
Dynamics of Earth Orbiting Formations 

S.R. PloenT D.P. Scharf, F.Y. Hadaegh, and A.B. Acikmese 

Jet Propulsion Laboratory 

California Institute of Technology 

4800 Oak Grove Drive, Pasadena, CA, 91109 

Abstract 

In this paper the equations of motion of a formation consisting of n spacecraft in 

Earth orbit are derived via Lagrange’s equations. The equations of motion of the for- 

mation are developed with respect to both (1) a bound Keplerian reference orbit, and 

(2) a specific spacecraft in the formation. The major orbital perturbations acting on 

a formation in low Earth orbit are also included in the analysis. In contrast to the 

traditional approach based on the balance of linear momentum, the use of Lagrange’s 

equations leads to a high-level matrix derivation of the formation equations of motion. 

The matrix form of the nonlinear motion equations is then linearized about a bound 

Keplerian reference orbit. Next, it is demonstrated that under the assumption of a 

circular reference orbit, the linearized equations of motion reduce to the well-known 

Hill-Clohessy-Wiltshire equations. The resulting linear and nonlinear dynamic equ& 

tions lead to maximal physical insight into the structure of formation dynamics, and 

are ideally suited for use in the design and validation of formation guidance and control 

laws. 
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1 Introduction 

The ability to accurately model the dynamic behavior of separated spacecraft formations 

in orbit around a central body is critical to the success of many planned and future NASA 

missions. For example, the development and validation of high-precision formation guidance 

and control laws will require a spectrum of dynamic models ranging from linearized models 

to models that include all significant formation nonlinearities. Accurate modeling of the 

ambient disturbance environment, especially for formations in the presence of significant 

orbital dynamics, is also of paramount concern in order to predict system performance under 

stringent pointing and maneuvering constraints. 

In this paper the complete nonlinear equations of motion of a formation consisting of n 

point-mass spacecraft about a closed Keplerian reference orbit are derived. The nonlinear 

relative equations of motion of the formation about a given spacecraft are also developed. 

Further, analytical models describing the major perturbing forces acting on an Earth orbiting 

formation are also given. Specifically, the equations of motion of the formation are derived 

using a Lagrangian (i.e., energy-based) approach rather than the standard derivation based 

on the balance of linear momentum. This approach results in a high-level, matrix-based 

derivation of the equations of motion that provides insight into the structure of the dynamic 

behavior of a formation. The resulting non-linear differential equations are then linearized 

about a bound Keplerian (i.e., elliptical) reference orbit. Finally, we demonstrate that under 

the assumption of a circular reference orbit, the linearized equations of motion reduce to the 

Hill-Clohessy-Wiltshire (HCW) equations [4]. 

The resulting nonlinear and linearized forms of the formation equations of motion are 

useful in the design and validation of precision formation guidance and control laws. For 

example, the linearized relative equations of motion of the formation are well-suited for 

use as a control design model. Typically, the disturbance forces acting on the formation 

are ignored in the control design model. Once an appropriate linear control design model 

has been established, the full arsenal of modern control design techniques such as LQR 
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(Linear Quadratic Regulator), LQG (Linear Quadratic Gaussian), or H,  loopshaping can 

then be utilized. However, once the control law has been designed, it must be validated (in 

simulation) with a diflerent, more accurate, model of the formation dynamics. The model 

used for controller validation is called the truth model of the formation. The truth model 

is typically a set of non-linear differential equations that include nonlinear kinematic effects 

as well as all significant perturbations acting on the formation (e.g., central body oblateness 

effect, aerodynamic drag). Moreover, the structure of the nonlinear equations of motion can 

also be used directly to develop nonlinear formation control laws. For example, utilizing the 

nonlinear structure of the equations of motion in the control design can lead to fuel savings in 

certain formation flying applications [17]. Further, the design of optimal (e.g., minimum fuel, 

fuel balancing) guidance laws for collision-free formation reconfigurations will also require 

nonlinear formation models. 

Although there has been a significant amount of research in the area of formation flying 

control [17], the area of formation dynamic modeling has received less attention. Much 

of the work to date in formation flying dynamics has concentrated on the development 

of 3 degree-of-freedom (3 DOF) translational equations of motion by utilizing the balance 

of linear momentum. For example, a derivation of the linearized translational dynamics 

of one spacecraft relative to another spacecraft in a circular orbit (commonly called the 

Hill-Clohessy-Wiltshire equations) based on Newton’s Laws has been addressed by many 

researchers; see e.g., [4], [15]. The assumption of a circular reference orbit in the derivation 

has been relaxed in a number of papers involving formation flying and satellite rendezvous; 

see [1],[2],[3], [6], [9], and [21]. A common characteristic of these papers is that emphasis 

is placed on devel oping solutions to the differential equations governing relative spacecraft 

motion, rather than exposing the internal structure of the equations of motion for guidance 

and control law design and validation. An exception is the paper [18] where the translational 

dynamics of formations in deep space are studied in order to develop insight into the validity 

of utilizing linear dynamic models ( “double integrator models”) for control law design. 
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However, the application of methods of analytical mechanics [7] to the area of formation 

flying modeling has not been extensively studied. In 1161 the equations of motion of a 

formation containing flexible tethers are developed using Lagrange’s equations. In [ 121 the 

effect of JZ oblateness on formation motion is studied using Routhian reduction. Finally, 

in [13], the dynamic properties of the linear and nonlinear relative motion equations are 

investigated using the Hamiltonian structure of the problem. 

The remainder of this paper is organized as follows. First, some preliminary material 

from rotational kinematics is reviewed. Next, the geometry of an Earth orbiting formation 

is established. A complete derivation of the nonlinear equations of motion of the formation 

about a bound Keplerian reference orbit based on Lagrange’s equations is then given. The 

equations of motion of the formation relative to a specific spacecraft are also derived. Next, 

the various orbital disturbances acting on a formation in Earth orbit are described. Ana- 

lytical models of the primary disturbances acting on formations in LEO (Low Earth Orbit) 

are emphasized. The nonlinear equations of motion of the formation are then linearized 

with respect to the reference orbit. The use of the linearized dynamic model for formation 

controller design is then discussed. In the final section, some conclusions and directions for 

further research are presented. 

2 Kinematic Preliminaries 

In this section some basic concepts and notation from rotational kinematics are reviewed; 

see [8] for a more detailed discussion. In the sequel, geometric (or Gibbsian) vectors will 

play an important role. Recall that a geometric vector is a quantity possessing magnitude, 

direction, and obeying the parallelogram law of addition in three dimensional Euclidean point 

space, denoted E3. A geometric vector is visualized as an arrow or directed line segment in 

E3. The distinction between geometric vectors and column matrices (i.e., 3-tuples of real 

numbers) is critical in developing the equations of motion of separated spacecraft formations. 
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Specifically, a vector Q is a geometric object that exists independently of any particular basis 

chosen for E3 while a column matrix of numbers Q = [Q1Q2Q3IT E is the representation 

of a geometric vector with respect to a particular basis. 

A reference frame is a set of three mutually orthonormal vectors (basis vectors) located 

at an arbitrary point in E3. The basis vectors associated with a reference frame can be easily 

manipulated by defining a vectrzx as follows .FA = [Zl 22 &IT. In other words, the elements 

of the vectrix .?A are simply the basis vectors characterizing the given frame of reference. In 

the sequel a reference frame will be denoted as FA and the vectrix associated with the frame 

-+ 

as .FA. 

Once a reference frame FA has been established, a geometric vector can be represented 

uniquely as 

B = Qlzi + Q 2 2 2 + Q 3 2 3  

In the sequel we will require the vectrix operator 0 which is defined such that Q A  = $A 0 0. 
That is, the symbolic notation &A = ,?A 0 should be read “QA is the column matrix whose 

entries are the components of 0 in FA,’. See [8] for further information. 

A fundamental result relating the time rates of change of a geometric vector relative 

to observers attached to different rotating reference frames, denoted .FA and FB, is the 

Transport Theorem: 
A B  

&=Q +A;B x &  (4) 

Here denotes an arbitrary geometric vector, denotes the angular velocity of FB in 
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FA, and 

A 
Q' = Q & + Q 2 Z 2 + Q 3 Z 3  

B . +  Q' E Qi& +Q$2+Q$b3 

A B 
The notation Q' (resp. Q') can be interpreted physically as the rate of change of Q' as 

seen by an observer rigidly k e d  to FA (resp. FB). As a consequence, if Q' is a vector fixed 
A, A B 

in FA (resp. FB) then G= 6 (resp. Q'= 6). The notation Q is not entirely standard: See 

[ lo]  for a discussion on alternate notation. 

The transport formula (4) can also be expressed in the equivalent form 

A B  

Q=Q' +["a"]Q' (7) 

+ 
where [Z] denotes the skew-symmetric cross-product operator [G]b = a' x g. It can be shown 

that the cross-product operator takes the form of a skew-symmetric matrix in a specific 

coordinate system. Specifically, the skew-symmetric matrix [a] E %3x3 associated with the 

column vector [a1 a 2  a 3 I T  E X3'l is given by 

3 Formation Dynamics: Nonlinear Equations of Mo- 

tion 

3.1 Orbital Geometry 

In this section we consider a formation of n spacecraft located in Earth orbit where each 

spacecraft is modeled as a point-mass. An inertial frame of reference FN, called the geocentric 
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inertial frame, is attached to the center of the Earth and described by the vectrix .?N = 

[Zl Zz jig]? The unit vector 61 points toward the vernal equinox, Z3 points toward the 

geographic North Pole, and 5 2  completes the right-handed triad. The motion of the formation 

is described with respect to a bound, pure-Keplerian reference orbit (See Figure 1). In 

particular, the reference orbit is a solution of the following differential equation 

where p = 3.986 x lo5 [y] denotes the gravitational parameter of the Earth, and 11 . 1 )  
denotes the Euclidian norm on E3. Alternately, the reference orbit can be described by 

the orbital elements a (semi-major axis), e (eccentricity), i (inclination), fi (longitude of the 

ascending node), LZI (argument of perigee), v (true anomaly), and T (time of perigee passage). 

See Figure 1. 

The origin of the reference orbit frame FO can be chosen to be any point of interest 

with respect to the formation. Here we will assume that the origin of the reference orbit 

corresponds to the formation center-of-mass. 

i 

:craft j 

REFERENCE 
ORBIT 

Figure 1: Orbital Geometry 
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The reference orbit defines an orbiting reference frame FO as shown in Figure 1. The 

orbital frame serves as the primary frame to analyze the dynamics of the formation. The unit 

vector 51 points anti-nadir, the unit vector 53 points in the direction of the orbit normal, and 

5 2  completes the right-handed triad. Note that G.2 is not in general tangent to the reference 

orbit. The orientation of the orbital frame FO relative to the inertial frame FN is described 

by the direction-cosine matrix 

where the column matrices oi = ?N 0 5i E X3’I and 

5 2  = 5 3  x 51 

N 
See Figure 1. Here Go =2, denotes the absolute velocity of the origin of Fo. Note that in 

terms of orbital elements the direction-cosine matrix LNO can also be expressed as 

where L,(.) and Ly(-) denote principal rotation matrices about the direction indicated by 

the subscript. In the sequel the reference orbit will be treated as a prescribed motion. 

3.2 Derivation of the Equations of Motion 

From Figure 1, the absolute position of the ith spacecraft is given by 

-+ -. 
Ri = R, + & 
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Differentiating, the absolute velocity of the ith spacecraft is 

Applying the transport formula between Fo and FN yields 

where 3 =N GB denotes the angular velocity of the orbital frame in N. As a result, the 

inertial velocity (17) resolved in FO is given by: 

From Figure 1 it follows that the geometric vectors appearing in (19) have the following 

representation in Fo: 

Also, note that due to the assumption of pure Keplerian motion of the reference orbit, the 

angular velocity of the orbital frame w' points along the orbit normal G3. However, the 

magnitude of 3, denoted w,, is time-varying. Substituting (20)-(24) into (19) and expanding 
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yields 

where 

and 
T 

b = [k, Row, 01 E X3‘l 

Here [w] E X 3 x 3  denotes the skew-symmetric matrix associated with the column vector w 

given in (28). 

In order to derive the equations of motion of the formation via Lagrange’s equations, a 

set of admissible generalized coordinates are required. The generalized coordinates for the 

ith spacecraft are chosen as 

Note that qi are the components of & in the rotatingfrume 30,  i.e., qi E .?o*$. As a result, 

the relationship (25) takes the following form 

where ci = [w]qi + b. 

10 



In order to develop the equations of motion of the formation the following quantities are 

required: 

where mi denotes the mass of the ith spacecraft, diag[-] denotes a block diagonal matrix 

structure, and I denotes the 3 x 3 identity matrix. Further, the following operator has been 

defined 

COl[Vl, v2, 213] * * ] up] = 

where vi E W i x  and m = E!='=, ni. 

The kinetic energy of the formation is given by the following quadratic form 

1 .  
T = - R T M R  

2 

Note that M is a constant matrix. 

Upon stacking the velocities of each spacecraft (33) and utilizing equations (34)-(39) it 

follows that 

R = ( j + c  (42) 
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where 

c = R q + p  (43) 

Here c = col[cl, c2, * * ,  c,] E 9?3nx1. 

Substituting (42) into the kinetic energy (41) and expanding yields 

1 1 
2 

T ( q ,  q )  = -qTMq + cTMq + - c ~ M c  2 

where c = c(q)  is given by (43). 

The potential energy of the formation is given by 

where 

(44) 

(45) 

(46) 

1 + 
and R, = llRill = ( ( x i  + R,)2 + yp + zp)'. 

The equations of motion of the Earth orbiting formation will now be developed via 

Lagrange's equations: 

(47) d 
d t  
-T4 - Tq = Q - U, 

where 
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The vector of generalized forces is given by 

where Qi = [Qxi Qyi QJT E 9?3x1 and 

Here 

resultant force acting on the j t h  spacecraft of the formation. From the definitions of 

Gi given in equations (15) and (23) respectively, it follows that 

denotes the standard dot product on E3. The vector Fj in (52)-(54) denotes the 

and 

We now explicitly calculate the gradients appearing in Lagrage's equations (47). To this 

end, the gradient of the kinetic energy (44) with respect to the generalized velocities is 

Further, 
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The gradient of T with respect to the generalized coordinates is 

where the Jacobian matrix E !J?3nx3n is given by [Elij = 8. From (43) it follows that 

dC 
aq 
_ -  - Q  

As a result, 

Tq = RTMq+RTMc 

= -MR(G+c) 

Note that R = -aT and the fact that R and M commute, i.e., RM = M a ,  have been used 

in the above derivation. 

Upon substituting (59) and (63) into Lagrange’s equations (47) and recalling the defi- 

nition of c given in (43), the equations of motion of the formation relative to the reference 

orbit are 

Mq + 2MR4 + ( M a 2  + M h ) q  + M(,b + Rp) = Q - Uq (64) 

where the potential energy U ( q )  is given by (45). 

It immediately follows from expanding (64) that the nonlinear equations of motion of the 

ith spacecraft relative to the reference orbit are given by 

The equations of motion (65) are non-linear due to the gradient of the potential and the 

state dependence of the generalized force vector. Note that the gyroscopic coupling terms 

(arising from expressing the equations of motion of the formation relative to the rotating 
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frame Fo) are characterized in explicit matrix form in equation (65). The generalized force 

vector Qi contains all disturbance forces acting on the formation and will be discussed in 

detail in the next section. 

Alternately, the nonlinear equations of motion of the formation can be expressed in terms 

of the position of spacecraft j relative to spacecraft i. See Figure 1. To this end, we define 

the vector &j  = - 6 from spacecraft i to spacecraft j. Resolving & in .Fo yields 

Subtracting (65) from the equations of motion of spacecraft j ,  

and rearranging yields the equation of motion of spacecraft j relative to  spacecraft i: 

Up to this stage of the analysis we have not made any assumptions regarding the relative 

magnitudes of the vectors gi and 6. As a result, (65) provides the full non-linear dynamics 

of the formation relative to a closed Keplerian reference orbit, and (70) completely describes 

the dynamics of the formation relative to the ith spacecraft. Equations (65) or (70) provide 

a set of nonlinear differential equations for designing nonlinear control laws and developing 

guidance laws for formation reconfigurations. Moreover, (65) or (70) are also useful as truth 

models for dynamical studies of open-loop formation behavior and control law validation. 

By the truth model we mean a dynamic model that captures the full non-linear open-loop 

behavior of the formation. A truth model has the property that the dynamic response of 
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the system predicted by the truth model will be in close agreement with the actual on-orbit 

response of the system over a specified time horizon. Equations (65) and (70) are one of the 

main results of this paper. 

4 Formation Dynamics: Orbital Disturbances 

In this section we discuss the disturbances acting on a formation in LEO. The ability to 

accurately model the orbital perturbations is critical in precision formation flying guidance 

and control applications. However, predicting the effect of orbital disturbances on a forma- 

tion is a challenging problem since that disturbances act differently on different parts of the 

formation. For a comprehensive discussion of the ambient disturbance environment in Earth 

orbit see [14] or [20]. 

A significant disturbance acting on formations in LEO is due to higher-order harmonics 

of the Earth's gravitational field. Specifically, the Earth is not a spherically symmetric body, 

but is bulged at the equator and flattened at the poles. For our purposes, the potential field 

external to an oblate Earth can be modeled as: 

k pmi Oo Re U(R,8) --[I - (-) Jkpi(COS8)] R k=2 R 

where Re = 6378.12[km] is the equatorial radius of the Earth, R denotes the magnitude of 

the position vector R' corresponding to an arbitrary point in space external to the Earth, 8 

denotes the polar angle between the n'3 axis of .FN and 2, J k  is the kth zonal harmonic of 

the Earth, and E':(.) denotes a Legendre polynomial. Note that the first term in the series 

expansion is given by equation (46). It is well known that J2 is the dominant harmonic in 

the expansion (71). As a result, it can be shown after some manipulation that the force on 

the ith spacecraft due to J2 oblateness is 
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where 

Here J2 = 1082.63 x is the first zonal harmonic of the Earth, Ri is the magnitude of I&, 

and Zi = 2. Equation (72) can also be modified to include higher-order zonal harmonics as 

well as tesseral and sectorial harmonics. See [14] or [19] for additional information. 

- 

For formations in LEO, the interaction between the spacecraft and the particles of the 

atmosphere results in a significant deviation from pure Keplerian motion. The aerodynamic 

forces acting on the spacecraft are extremely complicated and depend on the geometry 

and motion of the spacecraft, as well as on the density, temperature, and composition of 

the atmosphere. As a result, high-fidelity modeling of the applied aerodynamic loads is a 

difficult task. However, the following formula, based on empirical observations, provides a 

useful approximation to the aerodynamic drag acting on the ith spacecraft 

Here Cdi is the drag coefficient' associated with the ith spacecraft, Ai denotes the effective 

cross-sectional area of the the ith spacecraft, and p = p(Ri, t )  is the atmospheric density in 

the vicinity of spacecraft i. Further, ci denotes of the velocity of the spacecraft relative to 

the atmosphere of the Earth and is given by 

N 
VTi denotes the magnitude of ci, 
0.7292 x 

=& is the absolute velocity of spacecraft i, and Gp = 

denotes the angular velocity of the Earth. Equation (76) assumes that 

'Typical values of C d  for non-spherical, convex-shaped spacecraft range from 2.0 to 2.3. 
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the atmosphere does not have any velocity relative to the rotating Earth. 

The gravitational perturbations due to the Moon and Sun (modeled as point masses) are 

also important to characterize. To this end, the perturbation on the ith spacecraft of the 

formation due to j = 1 ,2 , .  . . , N gravitationally interacting bodies (See Figure 1) is given by 

where pj denotes the gravitational parameter of the j t h  perturbing body, 6j denotes the vec- 

tor from spacecraft i to perturbing body j ,  and Fj is the vector from the Earth to perturbing 

body j .  Note from Figure 1 that cj = ??j - &. 
+ 

Collecting the above results, the resultant force acting on the ith spacecraft of the forma- 

tion in LEO is given by 

f l =  j?; + 9; + @ + + F; (78) 

where @f,p, and @ are as defined above, @f denotes the applied control forces due to 

thrusters on the Ith spacecraft, and E denotes the resultant of all other perturbations acting 

on spacecraft i such as disturbances due to direct solar radiation pressure, disturbances due 

to indirect solar radiation pressure, higher order zonal harmonics of the Earth’s potential 

field, the Earth’s geomagnetic field, tidal effects, thermal inputs, and relativistic corrections. 

Once the resultant force E has been determined, the generalized force vector appearing 

on the right-hand side of the equations of motion (65) or (70) is computed by projecting 

@i into FO as shown in equations (55)-(57). Together, equations (45), (46), (51), (55)-(57), 

(65), (70), (78), and supporting equations are a description of the full nonlinear dynamics 

of LEO formations. In the next section we develop simplified equations of motion that can 

be used for formation guidance and control law design. 
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5 Formation Dynamics: Linearized Equations of Mo- 

tion 

In this section the equations of motion derived in the previous sections will be linearized 

about the bound Keplerian reference orbit. Our goal is to develop linear models that are 

suitable for the design of formation linear control or guidance laws. The linearized model 

used for formation control design is called the control design model. Typically, the control 

design model does not include orbital perturbations. Specifically, we will assume that the 

only external force retained in the control design model is the force @ due to thrusters. 

5.1 Reference Orbit Relative Equations of Mot ion 

In order to develop a suitable linear model for control design the potential function U ( q )  

appearing in equation (64) will be linearized about the reference orbit. Expanding the 

potential function in a Taylor series about the reference orbit q = 0 E 9?3nx1 yields 

where 17(9) -+ 0 as 11q112 --$ 0 and 11 . ( ( 2  denotes the standard 2-norm. Here 
llQ112 

where Uni (0) and Uqiqi (0) denote the gradient and gravity-gradient matrix of the potential 

function (with respect to qi E X3’l) evaluated at qi = [0 0 O I T ,  respectively. 

Taking the gradient of (79) and dropping quadratic and higher-order terms yields 
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Note that (82) is a valid approximation under the condition that 11ql12 is small. Substituting 

(82) into (64) and rearranging we obtain the equations of motion of the formation linearized 

about the reference orbit: 

q + 2R4. + (M-'Uqq(0) + R2 + fi)q + (a + RP + M-lUq(O))  = M - l Q  (83) 

where 

3n x 3n 1 1 1 
ml m2 m n  

A4-l = diag[-1, -1,. - a ,  -I] E R (84) 

It immediately follows from expanding (83) that the linearized equations of motion of 

the ith spacecraft relative to the reference orbit are 

Recall that qi = [xi yi ziIT E R3'l and Qi = [Qzi Qyi Q,IT E 

equation (85) can be alternately expressed using the matrix identity 

The term [wI2 in 

(86) 
2 [w] = WWT - (WTW)I 

The terms involving W and b are found from differentiating equations (28) and (29) 

and 
T b = [iio Rowo + Roilo 01 E R 3 X 1  

The gradient of the potential function is given by 

20 



where from (46): 

- - 
a2u a2u a2u 
ZqayiaIizzFiE 

uqiqi = - a2u azu a 
axiayi aziayi 
-- a2u a2u a2u 
axiazi ayiazi - 

Upon evaluating Uqi at qi = [0 0 0IT we find 

+ 
where R, = ~ ~ R o ~ ~ .  

The gravity-gradient matrix associated with the potential function is given by 

where 

and 

(94)  
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Note that due to the equality of mixed partial derivatives UQiQi is a symmetric matrix. 

Evaluating UpiQi at qi = [0 0 0IT yields 

We now express the reference orbit relative equations of motion of the formation explicitly 

in terms of scalar components. Upon expanding (85) it can be shown that 

. 2PXi 2 2 P  Q Z i  

P - Qyi 

R: mi 

xi - 2w,yi - - - W ,  xi -Ljoyi + R, - Row, + - = - 
R: R2 mi 

yi + 2w,xi + - yi - w,zyi + 2w0R, + WORO = 

Note that R, and w, are considered prescribed time-varying functions in the above equations. 

A useful control design model for many Earth orbiting formation flying applications 

results from assuming that the reference orbit in (105)-(107) is circular. In the case of a 

circular reference orbit, the angular-rate of the orbital frame (called the mean motion) is 
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constant and satisfies the relationship 

2 P  w, = - E 

Further A, = 0, and &, = 0. 

As a result, under the circular reference orbit assumption the linearized equations of 

motion are given by 

(109) 

(110) 

2 QZi x i  - 2w,yi - 3w, xi = - 

Qyi iji +2woxa = - 

mi 

mi 

Equations (log)-( 11 1) are commonly called the Hill-Clohessy-Wiltshire (HCW) equations 

141. 

5.2 Spacecraft Relative Equations of Mot ion 

The linearized equations of motion of the formation can also be expressed in terms of the 

position of spacecraft j relative to spacecraft i. The linearized equations of motion for 

spacecraft j about the reference orbit are given by 

Subtracting the equations of motion of spacecraft i from the equation of motion of spacecraft 

j and rearranging results in 
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Under the circular reference orbit assumption the gravity-gradient matrix is given by 

-2 0 0 

0 1 0  

0 0 1  

Although the linearized equations of motion (109)-(111) and (113) are utilized in a variety 

of formation flying scenarios [17], it is important to note that formation control laws based on 

linear control design models also have limitations. For example, in formation flying mission 

with long durations, large inter-spacecraft separations (e.g., long baseline optical interfer- 

ometry), or significant reference orbital eccentricity, controllers designed via the linearized 

HCW equations may result in excessive fuel consumption [9],[17]. For longer-duration mis- 

sions with non-circular orbital geometry, the use of non-linear control-design models becomes 

increasingly important. 

6 Conclusions 

In this paper, a complete matrix-based derivation via Lagrange's equations of the nonlinear 

equations of motion of a formation in LEO was given. Analytical models of the major 

disturbances acting on formations in LEO were also developed. The nonlinear equations of 

motion of the formation were then linearized with respect to an elliptical reference orbit. 

The resulting linear and nonlinear equations of motion are well-suited for use in the design 

and validation of formation guidance and control laws. 

In future research, the impact of various curvilinear coordinate systems (e.g. orbital 

elements, spherical coordinates) on the structure of the open and closed-loop equations of 

motion will be addressed. The goal is then to select generalized coordinates that are optimal 

(e.g., as dictated by the formation geometry, sensor geometry/topology, control performance 
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requirements, etc.) for various formation flying scenarios, or various phases within a single 

formation flying mission. For example, the development of advanced control architectures 

and nonlinear formation control laws will depend critically on both the (1) choice of general- 

ized coordinates, and (2) the corresponding analytical structure of the equations of motion. 
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