
California Institute of Technology
Pasadena, CA, USA

mailto:Nicolas.Rouquette@ip 1. nasa . ~ o v

+I (818) 354-9600

mailto:Nicolas.Rouquette@ip

Outil ine
e

e

e

*
e

e

e

0

e

0

e

e

Evolving Standards & Pragmatic Reality
Programming & Architecting // Software & System engineering
Unusual characteristics of space missions
Differences of Engineering & Culture; Bridging Gaps
Managing interactions
The Mission Data System
Heterogeneous Architecture Styles
Issues of Trust
State, State Analysis & Software Architecture
Frameworks, Genericity, Polymorphism & Ensuing Tradeoffs
Ports @ the intersection of structure, behavior & coordination
Component Architecture & Transformation
Transform at ion C h a I le ng es

Evolving Standards & Pragmatic Realitv
* Evolving Standards: Pragmatic Reality:

e Today’s Bleeding Edge Still difficult to evaluate tools for:
0 Consistency across diagrams

A coherent subset of UML

0 Advances with UML: 0 Limits on Software Architecture
2.0 has a component model ! Component, Connector, Port, Link

* Advances with MDA: 0 Limits on Transformations:
Code-level Templates

Query /Construction Rules

PIM, PSM
e Transformations as Models PSM=>Code

PIM=>PSM
* PSM=>PSM

Architects P rog ram mers

I

I

I

m

S

I
-

€ t

0

L

n

J

L? 7

E

0

Q

Q
 E

(LS...

a,
7
5

0

h
*

a,

JPL
1 1 1 Architecting

Facts
0 “The model may be stale!” => “The model is reference doc!”

@ Pragmatic Architect = First, pick your biases..
0 Plenty of opinions on what architecture is & should be

Platform standards (COM, JZEE, etc.,.)
Architecture Styles (3-tier, client/server, pipelfilter)

0 Architecture Definition Languages (Arch, xADL, Acme)

MDA’s Approach to Scalability & Complexity
Hierarchy of PIM / PSM models

0 Which abstractions to use?

Architecting is the Dominant Buzzword

Programmers & Architects:
ill sharing successes & failures

* Informal perspective from anthropology:

Software engineers share a common gene pool
Architecture mismatch => early mistakes
Programming bugs => latent flaws }a Extinction !

Outlook for software engineering species
0 Significant evolution but still affected with the same old diseases
0 Bleak future for commercial success & long-term survival
0 Species comparison: viruses have greater success at lower cost

* A brighter perspective:

* UML/MDA:
0 Bridging the gap between programmers & architects

JPL follows a similar path in the Mission Data System project
Bridging the gap between software & system engineering

JPL

Unusual Characteristics of
Space Missions

* Infrequent, scheduled communication
The ‘network’ is not continuously available

* Distance, Time, Bandwidth & Navigation
Multiple clocks: -10 hour round-trip light-time delay to Pluto
Physics limit bandwidth: -300 bitslsec from Pluto
Communication: point antenna at where Earth will be when the signal
arrives, not at where it is now

Special Relativity and Time Dilation
Though spacecraft velocity is a tiny fraction of lightspeed, navigation must
take relativistic effects into account

a Tight Coupling and Resources
In a resource-limited system, ‘everything affects everything’.
Managing interactions is fundamental to good design.

0 Verification & Validation
e Scenario-based testing will continue to be important, but combinatorics

demand additional approaches such as model checking

- Decomposition

- Interactions
- Protocols

Software architecture
Software development
Implementation
Build, Test
Verify

The principle risk to success is miscommunication
-What systems engineers want can be hard to express
-What software engineers build can be hard to understand

Systems engineering is outward looking Software engineering is
0

e
e
a
e
e
a

-
Mission scenarios in ward I oo k in a
Functional decomposition
Performance reauirements

Languages 8t Operating
Resource allocations Svstems II

Command and telemetry Sched,... I Ope rat iona I constraints
~I iliqg

idioms

n...
Control laws IP

Failure Modes & Test sentation,

tion of concerns I

Safety m ' ,

Programmers & Architects:
Different Cultures to Reconcile

Two issues
Reconciling Engineering Differences
Strengthening Architecture Semantics

Reconciling Engineering Differences => Communication
Different levels of abstraction may lead to architecture mismatch

0 UML/MDA:
a Architecture is distorted or lost somewhere between PIM / PSM

0 JPL’s Mission Data System (MDS) project:

Strengthening Architecture Semantics => Interactions
0 Two architecture styles: State Analysis & Software Architecture

State is a central, unifying concern

Accepting architecture style heterogeneity
0 Avoid representational conundrums & loopholes

Focus on semantic bridges among heterogeneous styles

0 isc i p I ined " Stat e
Analysis" pro cess

A shared set o f architectural
elements bridges the gap
between engineering cultures

~ 1 I
Software architecture
process & frameworks

Rover position relative to rock. ----------- b

Measure position relative
to stereo camera.

What does the stereo camera measure?
+ Distance to terrain features, _ _ _ _ _ _ _ _ _

light level, camera power, health.. .

How do you know what that is?

P

How do you control light level?

--- --- -- --- te Variable ------
- - - - - -b

--- -- -- -- easuremen t - - - - - --
------b
- - - - -9

-e - - - -9

__---- M asurement -_----- _---
Model I __----

State

... Etc.

Managing Interactions
In A Unified Approach

e Interactions make software difficult & complex to understand
Elements that work separately often fail to work together
Combinatorics of interaction are staggering: not easy to get right
This is a major source of unreliability

a There are two approaches to this in JPL’s Mission Data System:

State-Based
Architecture

Handles interactions
among elements
of the system under control
Outward looking
Addresses systems
engineering issues

c

0

>
 t

Q
)

I

v
)
ca
I

S

0

m- v
)
cn

I-

=

.
 an

$
E

.cu

.-
n
o

L
Z

L

.- I. 8
I
.

L

I)lr

a,
3

0

a,
c

0

U

a>
i=

s

S

.

.- 5

.- 5

a,
L

3 li 0 cn U a, 0 c cu >
U

cu

E
m

Q

)
r

v
)
o

U

Z
Z

L

-
m

._.
m

LEI
e

O
Q

)

._.

e

P 0

c

0

S

m
c
,

e

Relevance To UMLIMDA

Focus on two concepts:
UML Ports at a 3-way intersection of:

Structure, Behavior & Coordination +
Semantic Definition of Transformations for:

Generation, Optimization, Evaluation, etc.. MDA

I I Architecture-Centric Engineering
Embracing & Unifying Heterogeneous Architecture Styles

No such thing as “the” architecture
Plurality of concerns & abstractions

Foundations For Reliability
“Trust the models!”
“Trust the transformations!” } “Trust the code!”

Why Heterogeneous Architecture Styles?
* Isn’t one architecture enough?

Problems with Inclusive Approach
Conventional wisdom = N views I I (all-inclusive) model

irrelevant modeling details for a specific view
0 Model may be internally inconsistent

- Changes in one view may affect another view
Fragile Architecture Modeling

Embracing Heterogeneity Leads to Parsimony !
a Each model founded on internal coherence:

Only include relevant concerns
e Choose level of abstraction for conciseness & expressiveness

0 Models may be incoherent relative to one another
a Problems with Heterogeneous Approach

>

F

E
S

P

E

a

u- a, cn 3
0

h

m

S

m
II:
0

a,
Q

0

I=
m

3

0

S

L

-c
I,

L

W

A
 II

cn
cn
a,
S

a,
a,
+

-
 E" 00 E" a,

N

cn
m
c

.
I

W
 e

t:
0

Q

cn
a,
U

4

S

0

(If
0

E

0

a,
a.
cn
O

x

t

cn
t

a,
It
0

._/
i--r

.- t3

._.
w

Y
-

.
_
I

-c
I

z 0

cn

0

a,
t

ZT:

tj
-c

I

0

0

0

E
.

W

L
e

*
*

e

0

L
 a,
.- a,
a,
S

(If
L

Q
-cn

o
a
,

3
-

"

0

0
)

S

3
.

0
.

e

Issues of Trust
Key foundations already there in UML / MDA

Minimal Core Structure & UML 2.0 Components
Heterogeneity & Multiple PIM & PSM models (> 2)
Coherency & Model / Model Transformation Bridges

Tough Challenges Ahead
Trust in Models

8 Expressive yet parsimonious
Tradeoffs & Informed Decisions
Compliance w,r.t. standards, architecture styles & product families

0 Trust in Transformations
Specifications with declarative semantics

Broad applicability beyond code generation (optimization, weaving)
8 Transformation systems with correctness guarantees

State Analysis:
I

A uniform, methodical, and rigorous approach to.. .
Discovering, characterizing, representing, and documenting

Modeling the behavior of states and relationships among them
Capturing the mission objectives in detailed scenarios
Keeping track of system constraints and operating rules
Describing the methods by which objectives will be achieved

8 Recording information about hardware interfaces and operation

the states of a system

e Original approach: UML I .3 & code synchronization
8 Semantic clash between UML I state analysis

Bleeding edge of UML 1.3 => 2.0 evolution

Second approach: State Analysis Architecture Style
0 Architecture Style Defined by Common Framework Elements

Not a domain-specific architecture (state is a universal concern)
8 Projects need specific extensions (domains, mission, systems, etc. .)

xADL 2.0 & ACME for software architecture

* Gradual discovery process, prompted by a standard set of questions
The answer to each question is a piece of the model

1 question I

4 ? I

* Each answer prompts additional questions, and so on

0 Model unfolds a step at a time in terms of common framework elements
until all the relevant pieces are identified

Standard Questions: Common Framework
Elements :

What do you want t o achieve?
Move rover to rock

What's the state t o be controlled?
Rover position relative to rock State Variable

What evidence is there f o r that state?
I M U, wheel rotations, Measurements
sun sensor, stereo camera

Distance to terrain features, Measurement
&ht leve[camera power
(OWOFF), camera health

Wait until the sun is up

What does the stereo camera measure?

How do you raise the light level?

Where is sun relative t o horizon?
State Effects Model

...

a Mission software: monitor and control a system to meet intents

1 interactions with the system I

- State
- Controllers
- Estimators
- Timelines
- Timepoint
- Resources
- Constraints
- Goals
- ...

Iterative Refinement Process involving :
Tradeoffs, Choices & Refactoring

J

Concepts/
Cross-Cu tti ng

Concepts & Concerns

Relations 'Y
/c

L
- Components
- Connectors
- Interfaces
- Ports
- Links

... -

Elements of
Software Architecture

f

Frameworks & Domain-Specific
Adaptation (PIM)

~~

Stateupdate
<<Interface>>

void update (StateE’unction f) ;

0 Frameworks have generic interfaces
Interaction protocols => methods (with typed signatures)
Separate domain-specificity => generic or parametric data types

I 3

7. Nai’ve 00 approach
We quickly loose type checking
Can a “temperature” state variable be
updated with a “velocity” function?

VelocityFunction StateE’unction
<<GenericDomain>>

<<Interface>>

void update(Traits: :StateFunction f) ;

Adaptations define specific traits &
policies to specialize frameworks

1 - - - - - - - - - - - - - - - - - - -
StateFunction I f 2. Parametric design

stateupdate ! - - - - - - - - - - - - - - - - - - -1 Preserve type information <<Interface>> I
void update (StateE’unction f) ;

Brittle if parameters change

Polymorphism Tradeoff

S tatemnction TemperatureE’unction

- 0 . .

<<GenericDomain>>

Generic design with traits & policies
Cons: Same as parametric design
Cons: Even fewer people are familiar with trait & policy-based design

TexnperatureFunction

Generic Software Interfaces:

<<Interface>>

void update (Traits: : StateE’unction f) ;

Genericity & specialization concepts can also apply to PSM
* E.g., PSM/C++

virtual void update(Traits::StateFunction t)=O;
...

* Traits & policies map to template types in C++

typedef StateFunction StateFunction;

r - - - - - - - - - - - -
I

I Traits
Stateupdate I myTrai ts

<<Traits>>

S tateFunction

template< class Traits >
struct update {

VelocityFunction

I template<>
struct update<myTraits>;

Brief Overview of Software Architecture
in the Mission Data System

support

* Foundations in xADL 2.0 core structure & types schema
http://www. isr. uci.edu/projects/xarchuci/core-overview. html
JPL’s extension of xADL designed in fall 2000

/ / java
// state-nction must be
/ / of type VoltageFunction
void update (Object statemnction) ;

Generics with traits & policies:
Interfaces

Traits used for parametric types
Policies used for coordination behavior (see taxonomy later)

No restrictions on use & abuse of generics
Components ti Connectors

http://www

* Architecture prescription
Construct the architecture

* Instantiating a link between two ports
Link between component ports

0 Link between component & connector ports => connector defines the binding

Primitive prescription actions: instantiation & binding

=> proxy exchange & binding

Primitive link operation = proxy exchange & port binding protocol
I. Each port on either side of the link creates a proxy of itself
2. Each port binds to the other port's proxy

1. a) x = ctrl . notifications . createjroxy () ;

1. b) y = gsv. notify. createjroxy () ; connect(gsv.notify,
ctrl . notations) ; a x -

2. a) ctrl . notifications .bind port (x) ;
2.b) gsv.notify.bind port(y) ;

notifications 'j not?-\ 0

0

Communication Policies Example

notifications 7 7 notify
- - -

I

0 Simple Port-based communication
An output (required) port (e.g., gsv.notify)

An input (provided) port (e.g., ctrimotifications)

9 Simple taxonomy of runtime port configurations

has a pointer ‘p’ to the other port (e.g., ctrl.notification) on the link

has a pointer ‘p’ to the entity that implements the interface (e.g., ctrl)

0 Communication policy: how Is the “call” coordinated? (method? Message?)
0 Exception policy: what happens if an exception occurs?
0 Interception policy: can other aspects weave into the communication?

Tradeoffs on Ports as

Example Taxonomy of connections mechanisms
I

Exception Interception Synchronization
support support mechanisms

*Asynchronous invocation onlv I

A profile is a set of policy combinations, e.g:
The runtime system enforces coordination compatibility linked ports
The generated C++ code is optimized for the policies in effect

I , * * * I

0 Pass-through property

0 No exception handlers
No interceptors

I

I
I I' I I I
l l I I I
4J I f I
I I 1 I

3 A port with pass-through
e Direct method call property can be bypassed

i I Y I
I I

Input hypass f InputlOutput bypass
U I I I IJ Output dypass I

Interceptors & Exception Handlers

/

\ A \'
notifications tl j 1-1 notify

interceptor link pi
r"l tracer
I I

Variations I

Full interceptors & exception => provides access to method arguments
Partial interceptors & exception => provides access to method name

Benefits
Exception handlers: Separate of exception detection vs. exception recovery
Interceptors: infuse aspect-oriented style into the componentkonnector style

Component Architecture Brings Many
Transformation Challenges

* Component Technology Concerns (adapted from Halloway)
e Metadata : description & introspection
e Type information : prescription (construction, changes)

Loader architecture : availability of metadata & type information
Object lifecycle management : dynamic architectures require a database
Exception handling : distinguish exceptions about

the architecture itself & the application
e Other concerns : threading, security, authenticity, etc.. .

* Current approach
Pick a component technology (COM, JZEE, etc ...)

e Make the application “fit” within the limitations and available technology

* Resource-constrained approach
* Configure the component technology explicitly to fit the requirements

0 “try before you buy”
* (quantitative I qualitative evaluation)

Evaluate the consequences of each tradeoff before choosing an option

- What are the expected power consumption profiles?
- Repeat the analysis if the profiles change

* “n on-i n terference g uara n tee”

(semantic analysis of interactions)

@ Are architecture boundaries (components, connectors) sufficiently
solid to isolate a component A (and its realization) from changes in
another component’s (e.g., C)

Requires semantic knowledge of type & object aliasing in the
target programming language (C++, Java, etc. .)

Transformation Challenges
0 “partial evaluation”

(protocol compliance)

I) Relevance question
Is a specific change in As going to affect C in some way?

2) Trust question
What can I do to eliminate the influence changes in A have to C?

* Transformation (as a form of compilation) is not sufficient

Transformation Challenge
* 1) Transformation history

Record the tradeoff decisions made and transformations made as a
consequence of these decisions

8 Models have a version history that includes:
a Tradeoffs identified

Decisions made to resolve tradeoffs
Transformation changes made

8 Transformation “play back’’ is informative to understand the thought
processes that took place in the past.

* 2) Historical Explanation

0 Starting model may have been simple ...
0 End result is often much more complex than the original

What are the root causes of this modeling complexity?
Requirement creep? Nai’ve tradeoffs? Expensive fixes for weaknesses?

