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Abstract

Autonomous off-road navigation of robotic ground vehicles has important applications
on Earth and in space exploration. Progress in this domain has been retarded by the limited
lookahead range of 3-D sensors and by the difficulty of preprogramming systems to under-
stand the traversability of the wide variety of terrain they can encounter. Enabling robots
to learn from experience may alleviate both of these problems. We define two paradigms
for this, learning from 3-D geometry and learning from proprioception, and describe initial
instantiations of them we have developed under DARPA and NASA programs. Field test
results show promise for learning traversability of vegetated terrain, learning to extend the
lookahead range of the vision system, and learning how slip varies with slope.

1. Introduction

Robotic ground vehicles for outdoor applications have achieved some remarkable suc-
cesses, notably in autonomous highway following (Dickmanns, 1992), planetary exploration
(Maimone, 2004), and off-road navigation on Earth (Lacaze, 2002). Nevertheless, major
challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety
of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sen-
sors is the mainstay of off-road driving systems. However, the stopping distance at high
speed exceeds the effective lookahead distance of existing range sensors. Moreover, sensing
only terrain geometry fails to reveal mechanical properties of terrain that are critical to
assessing its traversability, such as potential for slippage, sinkage, and the degree of compli-
ance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got
stuck in sand dunes and experienced significant downhill slippage in the vicinity of large
rock hazards. Earth-based off-road robots today have very limited ability to discriminate
traversable vegetation from non-traversable vegetation or rough ground. It is impossible
today to preprogram a system with knowledge of these properties for all types of terrain and
weather conditions that might be encountered. The 2005 DARPA Grand Challenge robot
race, despite its impressive success, faced few of these issues, since the route was largely or
completely on smooth, hard, relatively low-slip surfaces with sparse obstacles and no dense,
vegetated ground cover on the route itself.

Learning may alleviate these limitations. In particular, 3-D geometric properties of
obstacle vs. drivable terrain are often correlated with terrain appearance (e.g., color and

c©2005 Matthies et al..



Matthies, Turmon, Howard et al.

Stereo cameras

Range image

Elevation

map

Local cost

map
Global cost

map

Steering commands

Path planning

Figure 1: LAGR robot (left), Rocky 8 robot (center), and a simple view of their baseline
navigation software architecture (right). Both robots are just over 1 meter long.

texture) in 2-D imagery. A close-range 3-D terrain analysis could then produce training
data sufficient to estimate the traversability of terrain beyond 3-D sensing range based
only on its appearance in imagery. We call this learning from 3D geometry (Lf3D). In
principle, information about mechanical properties of terrain is available from low-level
sensor feedback as a robot drives over the terrain, for example from contact switches on
bumpers, slip measurements produced by wheel encoders and other sensors, and roughness
measurements produced by gyros and accelerometers in the robot’s inertial measurement
unit (IMU). Recording associations between such low-level traversability feedback and visual
appearance may allow the learning of mechanical properties from visual appearance alone;
we call this learning from proprioception (LfP). While learning-related methods have a
long, extensive history of use for image classification and robot road-following, work in the
paradigms described here is quite limited. LfP has been addressed recently in formulations
aimed at estimating where the ground surface lies under vegetation and closely related work
(Wellington, 2005). We are unaware of work closed related to the Lf3D paradigm.

This paper outlines some key issues, approaches, and initial results for learning for off-
road navigation. We describe work in the DARPA-funded Learning Applied to Ground
Robotics (LAGR) program and the NASA-funded Mars Technology Program (MTP). Both
use wheeled robotic vehicles with stereo vision as the primary 3-D sensor, augmented by
an IMU, wheel encoders, and in LAGR, GPS; they also use closely related software archi-
tectures for autonomous navigation (Figure 1). Section 2 outlines these architectures and
how they need to change to address Lf3D and LfP. Sections 3, 4, and 5 present results of
our initial work on Lf3D and two flavors of LfP, one aimed at learning about vegetation
and the other aimed at learning about slip. Our work to date necessarily stresses fairly
simple methods with real-time performance, due to the demonstration-oriented nature of
the LAGR and MTP programs; nevertheless, the results justify the value of our approaches
and their potential to evolve to more sophisticated methods.

2. Architectures and issues

The baseline navigation software architecture in both the LAGR and MTP programs
operates roughly as follows (Figure 1). Stereo image pairs are processed into range imagery,
which is converted to local elevation maps on a ground plane grid with cells roughly 20
cm square covering 5 to 10 m in front of the vehicle, depending on camera height and
resolution. Geometry-based traversability analysis heuristics are used to produce local,
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Figure 2: Typical information zones from proprioception and stereo (image space, left; map
space, right), with specific numbers for the LAGR robot. See text for discussion.

grid-based, “traversability cost” maps over the same area, with a real number representing
traversability in each map cell. The local elevation and cost maps are accumulated in a
global map as the robot drives. Path planning algorithms for local obstacle avoidance and
global route planning are applied to the global map; the resulting path is used to derive
steering commands sent to the motor controllers.

Figure 2 gives a deeper look at information available from stereo vision and how this
relates to Lf3D, LfP, and richer local map representations. The near-field region is where
stereo vision gets range data of sufficient resolution to build a local elevation map; color and
texture information (collectively, “appearance”) is also available for insertion in the map.
The mid-field region is where the range data samples the ground too sparsely to create a
useful elevation map; image appearance is also available. The far-field region is beyond the
range of stereo vision (i.e. zero disparity), so only image appearance is available. To make
things concrete, in LAGR, the near-field is about 70% of the image, the mid-field is 7%, and
the far-field is 2%; conversely, on the ground plane, the near-field extends to about 10 m,
the mid-field from 10 to 50 m, and the far-field from 50 m to infinity (right side of Figure 2).
The inset at the bottom of the image in Figure 2 represents information available from the
proprioceptive sensors: the bumper, IMU, and wheel encoders.

Given this view, our problem can be cast as transferring knowledge between the adja-
cent distance regimes in Figure 2: (1) between underfoot and near-field (proprioception vs.
appearance plus rich geometry), (2) between near-field and mid-field (appearance plus rich
geometry vs. appearance plus poor geometry, and (3) between mid-field and far-field (ap-
pearance plus poor geometry vs. appearance only). In this process, the effective lookahead
distance of the sensors is extended by using the learned correlations to ascribe properties
sensed proprioceptively or geometrically in the closer zones to regions sensed just by appear-
ance or weaker geometric perception in the more distant zones. The same obstacle classes,
and sometimes the same obstacle, will be present across all zones. Our ultimate goal is
to jointly estimate terrain traversability across zones, unifying the Lf3D and LfP concepts,
and encompassing slippage, sinkage, and obstacle compliance in the notion of traversability.

Proxies and learned estimators of traversability

Traversability T is a random variable associated with a certain site s, either a pixel in
the scene or a cell in the map. T (s) always takes values in the unit interval, but depending
on context, we may take it to be binary (e.g., bumper hits) or real-valued (e.g., wheel slip).
In making the link to path planning, it may be helpful to define T (s) as the probability that
the robot can successfully move out of a map cell s after deciding to do so. We could imagine
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a physics-based simulation that would determine this self-transition probability given vehicle
and terrain parameters. Accumulating this T over a path would then yield the cumulative
probability of a successful sequence of moves.

Lacking such a model, we view T as a random variable to be predicted from correlated
information, where the predictor is in turn learned from training data. Our learning strategy
is to use high-quality (typically, nearer the robot, as in Figure 2) input examples to produce
training labels T̃ , which serve as proxies for the unknown T . The proxy labels are given to a
learning algorithm which trains a regression model T̂ that approximates T̃ . The regression
model is then used to drive the robot. In Lf3D, object location statistics, specifically
elevation changes, are used to provide the proxy T̃ , which is estimated using appearance
information (normalized color in our case). In LfP, the proprioceptive inputs (e.g., bumper
hits and slip) are used to generate the proxy T̃ , which is then estimated using the available
appearance and geometry information from stereo images.

3. Learning near-field traversability from proprioception

In the LAGR program, we are using the LfP paradigm to address the key problem of
learning about traversability of vegetation. For robots in general, the bumper, IMU, and
slip measurements ultimately will all be important for this. In practice, for the robot and
terrain used in the LAGR program to date, the bumper provides most of the information,
so we currently model the proxy T̃ as a 0/1 quantity. Operationally, we gather samples of
T̃ by recording the location statistics of the brush we can and cannot push through.

A technical problem of blame attribution arises because roughly six map cells are over-
lapped by the bumper at any time, so the nontraversable samples are contaminated with
data from traversable cells. Heuristics alone may prove sufficient to narrow down blame to
one cell, or a constrained clustering approach may be needed to separate these two classes.
To avoid solving the blame attribution problem, initially we obtained training data from
hand-labeled image sequences: a human identifies a mix of traversable and untraversable
map cells.

Terrain representation

Elevation maps per se do not adequately capture the geometry of vegetated and forested
terrain. Three-dimnensional voxel density representations have been used successfully in
the past with range data from ladar (Lacaze, 2002). We are experimenting with such a
representation for range data from stereo vision. The space around the robot is represented
by a regular three-dimensional grid of 20 cm×20 cm×10 cm high voxels. Intuitively, we
expect that only low-density voxels will be penetrable (see Figure 3). The voxel density
grid is constructed from range images by ray-tracing: for each voxel, we record both the
number of passes (rays that intersect the voxel) and the number of hits (rays that terminate
in the voxel). The per-voxel density ρ equals the ratio of hits to passes. Since the ground
may be non-planar, we also identify a ground voxel g in each voxel column; we assume that
this voxel represents the surface of support for a robot traversing this column. The ground
voxel is determined using a simple heuristic that locates the lowest voxel whose density
exceeds some preset threshold. Although calculating it is relatively complex, in practice the
density estimate is robust and rich in information.
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Figure 3: Learning from proprioception. Top row: schematic illustrating the voxel density
map representation (left), sample camera image (middle), and its projection onto
a local map (each map cell is colored with the mean of all pixels projecting into
it). Bottom left: learned cost lookup table as a function of ρ∗ and ρ∗∗. Bottom
right: cost map computed from voxel densities; green is traversable, red is not.

Each map cell s has an above-ground density column [ρg(s)+1 ρg(s)+2 · · · ρ32]. For sim-
plicity, we have started with the following reduced feature set: ρ∗, the maximum density;
ρ∗∗, the next-highest; i∗, the height of ρ∗; and i∗∗. We have used ρ∗ and ρ∗∗ below, but ρ∗

and i∗ provide similar performance when used together. The average color within a map
cell would also be a good feature, but we have not used this in classifications yet.

Learning algorithm

Initially, we wanted to validate the use of the density features and to replace our existing
hand-coded, geometry-based traversability cost heuristic with a learned value. In this offline
context, training time is not an issue so we use a Support Vector Machine (SVM) classi-
fier. We used a radial basis function kernel, with the SVM hyper-parameters estimated by
cross-validation. The training data consisted of 2000 traversable and 2000 non-traversable
examples, and the resulting model has 784 support vectors (SVs). The large number of SVs
for a relatively modest two-dimensional problem indicates a considerable degree of overlap
between the classes which is borne out in scatter plots. Tests were performed on an inde-
pendent image sequence which contains roughly 2000 examples. We achieved a classification
error rate of 14% on the test set, again indicative of strong class overlap from these limited
features.

Classification is done at frame rates of 2–5 Hz, so SVM query time would be prohibitive.
We therefore coded the SVM into a lookup table (LUT) for speed and simplicity, but a
reduced-set SVM would be easy to substitute (Schölkopf, 1999). The continuous output f
of the SVM is turned into a traversability classification by thresholding at zero. The results
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of SVM classification and the LUT are shown in Figure 3. This system was used for path
planning in LAGR test 5.

4. Learning mid and far-field traversability from near-field 3-D geometry

To address another goal of the LAGR program, we are using the Lf3D paradigm to
extend near-field range-based proxies T̃ to mid-field and far-field traversability estimates T̂ .
Here T̃ is a function of the heights of all pixels landing in a (20 cm)2 map cell. When at least
10 pixels land in one cell, their height standard deviation σz becomes resolvable: a large
value indicates rough ground or obstacles. We compute a traversability proxy T̃ = f(σz)
for the cell, which is associated with the appearance u of all pixels mapping into that cell,
thus providing a training set T of (u, T̃ ) pairs. We use this T to select an extrapolating
function T̂ = T̂ (u) from appearance to traversability.

We now use only two appearance-based features: the mean RGB color within a map cell,
normalized to sum to unity. These are referred to as normalized R and G. Training data
for the experiments below was gathered from 10 consecutive frames (∼4500 examples).
We would like to retrain classifiers at each frame, so speedy training and evaluation are
required, prompting the reduction of T to a parameterized model. Below, we consider two
approaches: unsupervised clustering using k-means, and supervised discriminant analysis
with Mixtures of Gaussians (MoG); a close variant of the first was used in LAGR test 7.

Unsupervised K-means

The geometry-based proxy is itself heuristic, so we might prefer to use T̃ somewhat
weakly. We had success with unsupervised clustering of the input pixel appearance, followed
by deducing the per-cluster traversability from the average proxy value within each cluster.
That is, we discard the T̃ labels within T and perform a k-means clustering with K =
5. Figure 4 shows such a clustering; each cluster is annotated with its mean σz in mm
(low values correspond to traversable sites). The coherence of these values shows that the
appearance-based clusters capture the traversability structure. The traversability estimate
is a weighted average of per-cluster traversabilities

T̂ (u) =
∑K

k=1
T̃k exp(−‖u − µk‖

2/λ2)
/

∑K

k=1
exp(−‖u − µk‖

2/λ2),

where T̃k is the average traversability proxy value per cluster and µk is the kth cluster
center. To form a classifier and compute error rates, pixels with T̂ (u) ≥ τ are considered
traversable, otherwise not; τ is chosen so that 65% of the data is traversable. The parameter
λ is selected using cross-validation. Classification error is 7% with λ = 0.2. (Note: we report
within-sequence error rates because extrapolation is done within a single frame.)

Supervised MoG-based discriminants

It may be preferable to constrain the cluster membership a priori (using T̃ up front)
rather than extracting clusters after the fact. At the expense of some reliance on a prior rule
about association based on T̃ , we may extract more stable and homogeneous clusters. We
have experimented with three approaches: introducing T̃ -based cannot-link constraints into
k-means (Wagstaff, 2001), stratifying the cluster memberships according to T̃ within the
EM algorithm in a semi-supervised framework (McLachlan, 2000, sec. 2.20) and adopting
a two-class discriminant-based approach with populations determined by T̃ .
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Figure 4: Top row: k-means clustering annotated by within-cluster height variance (left);
Gaussian mixture models for p1(u) (center) and p0(u) (right). Bottom row: im-
age from the training set (left), same image with k-means classification overlay
(center), and the corresponding map (right). The map extends through the mid-
field, nearly 50 m. Training pixels are in light green (traversable, T̃ = 1) and red
(T̃ = 0). Classified pixels are in blue (T̂ = 1) and olive green (T̂ = 0).

In the discriminant approach, rough thresholds are used to form sets of negative and
positive examples: T0 = {(u, T̃ ) : T̃ ≤ τ}, T1 = {(u, T̃ ) : T̃ > τ}. We selected τ = 0.4 so
that 65% of T belongs to T1. It could be helpful to define a “don’t-care” traversability class
by using separate thresholds. Two separate MoGs p0(u) and p1(u) are fit to the two training
sets, and we declare a pixel traversable if p1(u)/p0(u) > 0.65/0.35. We have used K = 5
component, full-covariance Gaussian mixtures to parameterize each of the two distributions,
and fit the parameters by maximum-likelihood using the EM algorithm (Figure 4). As with
k-means, there is good separation between the two classes. The test error achieved is 6%.
Training time for N = 1000 is about 40 ms in an unoptimized code. Evaluation time for
5000 pixels (about 9% of a 192×256 pixel image) is less than 10 ms, which easily permits
training and evaluation at our path-planning rates of 2–5 Hz.

Putting traversability in the map

Note that both approaches classify terrain in the image space: each pixel is assigned a
traversability estimate T̂ . To use this result for navigation, these values must be projected
into the map. There are two issues: how to combine traversability estimates and proxies,
and how to determine the 3D location of image pixels. For data fusion, we currently
allow traversability proxies derived from geometry (the near-field training set) to override
traversability estimates inferred from appearance (the mid- and far-field query set). To
project pixels from the image into the map, when the pixel has a non-zero disparity (near-
and mid-field), 3D locations are computed by triangulation. Because of range uncertainty,
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this leads to maps with more blur with increasing range; at present, this is unavoidable.
When disparity is zero (far-field), pixels can in principle be projected onto a nominal ground
plane; currently, we ignore these pixels.

Sample classifications for k-means Lf3D are in the bottom row of Figure 4 (MoG results
were similar). The technique can extend the range of look-ahead that can be used in path
planning by up to a factor of five. The main limitation of these methods at present is the low
information content of the appearance features used. Introducing local texture measures
should substantially improve classification accuracy and robustness, at which point new
algorithmic tradeoffs could be evaluated.

5. Learning slip from proprioception

While the main terrain unknown so far in LAGR has been the compliance of vegetation,
on Mars it has been slippage on slopes. Slip measures of lack of progress of the vehicle and
can be defined as the difference between the commanded velocity and the actual velocity,
which is estimated here using visual odometry (“VO”) (Helmick, 2004). Slip influences total
traversability cost: the robot’s mobility on certain terrains significantly degrades, especially
as slope angle increases (Lindemann, 2005). Thus, we seek to improve path planning by
predicting slip before entering a given terrain. We ultimately intend to address compliance
and slip in a unified framework, but for now we are addressing them separately in each
domain.

Slip depends on terrain slope, but the precise relationship varies with terrain type, so
both geometry and appearance must be observed. Slip learning fits into our proprioceptive
learning framework: information about the terrain geometry s and appearance u of pixels
within a map cell, collectively referred to as {(u, s)}, is measured from stereo imagery. At
training time, this information is correlated to the traversability proxy, the robot’s slip, as
the robot traverses the cell. At query time, slope and appearance alone are used to estimate
slip.

Slip learning framework

Slip is learned in a Mixture of Experts framework: terrain is classified first using ap-
pearance information and then slip, as a function of terrain slopes, is learned (Angelova,
2006). The rationale for doing that is: 1) terrain type and appearance are approximately
independent of slope; 2) introducing this structure helps constrain learning to better bal-
ance limited training data and a potentially large set of texture features. Here we focus on
learning slip as a function of slopes when the terrain type is known. We briefly outline the
terrain type classification algorithm, which is a subject of our current work.

Slip is a nonlinear function of terrain slopes. We use the Locally Weighted Projective
Regression method (Vijayakumar, 2005), preferring it to other nonlinear approximation
methods, like Neural Networks, because it can be easily extended to online learning. The
slip T̂ is estimated in terms of input slopes x via

T̂ (x) =
∑C

c=1
K(x,xc)

(

bc
0 +

∑r

i=1
bc
i 〈p

c
i ,x〉

)

where K(x,xc) = exp(−‖x − xc‖
2/λ) is a receptive field centered about xc, controlling

the dominant local linear regression model, and r is the number of linear projections (here
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Figure 5: Learning slip as a function of slopes: soil (left), gravel (right).
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Figure 6: Example terrain classification results: sand, soil, and gravel.

≤ 2). Learning proceeds by assigning receptive fields to cover populated regions of the
input domain and then fitting a linear regression (i.e., estimating factor loadings bc

i and
directions pc

i) locally in each receptive field. This fit weights all training points with their
corresponding distance to the receptive field center xc, thus giving more influence to the
nearest points (Angelova, 2006, has details). The receptive field size λ is selected using a
validation set, and varies dependent on the dataset.

We compute slopes within a 2D map cell representation. Cells are 0.2 m×0.2 m and the
map looks 15m ahead. The minimum-square-error plane fit at cell s is computed using the
mean elevations of cells in the 6×6-cell neighborhood of s. The slope is then decomposed
into a longitudinal (along the direction of motion) and a perpendicular lateral component,
corresponding respectively to the pitch and roll of the vehicle. VO is used for localization
and the vehicle’s attitude (received from the IMU) gives an initial gravity-leveled frame to
retrieve correct longitudinal and lateral slope angles from the terrain (Angelova, 2006).

Figure 5 shows learning and prediction of longitudinal slip as a function of slopes for soil
and gravel terrains. Training is performed on the first portion of the traverse, and testing
on a later, nonoverlapping, portion. The average root mean squared (RMS) error is given
atop each plot. Slip is normalized by the average velocity per step to get the results in
percent. It is apparent that the right qualitative relationship between slope and slip has
been captured. Note that there are (roll,pitch) angle combinations in the gravel test data
which were not seen during training, which requires good generalization. The results are
very promising given the noise level and the limitations of the training data. Figure 6 shows
preliminary terrain classification results using a texton-based approach (Varma, 2005) in the
image plane. Despite some classification errors, the method is successful in discriminating
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visually similar terrains at close range which serves the purposes of slip prediction. For
now, the system is working offline, but we are exploring methods to speed up the terrain
classification algorithm and integrate it into the navigation system.

6. Discussion

The Lf3D and LfP results show that there is a high degree of usable correlation between the
appearance of obstacles and their 3D geometry, which validates the concept of knowledge
transfer between sensing regimes. In future work, we believe there will be good return
from augmenting the feature set to provide more error-free knowledge transfer. Other
areas for future work include blame attribution, confidence assessment, joint estimation
of traversability across all regimes, and strategic navigation (choosing to push an obstacle
across a regime boundary to gain appearance or geometric information about it).

Acknowledgments

The research described here was carried out by the Jet Propulsion Laboratory, California
Institute of Technology with funding from the DARPA LAGR and NASA MTP programs.
We thank Nathan Koenig for data collection and the rest of the JPL LAGR team.

References

Angelova, A., Matthies, L., Helmick, D., Sibley, G., Perona, P., Learning to predict slip for ground
robots, submitted to ICRA, 2006

Dickmanns, E., Mysliwetz., Recursive 3-D road and relative ego state recognition, IEEE Trans.

PAMI, Vol. 14, No. 2, 1992
Helmick, D., Cheng, Y., Clouse, D., Matthies, L., Path following using visual odometry for a Mars

rover in high-slip environments, IEEE Aerospace Conf., Big Sky, MO, March 2004
using neural networks, International Journal of Neural Systems, vol. 8 (1), 1997

Lacaze, A., Murphy, K., DelGiorno, M., Autonomous mobility for the Demo III experimental un-
manned vehicles, AUVSI Conf. on Unmanned Vehicles, July 2002

Lindemann, R., Voorhees., C., Mars exploration rover mobility assembly design, test and perfor-
mance, IEEE International Conference on Systems, Man and Cybernetics, 2005

McLachlan, G., Peel, D., Finite Mixture Models, John Wiley & Sons, 2000
Maimone, M., Johnson, A., Cheng, Y., Willson, R., Matthies, L., Autonomous navigation results

from the Mars Exploration Rover mission, Int’l Symp. Experimental Robotics, Singapore, June
2004

Schölkopf, C., Mika, S., Burges, C., Knirsch, Ph., Müller, K., Rätsch, G., Smola, A., Input space
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