UML/MDA Reality Check:
Heterogeneous Architecture Styles

Nicolas F. Rouquette

Principal Software Architect
JetPropuIsion Laboratory
California Institute of Technology
Pasadena, CA, USA
+1 (818) 354-9600

mailto:Nicolas.Rouquette@jpl.nasa.qov

mailto:Nicolas.Rouquette@ip

e Evolving Standards & Pragmatic Reality
e Programming & Architecting // Software & System engineering
e Unusual characteristics of space missions

e Differences of Engineering & Culture; Bridging Gaps

e Managing interactions

e The Mission Data System

e Heterogeneous Architecture Styles

¢ |ssues of Trust

e State, State Analysis & Software Architecture

¢ Frameworks, Genericity, Polymorphism & Ensuing Tradeoffs
e Ports @ the intersection of structure, behavior & coordination
e Component Architecture & Transformation

¢ Transformation Challenges

¢ Evolving Standards: ¢ Pragmatic Reality:

e Today’s Bleeding Edge o Still difficult to evaluate tools for:
e Consistency across diagrams
e A coherent subset of UML

® Advances with UML: ¢ Limits on Software Architecture
e 2.0 has a component model ! e Component, Connector, Port, Link
~® Advances with MDA ® Limits on Transformations:
e PIM, PSM o Code-level Templates
e Transformations as Models ¢ PSM => Code

e Query /Construction Rules
e PIM=>PSM
¢ PSM => PSM

UML/MDA
playground

Architects Programmers

e “Trust the source, not the doc!” => “The truth is in the code!”

® Pragmatic Programmer = Greatest synergy & support yet !

e Great advances in many related fields of programming:
e Technology, Methodology & Tools
e Generics, Separation Of Concerns, Patterns, Idioms
e Refactoring, Template Code Generation

® MDA'’s Approach to Scalability & Complexity

e UML/PSM profile: model is a 1-1 reflection of the code
* Model / Code Synchronization & Associativity

® Programming is the Dominant Paradigm

e Facts
e “The model may be stale!” => “The model is reference doc!”

¢ Pragmatic Architect = First, pick your biases...

e Plenty of opinions on what architecture is & should be
e Platform standards (COM, J2EE, etc...)
¢ Architecture Styles (3-tier, client/server, pipeffilter)
e Architecture Definition Languages (Arch, xADL, Acme)

e MDA'’s Approach to Scalability & Complexity
e Hierarchy of PIM / PSM models
¢ Which abstractions to use?

¢ Architecting is the Dominant Buzzword

Programmers & Architects:
aring successes & failures W

¢ Informal perspective from anthropology:

e Software engineers share a common gene pool
¢ Architecture mismatch => early mistakes

¢ Programming bugs => latent flaws }:> Extinction !

e QOutlook for software engineering species

¢ Significant evolution but still affected with the same old diseases
¢ Bleak future for commercial success & long-term survival
e Species comparison: viruses have greater success at lower cost

e A brighter perspective:

e UML/MDA:

¢ Bridging the gap between programmers & architects

e JPL follows a similar path in the Mission Data System project
e Bridging the gap between software & system engineering

v Unusual Characteristics of
™ ,

¢ Infrequent, scheduled communication
e The ‘network’ is not continuously available

¢ Distance, Time, Bandwidth & Navigation
e Multiple clocks: ~10 hour round-trip light-time delay to Pluto
e Physics limit bandwidth: ~300 bits/sec from Pluto
e Communication: point antenna at where Earth will be when the signal
arrives, not at where it is now
e Special Relativity and Time Dilation
e Though spacecraft velocity is a tiny fraction of lightspeed, navigation must
take relativistic effects into account
e Tight Coupling and Resources
e In a resource-limited system, ‘everything affects everything'.
e Managing interactions is fundamental to good design.

e Verification & Validation

e Scenario-based testing will continue to be important, but combinatorics
demand additional approaches such as model checking

sy

Nav Qm (%2} . .
Pan Cugt (%2} TR

- Capabilities et v P - Software architecture
- Decomposition s T %1 - Software development
- Key algorithms o v - Implementation

- Interactions B - Build, Test

- Protocols | -k - Verify

- Integration

o Huriinator Ring Wheels and Suspansion

The principle risk to success is miscommunication
~What systems engineers want can be hard to express
—What software engineers build can be hard to understand

Perspec

Systems engineering is outward looking Software engineering Is

e Mission scenarios inward looking

e Functional decomposition i

e Performance requirements Languages & Operatlng
e Resource allocations Systems

¢ Command and telemetry Scheduling

e Operational constraints
e Control laws
e Failure Modes & Test

_Paterns & idioms
DEta yepresentation,
serjafiz&tion. ..
jaration of concerns
ption Safety

olnenurn
G 4

: i!lumfnatm Rin? i whndsjand.vsuig;mion

Programmers & Architects:
Different Cultures to Reconcile

® Two issues |
e Reconciling Engineering Differences
e Strengthening Architecture Semantics

e Reconciling Engineering Differences => Communication

e Different levels of abstraction may lead to architecture mismatch

o UML/MDA: -
¢ Architecture is distorted or lost somewhere between PIM / PSM

¢ JPL’s Mission Data System (MDS) project:
e State is a central, unifying concern

e Strengthening Architecture Semantics => Interactions
 Two architecture styles: State Analysis & Software Architecture

¢ ® Accepting architecture style heterogeneity
2T e Avoid representational conundrums & loopholes
e Focus on semantic bridges among heterogeneous styles

Bridging the Communication Gap Between
Systems and $

. -

A shared set of architectural
elements bridges the gap

between engineering cultures Software architecture
process & frameworks

Disciplined "State
Analysis" process

o : |

What do you want to achieve?

Move rover to rock. ---ccoooe » | Gog| --------------eremnnmmmmees] y |Goal
What's the state to be controlled? Network
Rover position relative to rock. ----------3 » State Variable -—----._
How do you know what thatis? Tt , |State
Measure position relative Knowledge
to stereo camera. > Measurement

-
~
-
~e-
~-—
-~
~——
~—

3 |Measurement
What does the stereo camera measure? e

[Distance to terrain features, ________ > Measurement y |Package
- asurement -

| light level, camera power, health... Model - State

'How do you control light level? ~ ——— .~ ¥ [Models

!L Wait until the sun is up. -y #tate Model

‘Where is sun relative to horizon?

Etc.

oY Managing Interactions
In A

e [nteractions make software difficult & complex to understand
o Elements that work separately often fail to work together
o Combinatorics of interaction are staggering: not easy to get right
e This is a major source of unreliability

¢ There are two approaches to this in JPL’s Mission Data System:

State-Based
Architecture

» Handies interactions
among elements
of the system under control

» Outward looking

» Addresses systems
engineering issues

A unified architecture for flight, ground, and test
systems that enables missions requiring reliable,
advanced software

e Build a highly reusable core software system
for a wide variety of space mission applications

e Promote modern, synergistic processes
for systems and software engineering

» Establish an improved development life cycle
for more reliable mission software

* Reduce development cycle time and cost

e Satisfy complex mission requirements
(e.g., robust in situ exploration) and
reduce operations cost with increased autonomy

2 T

® Focus on two concepts:

UML e Ports at a 3-way intersection of:
e Structure, Behavior & Coordination

+
MDA e Semantic Definition of Transformations for:
e Generation, Optimization, Evaluation, etc..

® Architecture-Centric Engineering

e Embracing & Unifying Heterogeneous Architecture Styles
e No such thing as “the” architecture
e Plurality of concerns & abstractions

e Foundations For Reliability
e “Trust the models!”))
e “Trust the transformations!” } = “Trust the code!

® |sn’t one architecture enough?
e Conventional wisdom = N views / 1 (all-inclusive) model

e Problems with Inclusive Approach
e Irrelevant modeling details for a specific view

e Model may be internally inconsistent
— Changes in one view may affect another view

e Fragile Architecture Modeling

e Embracing Heterogeneity Leads to Parsimony !

¢ Each model founded on internal coherence:

e Only include relevant concerns

e Choose level of abstraction for conciseness & expressiveness
e Problems with Heterogeneous Approach

¢ Models may be incoherent relative to one another

Heterogeneity from S
iy Ar

e 2 Strategies for Choosing an Architecture Foundation

e Emphasize Completeness => Enough rope to hang yourself
e Kitchen sink of specification & description

 Push for executable semantics may result in undecidability
 Question that ought to be decidable: compatiblity with architecture family

e Emphasize Parsimony => Small is beautiful

» Workable core in UML 2.0 : Components, Interfaces, Ports, Connectors
e Q:Is it areasonable core?

e A.requires probing implications of “UML connector = a link” bias

¢ Constructing Heterogeneous Architecture Styles
e Desirable Principles:
* Independent extensibility, Substitutability, Composability, ...

e Weaving in & out between UML 2.0 & software architecture research

* xArch (Univ. of Calif. Irvine & Carnegie Mellon U.) & many others
e ACME (Carnegie Mellon U.)

e UML 2.x could become a “neutral, level playing field” for architectures

e __Issues

e Key foundations already there in UML / MDA
e Minimal Core Structure & UML 2.0 Components
e Heterogeneity & Multiple PIM & PSM models (> 2)
o Coherency & Model / Model Transformation Bridges

e Tough Challenges Ahead

e Trustin Models
e Expressive yet parsimonious
e Tradeoffs & Informed Decisions
e Compliance w.r.t. standards, architecture styles & product families

e Trust in Transformations
e Specifications with declarative semantics
e Transformation systems with correctness guarantees
e Broad applicability beyond code generation (optimization, weaving)

e A uniform, methodical, and rigorous approach to...

¢ Discovering, characterizing, representing, and documenting
the states of a system

Modeling the behavior of states and relationships among them
Capturing the mission objectives in detailed scenarios

Keeping track of system constraints and operating rules
Describing the methods by which objectives will be achieved
Recording information about hardware interfaces and operation

¢ Original approach: UML 1.3 & code synchronization
¢ Semantic clash between UML / state analysis
e Bleeding edge of UML 1.3 => 2.0 evolution

e Second approach: State Analysis Architecture Style
¢ Architecture Style Defined by Common Framework Elements
e Not a domain-specific architecture (state is a universal concern)
o Projects need specific extensions (domains, mission, systems, etc..)
e XADL 2.0 & ACME for software architecture

2

e Gradual discovery process, prompted by a standard set of questions
e The answer to each question is a piece of the model

question

o Each answer prompts additional questions, and so on

¢ Model unfolds a step at a time in terms of common framework elements
until all the relevant pieces are identified

2 State Example

Standard Questions: Common Framework
Elements:

What do you want to achieve?
Move rover to rock Goal

What's the state to be controlled?
Rover position relative to rock State Variable

What evidence is there for that state? : ?
IMU, wheel rotations, Measurements gw
sun sensor, stereo camera ? {_»[m | g m |4
What does the stereo camera measure? .
Distance to terrain features, Measurement | : |
light level, camera power Model :

(ON/OFF), camera health

How do you raise the light level?
Wait until the sun is up State Effects Model

Where is sun relative to horizon? v * |

® __State

e Mission software: monitor and control a system to meet intents

¢ MDS manages all essential aspects of this function via state

..about the system
& environment

System behavior

Estimate . State -
[etermination

Mediates external
interactions with the system

Operator
intent &
constraints =
goals on
system state
& knowledge

Model Bridge between State Analysis &
L Software Architecture

lterative Refinement Process involving:
Tradeoffs, Choices & Refactoring

- State
- Controllers
_ - Components
- Estimators)
Timel Cross-Cutting - Connectors
- imelines Concepts & Concerns - Interfaces
- Timepoint
- Ports

- Resources :

_ - Links
- Constraints Relations)
- Goals e }

(i' v]

Elements of
Software Architecture

Elements of
State Analysis

oY Frameworks & Domain-Specific

e Frameworks have generic interfaces

e [nteraction protocols

=> methods (with typed signatures)

e Separate domain-specificity => generic or parametric data types

StateFunction
<<GenericDomain>>

VelocityFunction

StateUpdate
<<Interface>>

1. Naive OO approach
o We quickly loose type checking

void update (StateFunction £)

e Can a “temperature” state variable be
; updated with a “velocity” function?

StateUpdate:!

<<Interface>>

void update (StateFunction f);

——————

StateUpdate :
<<Interface>>

| StateFunction | 2. Parametric design

"""" e Preserve type information
o Brittle if parameters change

------ 1 3. Generic design with traits & policies
e Framework remains unchanged
o Adaptations define specific traits &

void update (Traits::StateFunction f); policies to specialize frameworks

4 Polym

Polymorphism
« Pros: Avoids code bloat
« Cons: Loss of type information with polymorphic base types

« Cons: Difficult to check that a “temperature”estimator is
updating a “voltage” state variable

VelocityFunction
StateFunction TemperatureFunction
<<GenericDomain>>
VoltageFunction

StateEstimator 299
Parametric design <<GenericDomain>>
« Cons: Code bloat for large number of template specializations

« Cons: Few people familiar with this technique

« Cons: Need binding elements to show paramétfic specialization

TemperatureFunction

Generic design with traits & policies
» Cons: Same as parametric design
« Cons: Even fewer people are familiar with trait & policy-based design

e Generic Software Interfaces:
Doma inPSM!

e Genericity & specialization concepts can also apply to PSM
e E.g., PSM/C++
e Traits & policies map to template types in C++

------------ -|
StateUpdat | Traits | ~
atelpdate EEEEEEEEEED ! myTraits
<<Interface>> <<Traits>>
void update (Traits::StateFunction f); StateFunction
VelocityFunction
template< class Traits >
struct update {
virtual void update(Traits::StateFunction t)=0;
}; struct myTraits {
typedef StateFunction StateFunction;
b
template<>
struct update<myTraits>;

Brief Overview of Software Architecture
= _____inthe Mission Data System

e Foundations in XADL 2.0 core structure & types schema
e http://www.isr.uci.edu/projects/xarchuci/core-overview.html

o JPL’s extension of xADL designed in fall 2000

e Generics with traits & policies:

e Interfaces
e Traits used for parametric types
e Policies used for coordination behavior (see taxonomy later)

o Components & Connectors
o No restrictions on use & abuse of generics

e Experience
e OO polymorphism is a double edge sword of simplicity
e Easy to hide type information N
o Possible to loose it entirely (e.g., C)

if not for type information

support // java
// stateFunction must be
// of type VoltageFunction

void update (Object stateFunction) ;

http://www

Proxy Exchange

e Architecture prescription
e Construct the architecture
e Primitive prescription actions: instantiation & binding
¢ |nstantiating a link between two ports
e Link between component ports => proxy exchange & binding
e Link between component & connector ports => connector defines the binding

e Primitive link operation = proxy exchange & port binding protocol
1. Each port on either side of the link creates a proxy of itself
2. Each port binds to the other port’s proxy

l.a) x = ctrl.notifications.create proxy();

connect (gsv.notify, 1.b) y = gsv.notify.create proxy() ;

B ctrl.notations); (‘ ()?}ﬂjjbﬁﬂ’#"

noti 2.a) ctrl.notifications.bind port(x);
2.b) gsv.notify.bind port(y);

notifications

sy

I

{

notify, changed{...};
}

gsennotife | | ctrlootifications

I i

e Simple Port-based communication

e An output (required) port (e.g., gsv.notify)

e Bptun .

! 1:notify.changed(...) | ‘

 drem_

has a pointer ‘p’ to the other port (e.g., ctrl.notification) on the link

e An input (provnded) port (e.g., ctrl.notifications)

has a pointer ‘p’ to the entity that implements the mterface (e.g., ctrl)

e Simple taxonomy of runtime port configurations

e Communication policy: how is the “call” coordinated? (method? Message?)
what happens if an exception occurs?
can other aspects weave into the communication?

e Exception policy:

¢ Interception policy:

oY Tradeoffs on Ports as
= Coordination Pointcuts

BasisStateVarComponent

<=hinding»»
I

Example Taxonomy of connections mechanisms

L P Exception Interception Synchronization
svmm;s{n}mmnr support support mechanisms
A— —A P
i o r Y ~ : —~

*None
*Asynchronous invocation only

*Full Report *Full Closure *Dual support

» A profile is a set of policy combinations, e.g: Validation
« The runtime system enforces coordination compatibility linked ports
» The generated C++ code is optimized for the policies in effect

Prescription-time Optlmlzatlons
when creating & linking elements) ¢

oSy gswnotify
| 1:notify.changed(...) !
{
x'u':;,ity. changed{...}):
o
stun L |
¢ Pass-through property <> ; |
!
* No interceptors - | |

| | |

* No exception handlers = A port with pass-through
e Direct method call property can be bypassed

[1:notity.changed(..) ! ! 1noti1ychangad() J

: -~ 5 . Amolifychanged(..) ., :
Zp-»changed(..) ’ ’U N . s
zrotum ;
. ’LE Teeturn . . /U U :
et L i 3
!
{
i

Input Bypass

Input/Output bypass - Output Bypass !

exception link

notifications

e Variations

Interceptor link I‘_ El

tracer

l Tnotify.changed(..)

|

61 Jreturn (exception)

—— - — — el

b

1

—----e

11 afterinterceptors(...) .

1 2return

S

|
|

!

|

|

I

103hrow {HandiedExceptibn(.)) I
1 |

I

!

|

i

|

i
f
!
{
i

e Full interceptors & exception => provides accesé to method argume

e Benefits

e Exception handlers: Separate of exception detection vs. exception recovery

nts
e Partial interceptors & exception => provides access to method name

e Interceptors: infuse aspect-oriented style into the component/connector style

Component Architecture Brings Many
et Transformation Challenges

e Component Technology Concerns (adapted from Halloway)

o Metadata . description & introspection
e Type information . prescription (construction, changes)
¢ Loader architecture . availability of metadata & type information
o Object lifecycle management : dynamic architectures require a database
e Exception handling . distinguish exceptions about

the architecture itself & the application
o Other concerns . threading, security, authenticity, etc...

e Current approach
o Pick a component technology (COM, J2EE, etc...)
e Make the application “fit” within the limitations and available technology

e Resource-constrained approach
o Configure the component technology explicitly to fit the requirements

R Transformation Challenges °

® “try before you buy”
* (quantitative / qualitative evaluation)

 Evaluate the consequences of each tradeoff before choosing an option

- What are the expected power consumption profiles?
- Repeat the analysis if the profiles change

¢ “non-interference guarantee”

e (semantic analysis of interactions)

¢ Are architecture boundaries (components, connectors) sufficiently
solid to isolate a component A (and its realization) from changes in

e Requires semantic knowledge of type & object aliasing in the
target programming language (C++, Java, etc..)

it Transformation Challenges

e “partial evaluation”
e (protocol compliance)

e 1) Relevance question
Is a specific change in A’s going to affect C in some way?

o 2) Trust question
What can | do to eliminate the influence changes in A have to C?

e Transformation (as a form of compilatibh) is not sufficient

4

s Transform

¢ 1) Transformation history

e Record the tradeoff decisions made and transformations made as a
consequence of these decisions

¢ Models have a version history that includes:
o Tradeoffs identified
o Decisions made to resolve tradeoffs
¢ Transformation changes made

e Transformation “play back” is informative to understand the thought
processes that took place in the past.

¢ 2) Historical Explanation

e Starting model may have been simple...
e End result is often much more complex than the original

o What are the root causes of this modeling complexity?
¢ Requirement creep? Naive tradeoffs? Expensive fixes for weaknesses?

