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ABSTRACT

Detecting water hazards for autonomous, off-road navigation of unmanned ground vehicles is a largely unexplored
problem. In this paper, we catalog environmental variables that affect the difficulty of this problem, including day vs.
night operation, whether the water reflects sky or other terrain features, the size of the water body, and other factors. We
briefly survey sensors that are applicable to detecting water hazards in each of these conditions. We then present
analyses and results for water detection for four specific sensor cases: (1) wsing color image classification to recognize
sky reflections in water during the day, (2) using ladar to detect the presence of water boedies and to measure their depth,
(3) using short-wave infrared (SWIR) imagery to detect water bodies, as well as snow and ice, and (4) using mid-wave
infrared (MWIR) imagery to recognize water bodies at night. For color imagery, we demonstrate solid results with a
classifier that runs at nearly video rate on a 433 MHz processor. For ladar, we present a detailed propagation analysis
that shows the limits of water body detection and depth estimation as a function of lookahead distance, water depth, and
ladar wavelength. For SWIR and MWIR, we present sample imagery from a variety of data collections that illustrate the
potential of these sensors. These results demonstrate significant progress on this problem,

1. INTRODUCTION

Perception systems for autonomous navigation of unmanned ground vehicles (UGVs) must detect all manner of
potential navigation hazards. Until quite recently, UGV perception research had focused largely on perception of 3-D
terrain geometry with range sensors [1], perception of roads [2], and to 2 lesser degree on perceiving other traffic [3].
Research effort is now growing on recognizing vegetation to improve the efficiency of off-road navigation [4,5].
However, there still has been very little work on detecting bodies of water that could be navigation hazards or on
estimating the depth of potential water hazards. This paper presents first results on this problem, using a variety of
sensors including color imagery, ladar, short-wave infrared imagery, and thermal imagery.

We start by cataloging environmental variables that affect the difficulty of the water detection problem and by
distinguishing conditions under which different sensors apply. The first variable is day versus night operation. Daylight
obviously enables the use of reflected solar illumination, whereas night operation requires thermal imagery or active
sensors, particularly ladar. A second variable is whether the body of water reflects the sky or other aspects of the terrain,
such as trees, hills, or buildings. As we will show, water reflecting the sky during the day is a relatively easy case. At the
other extreme, bodies of water completely roofed over with tree canopy may be particularly difficult. A third variable is
the size of the water body; this matters because size will affect the thermal contrast between the water body and
surrounding terrain, which maiters for night operation. Other variables include surface wave state, water depth, water
turbidity, and presence or absence of scum or other material on the water surface. Among other consequences, these
variables affect the ability to measure water depth by optical means.

A wide variety of sensors are applicable to this problem. During the day, color image classification can be used to
recognize water by its reflection of the sky; in off-road, open terrain, this is a fairly reliable, easy-to-compute signature.
When still water reflects other structure, it may be possible to recognize the mirror-image structure of the scene.
Moreover, stereo vision often will match on the reflections and give range to the reflected objects. This will produce
anomalously large range measurements, which can be interpreted to reveal water or at least suspicious terrain of some
kind. The robotics research community has recognized for some time that ladar tends not to give returns from water
bodies and that this might be used to detect water bodies; however, this phenomenon has not been analyzed in detail.
Our exploration of ladar/water phenomenology pointed out two other possibilities: (1) appropriate ladar wavelengths
might enable sensing the depth of water bodies and (2) passive imaging at appropriate near-infrared (NIR) or shori-wave
infrared (SWIR) wavelengths may reveal water hazards due to the strong absorption of light at those wavelengths. SWIR
is also applicable to detecting snow and ice for the same reason. Thermal infrared imagery is applicable becausc large
bodies of water will generally be cooler than the surrounding terrain during the day and warmer at night; this is
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especially relevant at night, when visible and SWIR signatures are unavailable. Finally, polarization of reflections from
water is a well-known phenomenon in everyday life and has potential use for robotics. This will be complicated by the
fact that light incident on water will already be partly polarized in context-dependent ways. Skylight is polarized as a
function of the sun position and the clarity of the atmosphere [6, 7]. Light that reflects one more times off other terrain
structure before hitting the water may also be polarized, potentially in randomly varying orientations.

Our work on this problem has progressed from the most common sensors and environmental conditions to less
common sensors and conditions, In section 2, we present relatively mature results for day-time water detection with
color imagery, including a discussion of how to use range data from stereo to augment color and how to interpolate
range data from around the edge of the water bady to place it in an onboard, local map. This has all been implemented in
real-time on a robotic vehicle. In section 3, we present an in-depth analysis of ladar propagation for detecting water and
sensing water depth; we have not yet incorporated this analysis into an onboard perception system. Section 4 explores
the possibility of using SWIR attenuation for detecting water, snow, and ice. The results are very promising for snow
and ice; for water, the technique works for relatively low angles of incidence, but surface reflections dominate at high
angles of incidence. Section 5 uses imagery from 24-hour mid-wave thermal infrared (MWIR) observations of a
reservoir to illustrate the potential for using thermal infrared tmagery for water detection at night. Initial results are
promising, but more work is needed to complete a robust algorithm. Section 6 summarizes what aspects of the overall
water detection problem are now reasonably well solved and where open problems remain.

2. COLOR IMAGERY

In our experience, for many, if not most off-road conditions, the reflections of sky in water are casily discriminated
from other terrain by their color and brightness, regardless of whether the sky is clear, partly cloudy, or completely
overcast and regardless of the surface wave state of the water. We demonstrate this in section 2.1. After water bodies are
detected in an image, they must still be placed in a local map to be useful for route planning; however, currently
available sensors do not provide range data to the water surface itself, so this must be inferred from range data around
the boundary of the water body. Section 2.2 shows initial results from a simple algorithm for interpolating range over the
surface of a water body. When other terrain structure is reflected in the water surface, it is difficult to recognize this with
coler alone. In section 2.3, we show that stereo can produce range data to such reflections and suggest how to use such
range data to correctly label the reflections as water.

2.1 Detecting SKy Reflections

Figure 1 shows six images from a data collection obtained under the Army Reésearch Lab “Demo III” program at
Fort Indiantown Gap, PA, that include a mixture of off-road terrain and water bodies. We used these images to evaluate
the brightness [I = (R+G+B)/3] and color saturation [1- min(R,G,B)/I] of the terrain, water, and sky for manually
segmented images; Table 1 shows the resulting means and standard deviations of these regions. In many of these images,
the sky fully saturates the dynamic range of the imagery, which is why the sky mean brightness is so close to 255 and the
standard deviation is so low. In our experience, it is common for sky to saturate the dynamic range of outdoor imagery.
Note that the sky brightness nevertheless is still two and half times higher than the mean brightness of the terrain. The
average brightness of the water, where it reflects the sky, is mid-way between that of the sky and the terrain.

Under the Demo III program, we had already developed a color image classifier based on supervised classification
with a mixture of Gaussians mode! that runs at 40 ms/frame on a 433 MHz PowerPC; therefore, the simplest and most
uniform approach for us to exploit the results in Table 1 was to train this classifier on water regions in RGB color space.
We tested this under the DARPA Perceptor program with a 24-hour image sequence collected at the Chatfield Reservoir
in Denver. Sky conditions for this data set ranged from partly cloudy to completely overcast; water surface conditions
ranged from very still to compietely rippled. Figure 2 shows results for one case of still water and one case of rippled
water. For still water, the classifier correctly labelled essentially all pixels that reflected the sky, but labelled pixels
reflecting vegetation as vegetation. For rippled water, essentially all pixels that were water were correctly labelled. At
the time this data was processed, we were not concerned about correctly labeling sky regions as such, so there is some
misclassification of sky as water; however, this can be corrected easily by using knowledge of the camera attitude to find
the horizon line and to correct the labels of pixels above the horizon.



Figure 1: Images from Fort Indiantown Gap used for ciass statistics in Table 1.

B

Brightness mean Brightness std. dev. Saturation mean Saturaticn std. dev.
Sky 2534 4.0 0.0067 0.014
Water 176.0 31.6 0.21 0.091
Rest of image 106.2 27.0 0.29 0.10

Table 1: Brightness and color saturation region statistics for mmagery in Figure 1.

Figure 2: Color classification results for rippled (left) and still (right) water, from a sequence of images coilected every 10-15
minutes over a 24 hour period at the Chatfield Reservoir in Denver. White: water; brown: soil; green: vegetation; blue: other. In the

rippled case, all of the water is correctly labelled. In the still case, water reflecting the sky is correctly labelled, but water reflecting
trees is labelled as vegetation,

2.2 Placing Water Bodies in the Map

To place water regions in the onboard map, we interpolate range data over the water from range data around its
boundaries. This is subject to potential elevation errors if the water edge is occluded by raised objects, such as the bushes
in Figure 2. The elevations of border pixels can be analyzed in a variety of ways to attempt to overcome this problem;
for example, by taking the minimum elevation over all pixels bordering the bottom edge of the water region in the image
or by more sophisticated analysis of the histogram of border elevations. Once an elevation is determined for the water
surface, it is straightforward to interpolate range data for each pixel up each column of the image over the whole water

region, starting at the bottom of the water region in each column. Figure 3 shows results of such interpolation for a still
water case.




Figure 3: Results of interpolating range data for the water body Figure 4: Pond of still water with stereo matching on the
from Figure 2. Top: false color elevation plot, viewed from  reflections. Upper left: false color range image; reddish is
above; camera vantage point was from the left. Reddish-brown  closest, green is furthest. Reddish portion is the near shore;
is lowest; yellow, green, blue are progressively higher yellow portion contains the far shore and its reflection. Upper
elevations. The water is at the lowest elevation. Bottom: height right: left image of the stereo pair. Center: elevation plot. The
vs. range plot through the horizontal cross-hair in the top view. large empty area is where the water really lies. Bottom: height
The water surface is the level portion on the right, vs. range plot for the cross-hair line that is vertical in the
intensity image and near horizontal in the elevation plot. Note
that the range to the reflections roughly match the range to the
actual objects and plots much below the true ground level.

2.3 Using stereo to label terrain reflections as water

As Figure 2 shows, where the water surface is rippled its color and brightness will often allow it to be labelled as
water; however, where the surface is still this is more difficult, Since reflections on still water are often distinct enough
to enable stereo matching, the resulting range data provides a promising approach to correctly labeling such regions.
Figure 4 shows a distinctive case, where the entire surface of z pond reflects soil, trees, and man-made structures on the
opposite shore. In the height vs. range plot in the bottom of the figure, it is clear that the range data on the reflections is
below the nominal ground surface, that it wraps backward in range. and that there is a large gap in the range data in front
of it. These features are characteristic of water reflections or, in less extreme examples, of negative obstacles. In this
example there is no sky reflection, but if there were sky reflection in the foreground, then the initial segment of labelled
water region would even more strongly indicate that the following range data anomaly was due to a reflection on more
water. Finally, a reflection hypothesis based on range data can be checked by mirror-image correlation of the intensity
image. We arc in the process of implementing and testing these recognition techniques for reflections,

3. LADAR

It is has been observed anecdotally for several years that water bodies tend not to produce returns for UGV-mounted
ladar. This has generally been attributed to specular reflection at the air-water interface. However, deeper analysis shows
that the situation is not so simple, because some of the ladar energy penetrates the interface and can even preduce a
range measurement to the bottom of the water body, depending on angle of incidence, ladar wavelength, and attenuation
in the water column (Figure 5). In this section, we present a propagation mode! for the entire optical path to elucidate
these factors; this enables us to predict conditions under which ladar can be used to detect water bodies and to measure
their depth.
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Figure 5: Scan of a shallow pond (units in mm) made with a SICK Tadar with its scanning plane oriented vertically. The ladar was
about 95 cm above the water level; the water was 15 to 20 cm deep. Red lines trace the path of each pulse in the scan. The blue line
marks the water surface, as determined by holding a meter-stick at water level in the path of the scanner; the raised bit of blue line on
the left was the experimenter’s hand. The green symbols mark positions of raw 3-D measurements. The red triangles correct these for
refraction at the air-water interface and for the speed of light in water, given knowledge of the location of the water surface; the red
lines trace the path of each pulse. The water bottom was detected until the incidence angle at the air-water interface was about 56
degrees; at greater incidence angles, no return was recorded by the ladar. The ladar wavelength is 905 nm.
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Figure 6: (a) Ladar optical paih for sensing a water body, for an example with the sensor 1.0 m above a water body 0.3 m deep.
Taking atmospheric attenuation as negligible at short range, the principal losses cccur due to (1) reflection at the first air-water
interface, (2) attenuation through the water column, (3) diffuse reflection on the water bottom, (4) attenuation back through the water
column, and (5) reflection at the second air-water interface. L, and L, denote the one-way path length through the air and water. (b)
Reflected and transmitted power percentages through the first air-water interface for horizontal and vertical polarizations, as a
function of lookahead distance in multiples of the sensor height {eg. interpret as meters for 1 m sensor height).

Figure 6a illustrates the optical path to be analyzed and shows the locations where principal light losses occur.
Assuming that atmospheric attenuation is negligible at short range, the first loss is due to reflection at the air-water
interface. The transmitted and reflected power for horizontal and vertical polarizations are given by the standard Fresnel
equations [8] as:

n, cosé, ;2

T =
" \n,cosd, )"
T, = (”w_"osi) 2 0
n, cosg, ‘
R, =1-T,

Rh =l""'Th



where 6; and 6, are the incident and transmitted angles, 8, =sin'l(1/nw sing,) by Sneil’s law, n, and n, are the
indices of refraction on each side of the interface (1.0 and 1.33 for air and fresh water), and the amplitude coefficients ¢,
and ¢, are:
o 2sinf, cos B,
" sin@; +0,)cos@, - 6,)
_ 2sin8, cos b,

sin(@; +86,)
The power transmitted through the first air-water interface is:
(Dl = q)OhTh +(I)OvTu Watts (W) (2)

where @, and @, are the incident power in horizontal and vertical polarizations, respectively. Figure 6b illustrates the

power transmitted into the water as a function of lookahead distance for both polarizations. The subscripts here and
below on @, relate directly to the numbered losses in Figure 6a. :
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Figure 7: Absorption coefficient for pure water vs, wavelength, with specific values noted for the SICK ladar, a surveying laser range
finder by Leica, a green laser pointer, and a common SWIR laser wavelength. For natural water bodies, data from [9] for coastal Lake
Ontario shows the minimuim total attenuation occurring around 575 nm, at the value shown in the legend.

Light propagation through water is subject to exponential attenuation according to [9]:

@ =Py 3)
where ¢ is the wavelength-dependent total attenuation coefficient and x is the path length in the water. ¢ is further
comprised of an absorption term a and a scattering term b, such that ¢ = g +5. Figure 7 shows the absorption coefficient
for pure water from 200 to 2000 nm. There is an order of magnitude jump from the minimum in the blue-green region to
red, another order of magnitude to the near infrared (eg. the SICK wavelength), and two more orders of magnitude to the
region around 1550 nm, which is a wavelength of strong interest for improving the maximum range and the eye safety of
UGV ladars. This shows that a ladar operating in the green region will have far better propagation in water than the
SICK, whereas ladars at 1550 nm will have far worse propagation. For example, based only on the pure water absorption
coefficients in Figure 7, 99% of the initial power is lost after 144, 16, 0.68, and 0.004 m at 525, 625, 900, and 1550 nm,



respectively. Losses in natural waters will be greater. Figure 7 also shows a total attenuation coefficient given in [9] for
coastal Lake Ontario; we show this to illustrate the difference between absorption in pure water and absorption plus
scattering in natural water. We suspect that this represents rather murky water, since a very similar value is given in [10]
for 514 nm in turbid harbor sea water. For relatively clear, natural water, the total attenuation shown in [10] at 514 nm is
an order of magnitude less, which is roughly what we show for pure water absorption at the red wavelength of the Leica
in Figure 7. Thus, for natural water, we estimate that the total attenuation coefficient will be roughly in the range of
0.0028 to0 0.022 per cm for the wavelength of best penetration.

To describe the rest of the path losses, the path length in the water is x = L, =Dfcos8,, where D is the water depth,

so the power reaching the water bottom is @, = (Dlec(;“)L“’ . Assuming Lambertian diffuse reflectance on the bottom with
an albedo of p, the power reflected toward the receiver aperture is:

@, =40, L0,c0s8,
4

where p/m models the Lambertian reflectance, cos 8, models the foreshortening of the surface patch in the direction of
the receiver, and AQ,, is the solid angle of the receiver as seen from the surface patch on the bottom. We assume that

the field of view of the receiver is large enough to include the entire footprint of the beam, so the size of the footprint
cancels out of the derivation. Deriving AQ,, requires accounting for the beam refraction at the water-air interface on the

return path and for the beam expansion that happens as a result. The beam expansion is modelled by Straubel’s invariant,
which gives the solid angle in the air as [3]:

nZ cos®

AQ, LAQ,
cosf,

Using this and considerable algebra yields:
_ A, cosd;
cos,[n, L, +L, cos8,/cos8, |
where A, is the area of the receiver aperture. Next, attenuation on the return path through the water column

AQ,

gives®, =@ 3eC(A)LW . Assuming that the bottom reflection and the path through the water produce a largely unpolarized
beam, the transition through the water-air interface gives the final, attenuated beam power reaching the receiver as:

To use all of this, we need to instantiate values for the bottom albedo, the area of the receiver aperture, and the total
beam attenuation coefficient. For illustration, we use an albedo of 0.3 and an aperture diameter of 1.0 inch (2.54 cm),
which is close to the foreshortened diameter of the scanning mirror on the SICK. For attenuation coefficients, we look at
four cases: three use the pure water absorption for 525, 625, and 900 nm from Figure 7 and one uses the total attenuation
coefficient shown for 575 nm in murky water. Figure 8a plots the ratio of the return power to the output power as a
function of lookahead distance for an example with a sensor 1 m high and water 30 cm deep. For the SICK wavelength,
the return power is vanishingly small by a lookahead of less than 2 m; this is consistent with the empirical results in
Figure 5. Even visible wavelengths are attenuated to almost nothing by about 7 m of lookahead, The figure does not
show data for the 1550 nm case because it is so strongly attenuated by even one cm of water to be too small to plot on
the scale of this graph.

The ultimate question we would like to answer is: for a given lookahead, what is the maximum water depth that
yields a range measurement from the water bottom? To answer this, we need to know the minimum measurable return
power for the ladar. We used experimental data like that in Figure 5 to estimate this for the SICK, then applied it to the
examples plotted in Figure 8a. Figure 8b shows the results. For all cases, there is no return for lookaheads beyond about
6.5 m, even with negligible water depth. For completely dry ground, the simulation shows that the return signal would be
too weak to register at a lookahead of 11 m. In tests with the real SICK ladar, we got no data for dry horizontal surfaces
beyond 15 to 20 m with this sensor height; given various parameter uncertainties in our simulation, this is reasonable
agreement. For the goal of estimating water depth, we argued earlier that the range of performance to be expected for
natural water for the best case wavelength (green) is bounded roughly by total absorption coefficients of 0.0028 to 0.022
per cm. These correspond to the curves in Figure 8 for coastal Lake Ontario (murky) and for pure water at 6235 nm
(clear), At the murky end of the scale, a depth of 0.5 m should be measurable at a lookahead of about 2 m for a sensor 1
m high. This is enough to be useful for some vehicles, but there are vehicles with greater fording depth than this. At the



clear end of the scale, depths of over 1.5 m are penetratable out to over 4 m of lookahead, which is plenty for most
vehicles. Note that these results all represent a simulation of a flat water surface; performance with waves will differ and
will require additional work to model. Compared to Figure 5, the curve in Figure 8b for the SICK is somewhat
optimistic; this is most likely because the natural pond water in Figure 5 had a larger total attenuation coefficient than
the pure water absorption coefficient we used in Figure 8b (we have not found published data for total attenuation at this
wavelength). To increase the measurable depth, the key requirement is to reduce the angle of incidence of the beam on

the water, cither by mounting the sensor higher on the UGV or, more radically, by putting the sensor on an air vehicle.
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Figure 8: (a) Ratio of return power at the receiver to output power from the transmitter, vs, lookahead distance for a sensor 1 m above
the water level. The three curves for pure water model only the absorption coefficients from Figure 7; absorpticn dominates scattering
under these conditions, so this is a reasonable simplification. (b) Maximum depth of water for which the simulated ladar measures a
return, vs. lookahead distance for a sensor 1 m above the water level. All curves assume an initially unpolarized beam for simplicity

For the goal of detecting the presence of a water body, we conclude that there are four distinct cases:

1. At the shortest ranges, visible and near infrared ladars may give a return from the water bottom, depending
on the water depth.

2. For a range interval beyond that, water will completely attenuate the beam due to surface reflection and
attenuation in the water column, but dry ground will give a return in this interval. For the simulations in
Figure 8b, this interval starts at 6.5 m ahead (or closer, depending on water depth) and ends at 11 m. In this
interval, lack of a return is diagnostic of water.

3. Beyond that, even dry level ground produces no return, so lack of return does not indicate a water body.

4. Others have observed that at high angles of incidence the ladar beam can bounce off water surfaces, hit a
background object beyond the water, and bounce back off the water to the receiver, giving a range to the
reflected object [11]. We have verified this experimentally ourselves, Determining at what lookahead dis-
tance this would be the dominant component of the return power requires more work.

In summary, designing a ladar interpretation algorithm to detect the presence of water bodies based on lack of return
would have to take all of these cases into account. Except for the possibility of range to reflections of more distant
terrain features, the useful lookahead distance for this technique will be limited to the range at which dry terrain would
no longer give a return.

One other conclusion to draw from this analysis is that ladars using the 1550 nm wavelength will be very strongly
affected by water on the ground; thus, heavy rain may dramatically reduce the range at which they perceive the ground.

4. SHORT-WAVE INFRARED (SWIR)

In the remote sensing literature, it is well known that water bodies of any appreciable depth appear very dark in near
infrared, overhead imagery [12]; the reason for this is clear from the absorption coefficients in Figure 7. Given the rapid
increase in the absorption coefficient at even longer wavelengths and the availability of SWIR cameras with sensitivity
from about 0.9 to 1.7 wm, the question arises whether passive SWIR imagery might also be useful for water detection.
We have observed that under a thick layer of marine fog there is still SWIR illumination, so clouds may not rule this out.



Useful lockahead ranges could be limited by surface reflections, as illustrated by the reflection coefficients in Figure 6b.
Snow and ice also have very strong absorption beyond about 1.4 um [13,14]; therefore, the wavelength region around
1.5 to 1.6 um may be useful for recognizing water, snow, and ice. In this section, we demonstrate these possibilitics
empirically with sample imagery from an unfiltered SWIR camera with response from 0.9 to 1.7 pm.

Figure 9 shows imagery of water taken with this camera. Figures 9a and 9b show images looking straight down into
a plastic pail with 0 cm and 2 cm of water, respectively; the absorption in the latter case is clearly evident. Figure 9¢
shows an SWIR image of the same reservoir seen in Figure 2, though with a much smaller field of view than the color
images in Figure 2. The water is very dark at the bottom of the image where it reflects the sky; the angle of incidence at
that point is at least 80 degrees. Beyond that, strong reflections of clouds and trees are evident on the water surface. Note
that the vegetation all around the reservoir is highly reflective at these wavelengths. Figure 10 shows a color and an
SWIR image of a pile of ice cubes on a lawn; it is clear that the ice is much darker in SWIR than the lawn and the plastic
cooler, though not as dark as the car tires. We expect that the water and ice in these images would be much darker if the
camera was spectrally filtered to a window around 1.5 to 1.6 um. We conclude that these images show good potential for
using SWIR to detect water at moderate angles of incidence and some potential to discriminate snow and ice from other
terrain material.

@ (b) ©)
Figure 9: Imagery acquired with an unfiitered SWIR camera with response from 0.9 to 1.7 um. (a) Looking straight down into an
empty plastic pail. (b} Looking at the same pail containing 2 cm of water. (c) Looking at the same reservoir as the color imagery in
Figure 2; note that the field of view here is much smaller.

e :
Figure 10: Color image (left) and SWIR image (right) of a pile of ice cubes on a lawn.

5. THERMAL INFRARED

For night operation, color and SWIR imagery is not likely to be useful for water detection. Ladar may be useful, but
with limitations on the lookahead range as noted in section 3; moreover, it is desirable to have a non-emissive sensor
option for this function. Another well known, qualitative observation in the remote sensing literature is that water bodies
tend to be cooler than surrounding terrain during the day and warmer at night [12]. While this will be affected by the size




of the waier body, in that very small bodies may equalize temperature with the terrain fairly quickly, it may still be
useful for water bodies large enough to be a concern for UGV navigation. Moreover, water has a higher emissivity than
other terrain materials, which will contribute to the night-time contrast. Surface reflections again come into play; in this
case, their energy will add to that of the thermal emission from the water itself, so at night this may not be a problem. To
test the usefulness of thermal infrared, we acquired a 24-hour data set of mid-wave thermal infrared imagery (MWIR) of
the Chatfield reservoir at the same time that the color and SWIR imagery was acquired (ie. Figures 2 and 9c). Figure 11
shows sample MWIR images taken at 3 pm and 4 am; the water shows the expected contrast with the rest of the scene.
We manually labelled the imagery into regions of water, soil, vegetation, sky, and “other”, then plotted the mean
brightness in each region over the whole 24 hour period (Figure 12). Except for two small intervals, the average
brightness of the water region was higher than the averages of the other regions from about 11:00 pm to 8:00 am, and it
was distinctly brighter from 12:30 am to 5:00 am. This supports the qualitative observation from the remote sensing
literature. Local brightness variations within each region resulted in cases where some small regions of terrain were
brighter than the water; in work in progress we are attempting to overcome this to develop a robust, MWIR-based water
classifier for night operation. In the night image in Figure 11, the water also appears to darken near the far shore. We do
not fully comprehend this phenomenon; it could be due to a thermal gradient, to non-Lambertian emission at high
emission angles, or to some other cause; in any event, this might limit the lookahead distance possible with this
technique.

Figure 11: Mid-wave infrared (MWIR) imagery of the Chatfield reservoir taken at 3 pm (left) and 4 am (right).
6. CONCLUSIONS AND FUTURE WORK

For day-time detection of water bodies reflecting sky, we have demonstrated that RGB image classification works
quite well to label water in imagery for clear, partly cloudy, and overcast skies and for smooth or rippled water surfaces.
When stiil water reflects other terrain features, like trees, hills, or buildings, RGB classification is not adequate, We have

. shown that stereo vision often produces range data on such reflections and that this data is likely to enable a solution to

this probiem.

We presented a propagation model for ladar pulses incident on water bodies that leads to several nseful conclusions.
Surface reflection and beam attenuation in the water column are both important contributors to reduced return signal
from water; moreover, the water attenuation is very highly wavelength dependent. Depending on wavelength, water
depth, and water turbidity, at the shortest lookahead ranges (a few meters) ladar may give returns off the water bottom.
At somewhat longer ranges, water will give no return but dry land will. Beyond 10 to 20 m, even dry level ground gives
no return. At high incidence angles, ladar can reflect off the water to give range measurements to tall terrain features
beyond the water. All of these cases must be embodied in any algorithm that attempts to use ladar to infer the presence
of water hazards. Ladar can also be useful for sensing water depth, particularly in visible wavelengths. This works best



at normal incidence, so the best sensor placement would actually be on an air vehicle that scans the terrain ahead of
ground vehicles. We also observe that water absorption at 1550 nm is so strong that ladars at this wavelength are likely
to suffer much reduced maximum range to ground surfaces in heavy rain.

The very strong absorption of near infrared and especially short-wave infrared (SWIR) light by water implies that
passive imagery in these wavelengths may also be useful for recognizing water hazards, though surface reflections may
limit the useful lookahead range for this approach to incidence angles around 60 degrees. Snow and ice are also highly
absorptive beyond 1.4 um, so SWIR may also be useful for recognizing them as well.

Finally, we used 24-hour observations of a reservoir with mid-wave infrared (MWIR) imagery to confirm that large
bodies of water tend to be warmer than surrounding terrain at night. This implies that MWIR imagery has potential for
recognizing water hazards at night. Algorithm development to exploit this property is still in process.
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Figure 12: Mean brightness of the vegetation, soil, water, sky, and “other” regions of the Chatfield MWIR imagery over the entire 24

hour data set. On the horizontal axis, the labels give image sequence numbers and the time. Except for brief intervals around 12:30 am
and 5:30 am, the water region was brighter than all other regions from about 11:60 pm to 8:00 aim.
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