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ABSTRACT 

The nulling interferometers proposed for planet detection are arrays of collector telescopes whose amplitudes and phases 
are carefully controlled to generate a null response at the star. Perturbations in the amplitude and phase response of the 
instrument lead to time-dependent fluctuations in the stellar leakage that can mimic a planet signal. Understanding these 
non-linear systematic errors is important, since they drive most of the instrument requirements for missions such as the 
Terrestrial Planet Finder and Darwin. 

We show that 'amplitude-phase' errors are the dominant source of instrument noise. They are unaffected by the 
technique of phase chopping, increase rapidly at short wavelengths, are largely independent of the size and transmission 
efficiency of the collector optics, and depend only weakly on the nulling configuration and distance to the target system. 
Detection of an Earth around a G-type star like the sun requires -1.5 nm of path control and -0.1% control of the 
amplitude, integrated over all frequencies, including DC. 

This paper also introduces the X-Array - a new nulling configuration with 4 collectors and a central combiner arranged 
in an X pattern. This has a number of advantages over the standard dual Bracewell layout, and over other configurations 
that have been proposed. 
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1. INTRODUCTION 

There is currently a large effort to find and study Earth-like planets around other stars. A number of indirect detection 
schemes for the detection of planets are either in use, or planned in the near future. These include radial velocity 
measurements, astrometric wobble, and transit photometry.',' None of these approaches detects light originating from the 
planet itself. The challenge for such a direct detection is the combination of large contrast ratio between the star and 
planet (- lo7 in the mid-IR; - 10" in the visible) and the small angular separation (0.1 arcsec or 0.5 p a d  for the Earth- 
Sun at a distance of 10 pc). 

The technique of nulling interfer~metry~.~ has been proposed to meet this challenge, and is being pursued by both 
National Aeronautics and Space Agency (the Terrestrial Planet Finder mission' and the European Space Agency (the 
Darwin mission6). In its simplest form -the single Bracewell configuration3- the light from two collectors, separated by 
a baseline b, is combined coherently. The response of this simple interferometer on the plane of the sky is a series of 
sinusoidal fringes, with angular spacing of L I 6. By adding a phase delay to one arm, the starlight can be made to 
interfere destructively, shifting the response such that the star falls in a null of the fringe pattern. At the same time, a 
planet, offset from the star by an angle A /  28, falls on the peak of the response. As the baseline is rotated in the plane 
perpendicular to the star direction, the star remains nulled and the planet moves through peaks and nulls of the response, 
giving an output photon rate that is modulated in time. Appropriate demodulation of this output gives the flux of the 
planet and the position relative to the star. The high angular resolution of the interferometer is used to resolve the small 
angular separation, and the technique of nulling greatly reduces the photon noise from the star. The primary disadvantage 
of the single Bracewell configuration is that the response on the sky is symmetric on either side of the star. As a result, 
the planet position angle has a 180-degree ambiguity, it is difficult to separate the planet signal from other sources of 
emission, and it is not possible to implement the technique of phase chopping (discussed below). 
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A number of interferometer configurations with more than two collectors have been proposed to overcome these 
 limitation^.^“' The instrument is the optical equivalent of a phased array, with an amplitude and phase shift applied to the 
light from each collector element before combination. The nominal amplitudes and phases are chosen to give a null 
response on-axis. The use of a single-mode spatial filter (e.g. single-mode fiber) before detection relaxes a number of 
requirements12, and a dispersing element splits the light into a number of spectral channels on the detector. In addition to 
the star and planet(s), there will also be emission from warm dust in the target system, a product of the break-up of 
comets and asteroids, known as the Exo-Zodiacal (EZ) disk. The analog in our own solar system is the Local Zodiacal 
(LZ) dust, which provides a blanket of foreground emission. 

The sensitivity of the nulling interferometer determines how much integration time is required to achieve a given signal- 
to-noise ratio (SNR) for a given planet at a given distance. There is both random noise and systematic noise. Previous 
ana lyse^^*^.^.'^ have concentrated on the random noise component, consisting of photon shot noise and the electronic 
noise of the detection process. The key quantity is the mean null depth, which is relatively straightforward to analyze. 

The emphasis of this paper is the systematic noise, arising from fluctuations in the null depth. These effects are shown to 
drive most of the requirements on the instrument, and understanding them is central to the design of a nulling 
interferometer. Section 2 describes the error analysis for nulling interferometers, and is based in large part on a more 
extensive analysis described in [14], in which many of the derivations can be found for the results that are stated here. 
Section 3 introduces a new nulling configuration, called the X-Array. This 4-element, 2-dimensional array has a number 
of advantages over the standard dual Bracewell configuration. The key results are summarized in Section 4. 

2. ERROR ANALYSIS 

2.1. Baseline decomposition 

Consider an array of collector telescopes and associated beam trains that deliver light to a beam combiner prior to 
passage through a single-mode spatial filter (SMSF) and detection. The fully phased condition occurs when all path 
lengths from an on-axis target source to the detector are exactly matched, and the electric fields from each collector sum 
coherently to produce a high photon rate at the detector. The null condition can be achieved by the addition of phase 
shifts qj to each collector beam, such that the electric fields for an on-axis source now sum to zero. The rate at which 
photons are detected is given by 

where Bsb(s) is the brightness distribution on the sky for a spectral channel centered on wavelength A and bandwidth d;l 
<< 1 (units: photons I s I mz I sr); s is a unit vector whose direction represents position on the sky (no units); P(s) is a 
field-of-view taper function resulting from the size of a collecting aperture and the input response of the single-mode 
spatial filter (no units; value of unity on axis); R(s) is the response of the interferometer on the sky, excluding the taper 
(units: m'); and dL2 is a differential element of solid angle on the sky (units: steradian). The response of the phased array 
can be written as a sum over all pairs of collectors [refJ: 

where and 6$ are small angular offsets from the nominal line-of-sight (units: rad), (x,~, y,k) give the spacing between 
collectors j and k (units: m), and the x- and y-axis are chosen in convenient directions within the array, in the plane 
perpendicular to the line-of-sight to the target. The amplitude AJ is the electric field amplitude response for collector j, 
scaled such that A t  represents the detected photon rate from collector j alone, for a source with flux of 1 photon I m2. 
The ability to express the response as a sum over the constituent baselines of the array is a powerful concept; we need 
only solve the signal and noise analysis for the case of a single baseline, and then sum these solutions together to obtain 
the answer for a configuration of arbitrary complexity. Figure 1 shows how the response of a standard Dual Bracewell 
configuration (Fig. 7) can be synthesized from the responses of its individual baselines. 



The integral over the sky in Eq. (l), combined with the phase term in square brackets in Eq. (2), is equivalent to a 
Fourier transform, and it can be shown that the detected photon rate for the phased array is given by 

where the horizontal bar denotes a 2-dimension Fourier Transform of the sky brightness distribution, evaluated for the 
baseline j k .  The sky brightness distribution has been split 
into two components - one that is center-symmetric about 
the line of sight, and one that is anti-symmetric. The target 
star, local zodiacal (LZ) dust (the foreground of dust in our 
solar system) and exo-zodiacal (EZ) dust (the dust present in 
the target system) are all nominally center-symmetric, and 
therefore couple to those baselines for which cos(@ - &) # 
0; a point-like planet makes equal contributions to the 
symmetric and anti-symmetric brightness distributions. It is 
the only contributor to baselines that have sin( @ - &) # 0. In 
the language of astronomical interferometry, the B jk terms 
of Eq. (3) are the source visibility fluxes for baseline j k .  

- 

2.2. Array rotation 

Without array rotation, the photons detected from the planet, 
star, LZ and EZ dust would all appear at zero frequency, and 
it would not be possible to separate the contributions. As the 
array is rotated, the response pattern on the sky rotates with 
respect to the targets. Since the star is circularly-symmetric, 
and the LZ has uniform brightness, neither signal is 
modulated. The EZ appears as an inclined disk, and is 
therefore elongated. Because of its center-symmetry the EZ 
photon rate is modulated at even harmonics of the array 
rotation frequency. The symmetric component of the planet 
brightness also appears at even harmonics, but the anti- 
symmetric component appears at odd harmonics, as long as 
there area baselines in the array for which sin(@ - &) # 0, 
i.e. ones with phase differences that are not integer multiples 
of z 
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Figure 1: Response of a Dual Bracewell nulling interferometer 
(see Fig. 7) on the sky. (a) Contributions from each collector 
pair j k .  (b) Resulting total response. The collector amplitudes 
AI= 1. 

Figure 2 schematically illustrates the signals and noise in the frequency domain. The planet signal is shown at the first 
and second harmonics of the rotation frequency (in general the planet signal will also appear at higher harmonics of the 
rotation frequency). The EZ appears at even harmonics only, and the star and LZ appear at DC. Two distinct types of 
noise are also shown. The random photon noise is the Poisson or shot noise resulting from the random arrival of photons, 
with a power spectral density equal to the expected photon rate <N>. The systematic noise results from instrument 
instabilities: small variations in the instrument response, particularly at the on-axis null, modulate the number of stellar, 
LZ and EZ photons that get detected. This noise is likely to fall off with frequency. Only noise that competes with planet 
signal is important. As the observation time Tabs is increased, the planet signal becomes narrower and taller (preserving 
the area) and the signal-to-noise ratio (SNR) increases as TObs''. Increasing the rotation frequency shifts the planet signal 
to higher frequencies; the random noise contribution is unchanged, but the systematic noise is decreased. We will show 
that it is this systematic noise that drives most of the requirements on instrument performance. 
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Figure 2: Schematic representation of the power spectrum for the planet signal , stellar 
leakage, Local Zodi, Exo-Zodi and the associated random and systematic noise. 

2.3. Perturbation analysis 

The photon rate at the detector can be written as N = No + d N ,  where No, which we term the 'geometric leakage', 
represents the photon rate for an ideal instrument without perturbations, and the 'perturbation leakage' dV is the 
additional photon rate due to perturbations. The geometric leakage can be pictured as the part of the sky brightness 
distribution that 'leaks' through the ideal instrument response pattern R (Fig. 3a shows the stellar contribution), and is 
given by Eq. (3) with the nominal values for Aj, @, xJ and y,. 

a) Geometric leakage b) Geometric leakage c) Null floor perturbations 
perturbations 

Figure 3: Schematic representation of different contributions to the photon rate. Light gray shading corresponds to the diameter of the 
star. (a) Hatched area shows 'geometric leakage' of star through the interferometer response R. (b) First order fluctuations in phase, 
amplitude and collector separation preserve the on-axis null, but lead to perturbations in the geometric leakage (dark shaded area). (c) 
Second order fluctuations in phase and amplitude give rise to perturbations in the 'null floor' (dark shaded area). 

We now derive the perturbation leakage &. Equation (3) gives the detected photon rate as a function of the array 
amplitudes A,, phases @, and the collector positions (xj, n) which are implicit in the terms. Perturbations in these 
quantities lead to perturbations in the detected photon rate. A first-order analysis is not sufficient, however. This is 
because the amplitudes and phases have been chosen deliberately to minimize the photon rate. Since we are operating at 
the null condition for an on-axis source, we must expand to second-order in amplitude and phase: 

where hJ = SA, I AI is the fractional change in amplitude from collectorj. The C terms are sensitivity coefficients, 
calculated by taking the appropriate partial derivative. For example, 
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The contribution from the asymmetric component of the brightness distribution has been neglected, since the planet flux 
is orders of magnitude lower than the star, LZ and EZ. We distinguish between two classes of perturbation leakage: 
‘geometric leakage perturbations’ and ‘null floor leakage’. 

Geometric leakage perturbations arise from the linear terms in Eq. (4). Figure 3b shows an example for the stellar 
contribution, The central null is preserved, and the error depends on the size of the source. Contributions from the star, 
exo-zodi and local zodi are all important. While the star has the highest flux, it is also the most compact of the three, and 
therefore most effectively nulled. The photon rate in Eq. (4) is proportional to the perturbation, making it straightforward 
to calibrate out the slow planet-like component of the error in post-processing, given knowledge of the fluctuation, i.e. it 
is sufficient to measure these errors in real-time; it is not necessary to control them in real-time. These errors are also 
‘collector-based’, with an independent contribution from each collector. 

Null floor perturbations arise from the non-linear, second-order terms in Eq. (4). Figure 3c shows an example for the 
stellar contribution. There is no longer an ideal on-axis null, and errors are obtained even for point-like sources. The 
stellar photons dominate this class of error. In contrast to the collector-based geometric leakage perturbations, these null 
floor perturbations are ‘baseline-based’, with a unique contribution from each baseline pair. Furthermore, the non-linear 
nature of the errors renders calibration of the errors in post-processing ineffective; instead, we must try to minimize the 
perturbations in real-time. 

The relative importance of geometric leakage perturbations versus null floor perturbations depends on the size of the 
fluctuations, and the types of source present. Collector configurations that produce a broad central null (e.g the OASES 
configuration’) have lower stellar leakage and are less susceptible to geometric leakage errors, compared to a Dual 
Bracewell configuration. All configurations, however, are vulnerable to null floor perturbations. 

Perturbation leakage contributes to both random and systematic noise. The mean photon rate that determines the level of 
random photon noise in Fig. 2 is given by 

where we have assumed that the amplitude and phase perturbations are uncorrelated between the collectors. We use 
angular braces to denote an ensemble average over all realizations of the noise at a given point in time. Note that there 
are no linear or cross-terms, since they average to zero. 

The power spectral density (PSD) of the systematic noise shown in Fig. 2 is obtained from Eq. (4): 
8%=ccjJ&, + C j J q J  +cizJ +ci&, 

J 

where the tilde denotes a PSD, and * indicates a convolution operation. The non-linearity of the second-order terms 
complicates the analysis, leading to the convolution of the disturbance power spectra. Perturbations of different 
frequency mix together to produce photon fluctuations at the sum and difference frequencies. An amplitude fluctuation 
with frequency 100 Hz from collector 1, &,, can mix with a phase fluctuation with frequency 101 Hz from collector 2, 
&, to produce a fluctuation in the detected photon rate at frequency 1 Hz. Perturbations of all frequencies contribute to 
the systematic noise at the planet signal frequency in Fig. 2. These mixing effects cannot be calibrated out in post- 
processing; instead the perturbations must be minimized in real-time. 



An example calculation shows the relative magnitudes of the different contributions. The following parameters were 
used. Target system: Earth-Sun system at 15 pc, with angular separation of 50 mas, solar-system level of Exo-Zodiacal 
dust, observed through the Local Zodiacal dust at ecliptic latitude of 30 degrees. Instrument: dual Bracewell 
configuration (Fig. 7) with 20 m spacing, collector diameter of 4 m, throughput of 10% and a single rotation of 50000 s. 
Values are for an optical bandwidth of 0.5 pm, centered on a wavelength of 10 pm. Perturbations: amplitude 0.1% rms, 
phase 0.001 rad rms, both with ‘l/f power spectra cut-off below 0.02 mHz and above 10 1<Hz, collector position, 1 cm 
rms, white noise up to a cut-off at 0.64 mHz. The results are shown in Table 1, under ‘Without phase chop’. 

Table 1: Comparison of performance with and without phase chopping The geometric leakage from the 
star is comparable to that from the 
Local Zodi and Exo-zodi, and all 

Without phase chop With ideal phase chop are substantially larger than the 
stellar null floor leakage, which 
reuresents the contribution of the 0.097 Planet Signal I s4 0.097 * 

Photon noise I s-’ 
Stellar null floor leakage 
Stellar geometric leakage 
Local Zodi 
Exo Zodi 

Systematic noise I sd 
First order 

6A 
& 
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6A 4tJ 

0.070 
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0.058 
0.040 
0.022 

0.037 
0.071 

0.026 
0.024 
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0.025 
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0.025 
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0.025 
0.000 
0.000 

0.000 
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0.042 

imperfect instrument to the random 
photon noise. The systematic noise, 
which is all due to the instrument, 
is dominated by second-order 
effects, in particular the amplitude- 
phase cross-terms. Although the 
break-out of this error is not shown, 
it is dominated by the stellar 
photons, as expected from Eq. (6). 
The I cm collector position error is 
not a major contribution. 

It is the systematic noise that drives 
the requirements on amplitude and 
phase control, and in turn most of 
the reauirements on the instrument. 

&& 0.025 0.000 Contrdl of the amplitude at the 
SNR, one rotation (50,000 s) 0.971 1.132 0.1% level, and phase to 0.001 rad 

(1.5 nm at A = 10 km), for each 
* after even harmonics removed beam train, integrated over all 

frequencies, is a very challenging 
task. Because of the frequency 

mixing, both static and dynamic perturbations are important. The amplitude of the electric field that is coupled into the 
single mode spatial filter depends on a number of factors, including reflectivity of the mirrors, absorption of transmissive 
optics, beam shear, and wavefront errors such as tilt, focus, astigmatism and the higher order aberrations. There is 
additional non-linearity in the process to convert tilt to amplitude, for example, further complicating the analysis, and a 
detailed discussion is beyond the scope of this paper. The phase of the electric field obviously depends on path length 
changes introduced by thermal drifts and structural vibrations, but also on mismatches between beam trains of the 
birefringence and dispersion introduced by the large number of optical elements. Both amplitude and phase must be 
actively controlled with auxiliary sensors and actuators, which introduce their own noise. 

The analysis so far has neglected several other important sources of error. Rotation of one beam train relative to another 
(along the direction of propagation) results in a misalignment of the polarization states at the detector, which degrades 
the null depth. This effect is discussed in [ref??] and turns out to be directly analogous to an amplitude perturbation. 
Thermal emission from the instrument and stray light from the sun or target star both contribute to the random photon 
noise and systematic noise, variations in the detector gain can also mimic the planet signal. These three are all linear 
errors, and can, in principle, be measured in real-time and calibrated out in post-processing. But the planet signal is - 1 
photon / s, and we require knowledge of the fluctuations at least an order of magnitude below this. Measurement of the 
fluctuations in thermal emission and stray light to this accuracy, in the presence of photon noise from the Local Zodi 



dust, would take longer integration times than for the 
detection of the planet signal itself. The solution to this 
problem is the technique of phase chopping. 

2.4. Phase chopping 

Phase chopping introduces an additional modulation to the 
planet signal that allows it to be isolated from variations in 
thermal emission, stray light and detector gain. The 
instrument is switched between two states, that differ in the 
way the collectors are phased. The useful planet signal is 
contained in the asymmetric component of the brightness 
distribution (the symmetric component is contaminated by 
the Exo-Zodi emission). The two chop states are chosen 
such that the response for one chop state is the same as the 
response for the other, rotated through 180 degrees about 
the line of sight. This is accomplished by choosing phases 
for one state that are the negative of the other. For example, 
for the dual Bracewell configuration the phases would be 
(0, z l 2 ,  n, 3 x 1  2 )  and (0, -A/ 2, -n, - 3 ~ 1 2 ) .  The latter is 
equivalent to ( 0 , 3 n l 2 ,  n, A/ 2 ) .  Both states have the same 
symmetric response, but ‘opposite’ asymmetric responses. 
Any thermal emission and stray light should be incoherent 
between the beam trains, and therefore identical for the two 
chop states. Taking the difference in photon rates for the 
two states will therefore remove variations in these 
quantities, while preserving the asymmetric component of 
the planet brightness. The ‘chopped’ photon rate is given 
by 

(a) Pure amplitude e m  

(b) Amplitude-phase crossterm 
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Figure 4: (a) Electric field phasors due to an on-axis point 
source, at the output of the single-mode spatial filter, from the 4 
collectors of a Dual Brwewell configuration, for the left and 
right chop states. An amplitude error on collector 1 adds 
equally to the photon rate (proportional to the square of the 
dashed residual electric field) obtained in the left and right chop 
states, and is removed when the difference is taken. (b) 
Example of an amplitude-phase cross-term. The combination of 
an amplitude error on collector 1 and a phase error on collector 
2 adds more photons to the right chop state than the left. This 
asymmetry leads to an error when the chop states are 
differenced. 

N -  = C( cjJSaJ + ciJ@; + C;SX; + c;s~;  J + C( ciAJkSa;Sai + cj41kSa;&l + ckJk@;&l] . (9) 
J J k  

The ‘-’ superscript denotes half the difference between chop states; the ‘+’ superscript denotes half the sum between 

chop states. For example, if the chop states are denoted by Left and Right, then Sa; = (6a: + 6af) /2  represents the 

amplitude perturbations that are common-mode between the two states (which ideally would be all of them). The 
‘chopped response’ on the sky has no symmetric component, and couples entirely to the desirable asymmetric 
component of the sky brightness. As a result, the power spectrum of the chopped output contains only odd harmonics of 
the rotation frequency. While they have been removed from the chopped output, note that the star, EZ and LZ still 
contribute to the photon noise exactly as for the case without chopping. 

The chopped sensitivity coefficients can be evaluated using the phases for the two states. The property of inverted phases 
between the states, substituted into Eqs. (5),  (6), and their equivalents for the other variables, lead to the following 
results: CiJ = . This implies that the 
chopped output is not sensitive to the first-order systematic errors in amplitude, and position, or to second-order errors in 
amplitude or phase. It is, however, just as sensitive to first-order phase errors and second-order amplitude-phase cross 
terms as before. 

L R 
= C i  = CkJk = CGJk = 0 ,  CiJ = Cej = -cej, = = 

J i k  

This is a key result for this paper. The consequences are illustrated by the example in Table 1, under the column ‘with 
phase chopping’. The planet signal and random noise are unchanged. The overall systematic noise has been reduced, but 
the dominant amplitude-phase cross terms remain, in addition to the first-order co-phasing error. Figure 4 shows 
graphically how phase chopping removes pure amplitude errors, but does not remove the amplitude-phase errors. 



Phase chopping is vulnerable to additional errors. If the instrument is switched alternately between the two chop states at 
frequency j&p, then any photon fluctuations at j&p are 'synchronously detected' and lead to systematic noise in the 
chopped output. It is therefore desirable to have a high chop frequency, at least to the point where detector read noise 
becomes an issue. The chop mechanism itself may also introduce asymmetries; for example, if delay lines are used to 
introduce the switch in phase, and one setting introduces a slightly different tilt from the other, then the stellar leakage 
will differ between the two states and couple into the chopped output. There are many combinations of these error terms, 
and a more complete analysis can be found in [14]. 

The analysis in this section has been for a simple binary chop - switching between two states. It is possible to show that 
there is no linear combination of arbitrary chop states that can remove the systematic errors without also removing the 
planet signal. 

2.5. Combining spectral channels 

All the previous analysis has applied to a single narrow spectral channel. While this is appropriate for the spectroscopic 
characterization of planets, the initial detection of planets requires broadband operation to maximize sensitivity. For the 
Terrestrial Planet Finder mission the bandwidth is currently specified to be 6.5 - 17 pm. If, however, a single detector 
were used to cover this entire range, the interferometer response on the sky, which scales with wavelength, would 
become smeared out. Instead, the band is divided into a number of spectral channels for both spectroscopy and detection, 
and the channels are then combined in post-processing to obtain broadband sensitivity. This also allows the channels to 
be weighted to maximize the overall signal-to-noise ratio. 

It can be shown'4 that when the channels are weighted in the optimal way to maximize the overall sensitivity, then the 
combined S N R  over all channels is given by 

where SNR,, is the S N R  for channel n. This equation assumes that the noise in the spectral channels is independent, i.e. 
that there are no correlations between channels. While this is always true for random photon noise, the systematic noise 
is likely to be correlated across adjacent channels that have similar wavelength. At some point, the systematic errors do 
become uncorrelated as the difference in wavelength increases. There are two effects to take into account: (1) as the 
wavelength is decreased, the planet signal shifts to higher harmonics, and therefore couples to higher harmonics of the 
systematic noise, which are uncorrelated with the lower harmonics; (2) different contributions to the systematic error 
have different dependences on the wavelength. For example, an amplitude-phase error arising from the combination of a 
wavefront error ( X z  in amplitude) and a path length error (X' in phase) has an overall dependence of L3, and will be 
dominant at short wavelengths. An amplitude-phase error arising from a shear error (Ao in amplitude) and a coating 
dispersion error (Ao in phase, for this example) is achromatic, and will be more dominant at the longer wavelengths 
compared to the A3 contribution. A full analysis of this problem requires detailed simulation, and is beyond the scope of 
this paper. In order to estimate the detection sensitivity, we can approximate the behavior by assuming a value for the 
number of noise-independent spectral channels across the band, which in general will be different from the physical 
number of channels in the spectrometer. 

2.6. Dependence on wavelength and distance 

In this section we explore the dependence of the signal and noise terms on wavelength and distance to the target system. 
The values are calculated for the dual Bracewell configuration with phase chopping, and the target system specified in 
Tables 1 and 3. 

Figure 5a shows the dependence on wavelength, for a series of 5 noise-independent spectral channels, each 2 pm wide, 
spanning the band 7 - 17 pm. The values are for the example parameters specified in Section 2.3. The planet signal rises 
towards the long wavelengths as a result of the Planck function for a 265 K black body. The systematic noise 
contributions from the amplitude-phase cross-term and the co-phasing error rise rapidly at short wavelengths. The 
random photon noise is dominated by stellar geometric leakage at short wavelengths and by the Local Zodi at long 
wavelengths. The resulting S N R  is a maximum at about 14 pm, and falls off rapidly at short wavelengths. This has two 
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Figure 5 :  (a) Wavelength dependence for planet signal, two systematic noise terms, random photon noise, and the resulting signal-to- 
noise ratio, after a single array rotation of 50,000 s for an Earth-Sun system at 15 pc. Spectral channels are 2 pm wide. Further 
assumptions are listed in Tables 1 and 3. (b) Distance dependence for planet signal, two systematic noise terms, random photon 
noise, and the resulting signal-to-noise ratio, after a single array rotation of 50,000 s with a spectral channel spanning 9 - 1 I pm for 
an Earth-Sun system. The effect of the inverse square law has been removed by multiplying the contributions by the square of the 
distance. 

implications. First, spectroscopy becomes much more challenging at A < 10 pm, and will require long integration times. 
Second, the angular resolution of the interferometer should be assessed using a wavelength of - 14 pm, since this is 
where the maximum sensitivity is obtained. 

Figure 11 illustrates the dependence on distance to the target system, for a spectral channel spanning 9 to 11 pm. The 
effect of the inverse square law with distance has been removed for clarity (the ratios of the quantities are preserved). As 
a result, the planet signal appears flat with distance. As the distance increases, the angular separation of the planet from 
the star decreases. This reduces the frequency of the planet signal harmonics, which then couple to lower harmonics of 
the systematic noise, accounting for the slight rise in the amplitude-phase cross-term with distance. The stellar geometric 
leakage dominates the photon rate in this spectral channel, scaling with distance as 0“‘. The associated photon noise 
scales as D-‘ (appearing flat in the plot), and the co-phasing error scales as D4, dominating at distances shortward of 10 
pc. It is the co-phasing error that drives the SNR down for nearby stars, despite the increased number of signal photons. 
Performance for nearby stars can be improved by reducing the array size, re-phasing the array”, or using a configuration 
with a broader nullss9. 

3. THE X-ARRAY CONFIGURATION 
In this section we introduce a new nulling configuration, which we call the X-Array. It offers a number of advantages 
over other configurations that have been proposed. 

The ideal nulling configuration has 3 desirable properties: (1) a broad null to minimize stellar leakage; (2) high angular 
resolution to clearly separate the planet signal from the star, lumps in the Exo-Zodi emission, and any other planets that 
may be present; and (3) high modulation efficiency. The configurations proposed so far can, at best, meet 2 of these 3 
criteria. The evenly-spaced dual Bracewell design has high modulation efficiency, but is forced to compromise between 
stellar leakage and angular resolution - a large array size gives good resolution but high leakage, and vice versa. 
Configurations with higher order O4 and O6 nulls, such as ESA’s Bow-tie configuration and the OASES family proposed 
by [8] are capable of broad nulls and high angular resolution with a sufficiently large array size, but suffer from low 
efficiency. 

The X-Array meets all 3 criteria. It is a simple modification of the standard Dual Bracewell design, as shown in Fig. 7. 
The amplitudes and phases of the 4 collectors follow the same scheme. The array is simply opened out to form a 
rectangle or ‘X’. The key feature is that the ‘nulling’ baselines (those with a phase difference of n-) are now independent 
of the ‘resolution’ or ‘imaging’ baselines (those with a fractional- nphase difference), as depicted in Fig. 8a. The nulling 
baselines determine the leakage, and the resolution baselines determine the angular resolution in the chopped output 
map. The response of this configuration on the sky is shown in Fig. 8b and 8c. The short nulling baselines, length b, lead 



to wide fringes with angular spacing A I  b. These are crossed in the orthogonal direction by a series of narrow fringes, 
spaced by A I B, where B is the length of the resolution baseline. The nulling and imaging properties of the array have 
been completely decoupled: stretching the X along the horizontal direction increases the angular resolution without 
impacting the stellar leakage. Phase chopping for the X-Array is implemented in the same way as for the Dual 
Bracewell; the phases of the second chop state are indicated in parentheses in Fig. 8% resulting in a sky response that is a 
reflected-through-the-center version of Fig. 8c. The average modulation efficiency - a measure of the efficiency with 
which planet photons are converted into output signal - of the X-Array is 0.22, compared to 0.28 for the Dual Bracewell 
and 0.10 for the Bow-tie. 

Standard Dual Bracewell X-Array 

0 n12 3n12 

4 

a a 
n 

Figure 7: The X-Array can be considered to be an ‘opened out’ version of the standard Dual Bracewell configuration. The amplitudes 
and phasing of the collectors are preserved. 

Figure 8: (a) The X-Array decouples the nulling baselines (nphase difference) from the resolution baselines (fractional-nphase 
difference). The different phases for the second chop state are indicated in parentheses. (b) Response of the X-Array on the sky 
showing wide and narrow orthogonally intersecting fringes. (c) X-Array response on the sky showing the locus of a planet as the array 
is rotated about the line of sight to the star. 

Figure 9 shows simulated correlation maps for a 2-planet system, for a standard Dual Bracewell design, 95 m long, and 
an X-array with dimensions of 100 m by 22 m. The X-Array has a much smaller point spread function than a dual 
Bracewell of equivalent size. The Full Width to Half Maximum is 12 mas for the X-Array, compared to 30 mas for the 
Dual Bracewell. This is because the 4 resolution baselines have lengths 100 m, 100 m, 102 m and 102 m for this X- 
Array, compared to 3 I m, 3 1 m, 3 I m and 93 m for the Dual Bracewell. The two nulling baselines are 62 m long for the 
Dual Bracewell, compared to 22 m for the X-Array. The additional stellar leakage incurred by the Dual Bracewell leads 
to a doubling of integration times for targets at 15 pc. These and other comparisons are made in Table 1. 

Table I: Comparison of X-Array and standard Dual Bracewell nulling configurations 



a) Standard Dual Bracewell b) X-Array 

-. ,. - . .. c .. .. - . n. . -  .. r _. . .. I - .. r igure Y: comparison 01 raw correlation maps ror tne linear uuai Lnoppea Bracewell conriguration ana me A-Array. Born arrays span 
approximately 100 m, and the grid spacing is 10 milliarcseconds. Two planets are present, with offsets of (+7O mas, 0) and (=15 mas, 
+40 mas) relative to the center. The Dual Bracewell has a synthesized beam diameter of approximately 30 mas, compared to 12 mas 
for the X-Array. 

It is worth noting the connection between the X-Array and the configuration proposed by Velusamy and Beichman7. The 
X-Array consists of two 2-element Bracewell nullers, separated by the resolution baseline, and combined at a central 
beam combiner spacecraft. The Velusamy design uses two 3-element Degenerate Angel Cross nullers instead of the 
Bracewell nullers, for a total of 6 collectors and a central beam combiner spacecraft. 

4. SUMMARY 
This paper presents a generalized error analysis for nulling interferometers. The key points are listed below. 

1. The response of nulling interferometer configurations can be decomposed into a sum over all baselines in the 
array. Results for a single baseline can then be extended to configurations of arbitrary complexity. 

2. It is the systematic error (null stability), not the random error (null depth) that drives most of the requirements 
on the instrument. Detection of an earth-like planet at mid-infrared wavelengths, for the example case 
described, requires that the phase of the signal from each collector is controlled to - 1 millirad (- 1.5 nm at 10 
pm), and the amplitude to - 0.1%. 

Systematic errors are caused by time-varying leakage through the null, due to perturbations in the 
amplitudes, phases and polarization angles of the electric fields from each collector telescope. Stellar 
photons are the dominant source of systematic noise. 
The perturbation analysis is dominated by non-linear, second-order terms, and in particular by 
amplitude-phase cross terms. The disturbance power spectra mix with each other, and perturbations at 
all frequencies, including DC, make an impact. 

a. 

b. 

3. The technique of phase chopping is needed to remove slow drifts in stray light, thermal emission and detector 
gain that can mimic the planet signal. While removing some systematic errors, it has no impact on the dominant 
amplitude-phase cross-terms, and the co-phasing error. There is no phase chop scheme that can remove the 
systematic errors without also removing the planet signal 

The systematic errors rise rapidly at short wavelengths. Since the planet signal is also falling at short 
wavelengths, the instrument has most of its sensitivity at longer wavelengths, and spectroscopy at A .C 

10 pm will be very challenging. 

a. 



b. The impact of the amplitude-phase error on SNR is approximately independent of the distance to the 
target system. The co-phasing error increases with the angular size of the star and becomes dominant 
for nearby systems. 

The work described in this paper was performed at the Jet Propulsion Laboratory, Califomia Institute of Technology, 
under contract with the National Aeronautics and Space Administration. 
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