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Abstract 
The Space Interferometry Mission (SIM), scheduled for launch in early 2010, is an optical interfer- 

ometer that will perform narrow angle and global wide angle astrometry with unprecedented accuracy, 
providing differential position accuracies of luas, and 4uas global accuracies in position, proper mo- 
tion and parallax. SIM astrometric measurements are synthesized from pathlength delay measurements 
provided by three Michelson-type, white light interferometers. Two of the interferometers are used for 
making precise measurements of variations in the spacecraft attitude, while the third interferometer 
performs the science measurement. The ultimate performance of SIM relies on a combination of precise 
fringe measurements of the interfered starlight with picometer class relative distance measurements made 
between a set of fiducials that define the interferometer baseline vectors. The focus of the present paper 
is on the development and analysis of algorithms for accurate white light fringe estimation, and on the 
preliminary validation of these algorithms on the MicreArcsecond Testbed (MAM). 

1 The Two Image Monochromatic Interferometric Model 
Consider an interferometer in which the total photon flux a t  the two outputs of the combiner is such that 
it generates a current 210 in the detector. This total photon flux is split between the two combiner outputs 
in a manner which depends on the total delay, so that in a time interval r the number of photoelectrons on 
the two sides of the combiner is 

N~ = ~ ~ ( 1  f vcose) (1) 
where 8 = is the phase corresponding to the total delay D,  V is the visibility, X is the wavelength, and 
NO G 107. Now suppose we apply a triangular phase modulation, so that e(t) = u(t) + 4, where q5 is the 
(astrometric) phase being measured and u(t) is the phase modulation. (For now we assume q5 is constant 
during this measurement.) Then the number of electrons detected during interval i ,  i.e., during the ith dither 
step of n dither steps, is 

( 2 )  N*i = -(1 NO fV,cos(uz +#)) n 
where u k  = ( I C  - 1)A + A / 2  - n A / 2 ,  the effective visibility V, is 

(3) 
A 
2 

sinz/z ,  A = 27rs/(nX), and s is the length of the modulation stroke. The unknown quantities in 

Let v denote the 3-vector with components v = (No, NoV,, 4), and define the mapping X : R3 ?r R3 

V, Vsinc( -), 

sinc(z) 
(3) are No, V,, and 4. 

bY 
1 

X ( v )  = -(v1,v2 n cos(v3),v~sin(v3)). (4) 
Next define the n x 3 matrices A+ and A _ ,  

I -cos(u1) sin(u1) 

1 -cos(u,) sin(u,) 
1 ,  A - = [ :  ; (5) 



The n-dither-step photon counts from the “bright” and “dark” fringes are, respectively, 

N& = A d ( V ) 7  

corresponding to  the: respective intensity models in each dither step 

No 
n N*z = -{1 f v, cos(u2 + qq}. 

Representative images are shown in the figure below. 
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Figure 1. Two-Port Image 

Define A as the concatenation of the matrices A+ and A _ :  

A =  [::I 7 

and let N denote the: concatenation of the vectors N k .  Then the nominal monochromatic model is 

Y = AX(V) + v ,  (9) 

where y is the observed vector of photoelectron counts and 7 is a zero mean random vector capturing various 
errors associated with detection process. 

2 Phase estimators. 
Since X is invertible, a broad class of estimators for the unknown parameter vector w has the general form 

2, = X?(Ky) ,  (10) 



where K is any 3 x n matrix with K A  = I. For example the (unweighted) nonlinear least squares problem 

min Iy - AX(v)I2 
21 (11) 

leads to an estimator in this class with K = At (the pseudoinverse of A).  
The presence of the noise vector 7 in (10) produces an error in the estimate of u. After some analysis 

and algebraic manipulations the variance in the least squares delay estimate can be shown t o  have the final 
form 

where S is the ratio of the shot noise to the total noise 

and the parameter f is defined as 

The ratio under the radical in (12) illuminates the delay error as a function of the number of temporal 
bins and the ratio between the stroke length and wavelength. For example if y = 1, corresponding to equal 
wavelength and stroke length, f = 0 so that the ratio is one and the error is independent of the delay. In 
general this is not true and the error is a function of the phase offset. One simple conclusion drawn from (12) 
is to  choose a stroke length to  maximize 1 - f /n over the operating wavelengths of the interferometer. The 
figure below compares the performance of three designs with respect to this function over a 400nm-900nm 
bandwidth. 
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Figure 2. Comparison of performance for  three estimator design parameters 



A similar computation for the error variance can be made for the minimum variance estimate. This 
estimate is obtained from the least squares problem (11) weighted by the inverse of measurement covariance 
matrix. The corresponding error is 

Figure 3 plots the ratio ols/gmve as a function of the product V S  for an 8 dither step design. Observe that 
as V S  + 0, this ratio goes to  1, while as V S  -+ 1 and n + 00, the ratio tends to 2/(1 - sinc(27r~)). For 
nominal values of visibility, shot noise, and read noise for the SIM guide interferometers (VS = .38), there 
is a small (2%) advantage in using the minimum variance solution versus the least squares solution. 

Figure 3. Ratio of u ~ ~ / ~ , , , , ,  as a function of V S  

3 ImDrovine: estimates. 
Several factors can degrade the performance of monochromatic estimators. For SIM applications these most 
notably include low SNR for the guide interferometers (because they operate at lKhz), and vibrations or 
imperfections in the modulation. On MAM the most serious problem is due to vibration, which essentially 
produces a change in the phase while it is being estimated. Because phase estimation algorithms typically 
model the phase as having a constant value over the measurement period, an error results in the estimate. In 
the frequency domain the error in the phase estimate due to vibrations can be characterized by the following 
“transfer function” (shown for the least squares eight temporal bin algorithm) 



An amplitude plot of this function is shown in the figure below. Note the magnitude of the peaks, especially 
around twice the modulation frequency. 
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Figure 4.  Phase estimation e m r  as funct ion of ratio of vibration frequency and phase update rate 

The dominant errors of this kind for the SIM guide interferometers are changes in the internal pathlength 
due to  vibration of the optical train and modulator non-idealities. However, these changes are monitored 
by the internal metrology system. A correction of the phase estimate based on metrology measurements is 
outlined below. 

The model including the pathlength change ~ ( z )  during the phase measurement is 

x i + A / 2  

N A ~  = J lo{l  f Vcos(kz + kr(z))}&, 
x i  - A / 2  

where A = s /n  and r(x) is the change in pathlength during fringe estimation that we are trying to compensate 
for using metrology measurements. The quantity we wish to estimate is F ,  the average value of T over the 
fringe estimation period (or the phasor quantities associated with this mean pathlength difference). To this 
end let 6(z) = ~ ( z )  - F and expand the integrand above about kz + k f .  Retaining only terms that are linear 
in 6(z) leads to  the rnodel 

where the i th row of the matrix B* is 

N+ = A*X(V)  - B*X(V),  (18) 

Concatenating the f quantities as before yields 

y = A X ( V )  - B X ( V )  + 7. (20) 

The matrix A is constant and independent of the variation 6(z), while B is a function of the variation.*Let 
K be any matrix such that K A  = I ,  i.e. K is an unbiased estimator of X ( v )  (assuming B = 0.) Let X ( v )  
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denote the nominal estimate of X without the measurement matrix B. Then the updated estimate using 
the measurement is obtained as (to first order approximation) 

- 

X+(v) = X ( v )  + KBX(v) .  (21) 

Hence the sought after perturbation is simply KBX(v) .  

with the assumption that the metrology measurements are sampled a t  the camera rate: 
Implementing this update depends on how B is approximated. Next we will perform this approximation 

6(z)&, i = 1 ,..., n. 
6 .  ' -  - A JxiiAf2 xi-A/2  

Thus we can think of the n measurements made by metrology during the period of a single fringe measurement 

Given the measurement vector there is no unique way of reconstructing the function that produced it. 
However, it can be shown that defining m-l as the mapping that takes the measurement vector (61, ..., bn) 
to the step function 8 that has the value Si on the interval zi - A/2 5 x 5 xi + A/2 is optimal in a certain 
sense. In this case we obtain the implementation 

B&i = * [ 0 2&sin(Ak/2) sin(kxi) 2 4  sin(Ak/2) cos(kxi)] . (24) 

This method for correcting phasors was applied to  MAM testbed data. MAM experiences relatively large 
vibrations in a frequency regime near the sampling frequency. The figure below contains plots of the Allan 
Variance of the error for three cases: (i) no correction for vibration data, (ii) a full update of the A matrix 
using metrology (this entails recomputing the pseudoinverse with each set of metrology measurements), 
and (iii) the phasor correction algorithm above. As can be seen the two methods that use metrology data 
outperform the white light measurement scheme without correction quite significantly below 1%. 
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Figwe 5. Vibration correction methods applied to MAM data. 



An alternative to the phasorlphase correction method above, that seeks to reduce the error with each 
fringe measurement, is to reduce the average error over an ensemble of measurements. This latter approach 
is actually more aligned with the relevant astrometric metrics for SIM fringe estimation performance and 
may offer potential advantages as it has the capability to  selectively remove the peak sensitivities in Figure 
4. This work is ongoing. 

4 Concluding remarks. 
Precision white light interferometry is an essential technology for the success of the Space Interferometry 
Mission and presents many unique challenges. This paper has treated in a unified way the most pertinent 
aspects of quasi-monochromatic light fringe estimation in the anticipated SIM environment wherein errors 
due to low light levels, vibration sources, and non-ideal phase modulator behavior compromise interfer- 
ometer performance. The applicability of the methods developed were demonstrated through analysis and 
experimental validaition on the MicroArcSecond Metrology Testbed. The next challenge in white light fringe 
estimation is to  extend these techniques to the non-monochromatic problem. 
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