 9, IO], far less attention has been paid to de- 
veloping methods for designing circuits that perform non-unitary computations probabilistically. 
This is the focus of our paper. Specifically, we present a scheme that allows us to construct a 
quantum circuit for performing the non-unitary transformation 

where N is an arbitrary non-unitary transformation, and p,. is an arbitrary n-qubit density opera- 
tor. Note that such a non-unitary transformation is well-defined if and only if det(N) # 0. If this 
condition is not met, we must explicitly exclude input states, pi,,, such that N p ,  N' is the zero 
matrix. Without loss of generality, we may assume the non-unitary matrix N is of dimension 
2" x 2". If, initially, N has fewer than 2" rows or columns, we must pad N with zeroes to the right 



of the columns, andor beneath the rows, sufficient to make a 2” x 2” dimensional matrix. The 
trace in the denominator guarantees that the output will be properly normalized 

The paper is organized as follows. Section I1 describes our procedure for embedding an 
arbitrary non-unitary operator within a larger unitary one, and how to use the result to achieve the 
desired non-unitary state transformation probabilistically. Section 111 provides an analysis of the 
success probability and fidelity of the achieved transformation. Section IV gives some examples 
of random non-unitary transforms of random input states to illustrate the tradeoff between fidelity 
and success probability. Section V illustrates how our non-unitary quantum computing procedure 
can be applied to probabilistic state synthesis. 

II. NON-UNITARY EMBEDDING PROCEDURE 

Given an arbitrary non-unitary matrix, N, our goal is to devise a quantum circuit sufficient to 
achieve the transformation pm + Npi,NT / tr(Np,,Nt).  To do so we use N to build a “de- 
signer” Hamiltonian that acts on the n original qubits plus one extra ancilla qubit. By reading the 
output state of the ancilla, we can test whether or not the desired non-unitary transformation has 
been applied to the n-qubit state. 

The first step in our non-unitary embedding procedure is to pad N, if necessary, to make it 
a square 2” x 2” dimensional matrix: 

N A  [fi:) (2) - 
2” 

Next, we define the unitary operator, a, via a Hamiltonian built from N. Specifically, let: 

(3) 

where E is a constant. This constant, 6, affects both the fidelity with which we are able to achieve 
the desired non-unitary transformation as well as its probability of occurrence. 

Next, we introduce an ancilla qubit prepared in the state II)(lI, and evolve the ancilla- 
augmented state under 0: 

Pout = ~ ( 1 1 ) ( 1 1 ~  Pin)Q+ (4) 
Finally, we measure the ancilla in the {IO), il)} basis. Specifically, we define a pair of measure- 
ment operators A40 and M ,  as: 

Ma = (1 o)(o 1) €3 I 

MI =(Il)(l l)@I 

Po = trWotMoP0ut 1 
PI = t~(M?il.llP,”t) 

(5) 

where I is the 2” x 2” dimensional identity matrix. We find the ancilla in the 10) (“success”) or 10) 
(“failure”) state with respective probabilitiespo andpl given by: 

(6)  



The corresponding density matrices, conditioned on these measurement outcomes, are: 

M0PO“tMd 

M ,  Pout M: 

Po = 

(7) 
Po 

P1 = 
PI 

If the measurement results in “failure” Le., finding the ancilla to be in the 11) state, we re- 
introduce the ancilla, and perform the evolution described by equation. 4, but this time using the 
reduced density matrix p~ rather than fin. This process can be repeated indefinitely, using the se- 
quence of reduced density operators generated by successive failures, until the ancilla is found in 
the “success” condition, Le., IO). This is possible because, as we will show in $111, upon “failure” 
the effective operation applied to the n-qubit state is close to the identity. Hence, “failed” attempts 
at projecting the desired non-unitary computation are not devastating. Indeed, they can be made 
arbitrarily delicate at the cost of reducing the success probability. 

Once measurement of the ancilla yields the “success” condition, the remaining n unmeas- 
ured qubits will be in a state that approximates the desired non-unitruy transformation. For exam- 
ple, if we happen to succeed on the first measurement, we will have succeeded in transforming 
our initial state into: 

(8) 
actual 

Pout = trl(P0) 

This is to be compared against the state transformation we were hoping to obtain, namely: 

111. SUCCESS PROBABILITY AND FIDELITY 

It is natural to ask with what efficiency and fidelity can the desired non-unitary transformation be 
obtained? To answer these questions, it is helpful to construct the singular value decomposition 
(SVD) of the desired non-unitary operation. 

Using the SVD, we can write the unitary operator R = exp(isIf) as 
N = U ’ X V  (10) 

In this form we can see immediately what operations are performed when the ancilla measure- 
ment “succeeds” or “fails”, i.e., yields IO), or 11) respectively. As 0 acts upon a state of the form (: y )  @ p,, , upon “failure” the effective transformation is N , ,  = Vr COS(& C) V and upon “suc- 
cess ’ the effective transformation is Nsucc = U t  sin(& X)V, Hence, if the projective measurement 
fails k times before it first succeeds, the net transformation applied to the input state will be 



No,  = N,,,N~ai,. Note that this transformation is independent of the state acted upon, ph, but 
does depend upon the scaling parameter in the Hamiltonian, E. The smaller E, the closer to per- 
forming the identity operation (a "no-op") on each failed attempt. Hence, to ensure high fidelity 
we need E to be small. Mathematically, after k failures and one success, the actual state created is: 

Thus to estimate the fidelity (conditioned on success at the (k + 1)-th trial) we need to compute: 

IV. SOME EXAMPLES 

In this section, we give some examples of the fidelity and success probability achievable for four 
random non-unitary transformations of a random 2-qubit mixed state. The particular details of the 
non-unitary transformations and state we used are not important. We merely wish to illustrate that 
for random non-unitary transformations of random states as E + 0 the fidelity + 1, the success 
probability + 0, and the expected fidelity (the product of the two) can have quite complicated 
behavior. The point is that there is a tradeoff between the probability of achieving the desired 
non-unitary transformation and its fidelity: the smaller E, the better we can approximate the de- 
sired non-unitary transformation. but the more attempts we will need to make to achieve it. 

Fig. 1. Four examples (read in columns) of random non-unitary transformations of random input states. The 
plots are, from top to banom, the fidelity of the transformation, the S U C C ~ S S  probability, and the product of fi- 
delity times success probability. The results illustrate that there is a tradeaff between the fidelity with which 
we can approximate the desired non-unitary transformation, and the efficiency with which we can do it. 



V. APPLICATION: NON-UNITARY STATE SYNTHESIS 

Although schemes for deterministic state synthesis are known, e.g., [ l l ] ,  we will now describe a 
scheme forprobabilistic state synthesis using non-unitruy quantum computing. Our goal is to find 
a quantum circuit sufficient to synthesize an arbitrary n-qubit pure state I V )  = ci I i) . To do 
so, we find a unitary transformation sufficient for synthesizing the desired state prohabilistically, 
and then decompose this unitary transformation into an equivalent quantum circuit. The latter de- 
composition can he done using, e.g., the generalized singular value decomposition [9], imple- 
mented in the QCD quantum circuit design software package [9]. 

Our non-unitary @robabilistic) state synthesis scheme is depicted in Fig. 2. 

11) I @) GI0) 
Fig. 2. An equally weighted superposition, I @  = (W@W ... @fllOO,, .O) is evolved together with an ancilla un- 
der the action of n, which is induced from a Hamiltonian containing the nan-unitary operator, N. Suhse- 
quently, ifthe ancilla is found to he IO) the remaining qubits will he prepared in the desired supelposition state. 

We begin by considering the non-unitary transformation defined by: 

Conceptually, if the operation N were available to use, then we could use the equally weighted 
superposition state, 14) = W@”I 00.. . 0) (where W is the Walsh-Hadamard gate), to create the de- 
sired superposition state l ~ )  from the non-unitary operation N .  W@”100.. .O) = l ~ ) .  However, as 
N is a non-unitary operation it is not immediately available. Instead, we have to embed N within a 
larger unitary operation whose outcome i conditi ned on the value of an ancilla qubit. Specifi- 
cally, we define the Hamiltonian H = E L! , t -hN) and hence, implicitly, the unitary operator 
C2 = exp(i&Zf). Next we introduce an an 1 la pre ared in the 11) state, perform the evolution 
C2I 1)14) , and then measure the ancilla. If we find the ancilla to be 10) we are done, as the remain- 
ing n-qubits will be in state I v ) .  Otherwise, if we find the ancilla to be \ 1) , we evolve the output 
again under C2 and measure the ancilla. We continue until we find the ancilla to be IO), whereupon 
the desired state will have been synthesized. 

Empirically, we find that the minimum depth of the circuit for probabilistically synthesiz- 
ing I v )  is typically less than the minimum depth of the circuit for deterministically synthesizing 
I v )  [9,11], but at the expense of possibly having to repeat the synthesis attempt several times. 
Nevertheless, this could point to an interesting tradeoff in the design space of quantum computing 
hardware. If it proves to he experimentally challenging to maintain quantum coherence for sev- 
eral gate operations, but relatively easy to introduce extra qubits, then non-unitary quantum com- 



putation might allow certain quantum computations to be achieved non-deterministically that 
would otherwise be beyond the reach of experimental capability. 

VI. CONCLUSIONS 

We have presented a systematic technique for achieving non-unitary quantum computations prob- 
abilistically by embedding the desired non-unitary operation within a larger unitary one. The lat- 
ter unitary operator can be decomposed into an equivalent quantum circuit using algebraic, nu- 
merical or genetic techniques [7, 8, 9, 101. Hence, ow scheme provides a method for designing a 
quantum circuit sufficient to implement an arbitrary non-unitary operation probabilistically. Em- 
pirically, we find that the resulting circuits can have smaller depth than those used to synthesize 
the same state deterministically. More work needs to be done on characterizing these bounds. 
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