
Capacity of the generalized PPM channel 

Jon Hamkins, Matt Klimesh, Bob McEliece, Bruce Moision 

December 2,2003 

Abstract 

We show the capacity of a generalized pulse-position-modulation (PPM) channel, where the 
input vectors may be any set that allows a transitive group of coordinate permutations, is achieved 
by a uniform input distribution. We derive a simple expression in terms of the Kullback-Leibler 
distance for the binary case, and find the asymptote in the PPM order. We prove a sub-additivity 
result for the PPM channel and use it to show PPM capacity is monotonic in the order. 

1 Introduction 
NASA is currently developing the first operational deep space optical communications link for launch 
on the Mars Telesat Orbiter in 2009. The deep space optical channel is well modeled as memoryless and 
operates efficiently at large peak to average power ratios, which may be efficiently implemented with 
pulse-position-modulation (PPM)[l, 21, in which each channel symbol is a unit vector. PPM satisfies 
the property that each symbol may be obtained as a permutation of the coordinates of another. We 
consider a generalization of this, where the input vectors may be any set that allows a transitive group 
of coordinate permutations. We derive an expression for the capacity of this generalized PPM channel 
in the binary case, and examine the behavior of the capacity of the PPM channel as a function of the 
PPM order. 

In Section 2 we show that for a memoryless generalized PPM channel, capacity is achieved with 
equiprobable inputs. We show that a simple expression for the capacity follows for the binary case, and 
illustrate the asymptotic behavior in large n for the PPM channel. In Section 3 we prove a sub-additivity 
result for the PPM channel and show that certain monotonic behavior follows. 

2 Capacity of generalized PPM 
We use X ,  E’ to denote random variables and x, y their realizations. Similarly, we let X, Y and x, y 
denote n-vectors of random variables and their realizations. Let p y ( ~ ( y l x )  be the conditional density 



(or probability mass) function of a memoryless channel, and pxly(y/x) its n-th extension. When it’s 
clear from the context, we simply writep(y1z) orp(y1x) forpylX(y1z) andpxp(y1x). 

Let S = {xl, x2,. . . , xs} be a set of length n vectors and p x ( . )  a probability distribution on S .  The 
S-capacity of the channel is defined as 

Cs = maxI(X; Y), 
PX 

i.e., the capacity with inputs restricted to S.  Let G be a group of coordinate permutations that fix S, Le., 
such that for each g E G, gS = S. If, in addition, G acts transitively on S then we call S a transitive 
set. (G acts transitively on S if for each Xi, xj E S there exists g E G such that xi = og(xj), where og 
is the mapping imposed by 9). 

The capacity of channel whose input is a transitive set follows from the well-known fact that 
I(X, Y )  is convex-fl in the input distribution p [3, Theorem 4.4.21. 

Theorem 1 I fS  is a transitive set, then CS ifachieved by a uniform distribution on S. 

Pro08 Let p be a distribution on S and for g E G let p g  be given by pg(xi) = p(gg(xi)). Clearly 
any p g  produces the same mutual information as p .  Thus by Jensen’s inequality, (1/ IGl) xoEG pg yields 
mutual information greater than or equal to that yielded by p .  But this new distribution ksimply 
uniform distribution: for any xi we have 

the 

and as g ranges over G, ag(xi) ranges over each element of S the same number of times (by the Orbit 
0 Stabilizer Theorem, e g ,  [4, Theorem 8.21) thus the above quantity is equal to l/s. 

2.1 Binary inputs 
With binary inputs, CS reduces to a simple expression. Let the input alphabet be (0, l}, and &(x) 
and Zl(x) the collection of indices of the 0’s and 1’s in x, respectively. For example, &(101) = 2, 
Zl(lOl) = {1,3}. Let Nl = lZl(x)(, a constant for each x E S ,  and D(.ll.) be the Kullback-Leibler 
distance. 

Theorem 2 On a binary input channel with p(yJ l)/p(ylO) < 00, 
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Pruo) With equiprobable inputs from Theorem 1 we have 

2.2 Pulse position modulation 
In the remainder we investigate the behavior of Cs as a function of n for the PPM channel. To that end, 
let I ( n )  be the capacity of a memoryless channel with PPM inputs of length n. We first treat the case 
in Theorem 2 where p(yll)/p(ylO) is unbounded. 

Let U and A be the collections of unambiguous and ambiguous outputs when x = 1 is transmitted, 

If any coordinate of y belongs to U, the input will be known with certainty. In order to treat the 
ambiguous and unambiguous outputs separately, define a reduced channel p* (ylz) with output y E A 
as follows 

where p(AJ1) = sAp(yll)dy. Let I*(X; Y) and I* (n )  be the mutual information and capacity of the 
reduced channel. 

Proof: Let Un(xj) and An(xj) be the collections of unambiguous and ambiguous outputs when 
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Let 0 = UzES U,(x), A = UzES A,(x). Introduce a binary random variable Z as follows: 

0, Y E U  
Z = {  1, Y E A  

Since each x contains exactly one nonzero entry, P ( Z  = 0) = p(UI1) and P(Z  = 1) = p(AJ1). Since 
the channel is memoryless and S is transitive, p(Un(xj)lxj) and p(A,(xj)]xj) do not depend on j .  
Therefore H ( X I 2 )  = H ( X )  and 

qx; Y )  = qx; Y 12) 
= qx; 2) + qx; Y I Z )  
= P ( 2  = O)I(X; Y (2 = 0) + P ( 2  = l)I(X; Y ( 2  = 1) 
= p(UI1) logs +p(AII)I*(X; Y). 

The lemma follows since the capacity achieving input distribution is uniform for both channels. 0 
Hence we can decompose the n-ary PPM channel into an unambiguous channel, which contributes 

p ( U J  1) log s to the capacity, and a reduced channel, with transition probabilities p* (y lz). In the remain- 
der, we assume the channel is reduced, which allows a simple corollary of Theorem 2 

Corollary 1 For the reduced binary PPM channel, I(n) = D(p(y(1) 1 Ip(yl0)) - D(p(y) I (p(yl0)). 

Corollary 1 allows a straightforward proof of the asymptotic behavior of the memoryless PPM 
channel. 

Proofi Let 1 denote the unit vector with a 1 in the first position. 

n 1 
n 

I log - EY,IX=l [ #] (Jensen’s inequality) 
i=l 

4 



' .  
where the last inequality follows since 

< K ,  hence for i # 1. For a reduced channel there exists a constant K such that E Y ~ I X ~ = ~  

3 Capacity Inequalities 
Theorem 4 I fn  5 m then I (kn)  - I (n )  2 I ( k m )  - I(m).  

This theorem says that if we multiply the number of slots by k ,  the increase in PPM capacity will 
be larger if the original number of slots was smaller. The conclusion can be equivalently stated as 
I(kn) + I ( m )  2 I ( k m )  + I (n) .  

Let Zk, Z,, and 2, be random variables uniformly distributed on { 1, . . . , k } ,  { 1, . . . , m}, 
and { 1, . . . , n}, respectively. Let Y, be the (random) output vector when 2, drives an n-PPM channel 
(that is, the input to the channel is an n-vector with a 1 in position 2, and zeros elsewhere). Similarly, 
let Yk, and Yk, be the output vectors when the ordered pairs (Zk, Zn) and ( Z k ,  2,) drive kn-PPM 
and km-PPM channels, respectively. In these two cases, it is useful conceptually to regard the slots as 
being arranged in a rectangular grid, with, for example, (Zk, 2,) specifying the column and row of the 
1. 

Observe that H(Z,lZk, Yk,) = H(Z,IY,), because in the left-hand side 2, specifies the column 
of n slots in which the 1 is "hiding"; thus the other slots can be ignored. We therefore have 

Prooj 

We then have 

Similarly, I ( k m )  - I (m)  = log, k - H(ZkIYk,). 
All that remains is to show that H(Zk(Yk,)  2 H(Zk(Yk , ) .  Intuitively, this is clear because there 

is more ambiguity about which column the 1 is in when there are more rows. A more formal line of 
reasoning would involve introducing side information W in the km-PPM case that specifies a random 
set of n rows, one of which contains the 1. Then H(Zk lYkm)  2 H(ZkIYk,, W )  = H(ZkIYk,) .  0 
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Theorem 4 has the immediate consequence that if mlmz = n1n2 and ml + mz 5 n1 + nz, then 

We are also now able to say something interesting about 2’-PPM: 

* *  
I(m1) + I(m2) 2 I(n1) + I(n2).  A special case of the theorem is that I(mn) 5 I (m)  + I (n ) .  

Corollary 2 For k = 1 , 2 ,  . . ., the quantity I ( 2‘) / k  is decreasing in IC. 

Proofi Theorem 4 implies that I ( 2 )  - 1(1), I(4)  - 1 ( 2 ) ,  I (8 )  - 1(4), . . . is a decreasing sequence. 
Therefore the average of the first k terms of the sequence is decreasing in k.  But since I(1) = 0, the 

0 average of the first k terms is simply 1(2’)/k. 

Corollary 3 For k E N, the bits-per-slot capacity of 2‘-PPM on a discrete-time memoryless channel 
is monotonically decreasing in k. 

Pro08 The capacity of 2’-PPM in bits per slot is I(2’)/2’. Thus this result follows from (and is 
0 

A close look at Theorem 4 suggests that the following is likely true: The quantity ( I ( k  + 1) - 
I(k))/(log(k + 1) - log k )  is decreasing in k .  Equivalently, the function I ( k )  is convex-fl when plotted 
as a function of log k .  As of this writing, we have not proven this, so it is still a conjecture. Theorem 4 
would essentially be a special case of this result. The result would also imply more general versions of 
Corollaries 2 and 3: the quantity I ( k ) /  log k would be decreasing in k for k 2 2, and I ( k ) / k  would be 
decreasing in k €or IC 2 3. 

much weaker than) Corollary 2. 
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