i o

=10 N
Illll CSAIL AP0

Model-based Programming

fin Outline &

L et JpPL

* [ntroduction & Overview

* Model-based Programming
— Control Programs: RMPL & HCA
— System Models: CCA
— Model-based Program Semantics

» Execution of Model-based Programs

* Fundamentals of Model-based Reasoning
* Modeling via State Analysis

» Advanced Methods

» Conclusion

[11

Illll cs”Au

Model-based Program

[~}

JPU

M odel-based
_ Program _
Control

—
——

Y
g
3

M odel-based
Executive

i System Under Control

Observations Commands
3
o] '1
fig il Control Programs ﬁ
Illll CSAIL AP0
Code specifying reactive control
mechanisms: Model-based
Embedded Program
» Concurrent Task Management ~— —

» Contingency Handling

* Resource Management
» Goal Achievement
 Constraint Maintenance

Hidden State

Model-based Executive

Obs I

l Cntrl

State
Plant

Control Programs refer to hidden states as if they were
directly observable & controllable;

(Let the Deductive Controller worry about hidden state...)

aghtl Example E

= :"_.-:H .‘|
Illlr'csm L | =

Orbitinsert()::
(do-watching ((EngineA = Firing) OR (EngineB = Firing))
(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Faile
(when-donext ((EngineA = Standb
(Camera = Off))
(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND
(EngineB = Standby) AND
(Camera = Off))
(EngineB = Firing))))

Directly
monitors state

| ssues goals
on state

AgL il Example E

P=17pt 1w)

Mhirc.. JPL

Orbitinsert()::
(do-watching
(parallel
(EngineA =
(EngineB = Standby
(Camera = Off)

ineA = Firing) OR (EngineB = Firing))

Allowsfor
pre-emption...

(do-watching (EngineA = Failed) Parqllel ’
. execution...
(when-donext
: - Conditional
(EngineA = Firing))) execution. . ’

(when-donext ((EngineA = Failed) A
(EngineB = Standby) AND
(Camera = Off)) And many other
(EngineB = Firing)))) features...

tl"'l 1’1 Reactive Model-based E
|I||| =y Programming Language JPL
RMPL Constructs (Reactive Combinators)

constraint (goal) assertion g
maintenance constraint A maintaining c
% conditional execution if c thennext A
-% §< guarded transition unless c thennext A
QS full concurrency A,B
O | | sequential composition A;B
iteration always A
preemption do A watching ¢
o [| delay next A
§ §< conditional execution with default behavior | if c thennext A elsenext B
g g temporally extended conditional execution | when ¢ donext A
O iterated conditional execution whenever ¢ donext A
7
o _ [f
RMPL — Alternative Syntax
IIIII tsML | =
RMPL Constructs (Reactive Combinators)
constraint (goal) assertion (9)
maintenance constraint (do-maintaining c A)
% conditional execution (if-thennext c A)
% 2) | guarded transition (unless-thennext ¢ A)
S §< full concurrency (parallel A B)
o sequential composition (sequence A B)
iteration (always A)
preemption (do-watching c A)
= % delay (next A)
.029 §< conditional execution with default behavior | (if-thennext-elsenext ¢ A B)
ED'J g temporally extended conditional execution | (when-donext ¢ A)
O iterated conditional execution (whenever-donext ¢ A)

Compiling RMPL to HCA E
Illll CSAIL AP0
« Hierarchical Constraint Automata (HCA): graphical
specification language for control programs, in the
spirit of StateCharts

» Writable, inspectable by systems engineers
« Directly executable by Control Sequencer

g A B if c thennext A next A

O i

A maintaining ¢

A

¢
;

A B unless ¢ thennext A whenever ¢ donext A
MAINTAIN(¢) ;

e b

do A watching ¢

A

A

Q

P

always A if ¢ thennext A elsenext B when ¢ donext A

MAINTAIN(T) . c
-] - = of

9
Compiling RMPL to HCA E
Illll CSAIL AP0

MAINTAIN (EAR OR EBR)

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)

Orbitinsert():: —»
(do-watching ((EngineA = Firing) OR
(EngineB = Firing))
(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)

EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

ool

(do-watching (EngineA = Failed) — EASANDCO) MAINTAIN (EAF)
(when-donext ((EngineA = Standby) AND
(Camera = Off)) . @
(EngineA = Firing))) EAS AND CO

(when-donext ((EngineA = Failed) AND
(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing)))) ' .
‘ EAF AND EBS @

AND CO

(EAF AND EBS AND CO)

10

fighe)

- I::‘_.‘L’l
CSAIL

Compiling RMPL to HCA

[~}

JPU

Orbitinsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))

(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)
(when-donext ((EngineA = Standby) AND
(Camera = Off))
(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

» conditioned on state constraints

maintenance \>
constraint MAINTAIN (EAR OR EBR)

—

LEGEND:
v{EAS) EAS (EngineA = Standby)
_" EAF (EngineA = Failed)
—~ EAR (EngineA = Firing)
MEBQ“ EBS (EngineB = Standby)
N EBF (EngineB = Failed)
TN EBR (EngineB = Firing)

™ CO/“ CO (Camera = Off)
N
— (EAS AND CO) MAINTAIN (EAF)
N\
‘\/7\1 7N
Y A \
M) EAsanDCO \E\B’

(EAF AND EBS AND CO)

/ N

‘\//'\\‘ TN\
—»{ #—»{EBR\

_/ EAF AND EBS _

AND CO

11

ol cl]
CSAIL

Compiling RMPL to HCA

&

JPu

Orbitinsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))

(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)
(when-donext ((EngineA = Standby) AND
(Camera = Off))
(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

» compact encoding: multiple locations

can be simultaneously marked

MAINTAIN (EAR OR EBR)

- LEGEND:
ANEAS\J EAS (Eng_ineA = Ste_xndby)
N EAF (EngineA = Failed)
o~ EAR (EngineA = Firing)
—»/EBS) EBS (EngineB = Standby)
" EBF (EngineB = Failed)
N EBR (EngineB = Firing)
> CO/‘ CO (Camera = Off)
N
MAINTAIN (EAF
| (EAS AND CO) (EAF)
() P
g \—N\EAR\J
o EAS AND CO N

(EAF AND EBS AND CO)

7N
[—d —
\ AN
S sfeR)
N2 EAF AND EBS S
AND CO

12

T

’.-:;f_—‘-'.k'
Illl CSAIL

Compiling RMPL to HCA

[~}

JPU

primitive
location

Orbitinsert()::
(do-watching ((EngineA = Firing) OR
(EngineB = Firing))
(parallel

(EngineB = Stand .
(camera- oy | 90al constraint

(do-watching (En (hldden StatE)

e e

(EngineA = Standby) _—

(when-donext ((EngineA = Standby) AND
(Camera = Off))

MAINTAIN (EAR OR EBR)

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)

»{EBQ EBS (EngineB = Standby)
N EBF (EngineB = Failed)
TN EBR (EngineB = Firing)

> CO/“ CO (Camera = Off)

N
N MAINTAIN (EAF)

(EAS AND CO)
// \\

‘\/7\; N

—»{ f——————————»EAR)
(EngineA = Firing))) _/ EASANDCO)
(when-donext ((EngineA = Failed) AND
(Erones-SenbIM0 | exmomsmoco
/ \\
(EngineB = Firing)))) 7;(”\/} (EB%
_/ EAF AND EBS _/
AND CO
» act on hidden state
13
I Jalsl Compiling RMPL to HCA F
i CSAIL JPu
Orbi 0 MAINTAIN (EAR OR EBR),
rbitinsert()::
LEGEND:
(do-watching ((EngineA = Firing) OR »{E;S\ EAS (EngineA = Standby)
(EngineB = Firing)) N2 EAF (EngineA = Failed)

(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)
(when-donext ((EngineA = Standby) AND
(Camera = Off))
(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

@

v
(o)

&/

MAINTAIN (EAF
| (EAS AND CO) (EAF)

(—~J N
IV SN)
o EAS AND CO N

(EAF AND EBS AND CO)

7N

[—d —

\ AN
N e —

AN EAF AND EBS _

AND CO

14

i -

=L
AllL

Compiling RMPL to HCA

[~}

JPU

Orbitinsert()::
(do-watching ((EngineA = Firing) OR
(EngineB = Firing))
(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)
(when-donext ((EngineA = Standby) AND
(Camera = Off))
(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

MAINTAIN (EAR OR EBR)

LEGEND:
MEAS) EAS (EngineA = Standby)
_ EAF (EngineA = Failed)
. EAR (EngineA = Firing)
—»(EBS) EBS (EngineB = Standby)
—/ EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)
— (EAS AND CO) MAINTAIN (EAF)
V4 \\
(— _
o »EAR
N EAS AND CO _/

(EAF AND EBS AND CO)

(EngineB = Firing)))) () —~
™ EAF AND EBS ‘\E?,S‘
AND CO
15
sts] Compiling RMPL to HCA E
IIII CSAIL pu | = | B

OrbitInsert()::
(do-watching ((EngineA = Firing) OR
(EngineB = Firing))

MAINTAIN (EAR OR EBR)

LEGEND:

(parallel]
(EngineA = Standby) CompOSite
(EngineB = Standby) |Ocati0n
(Camera = Off) St N

MEAS EAS (EngineA = Standby)
EAF (EngineA = Failed)
o~ EAR (Eng!neA = Firing)

—»(EBS) EBS (EngineB = Standby)
N EBF (EngineB = Failed)

SURY EBR (EngineB = Firing)
CO (Camera = Off)

(do-watching (EngineA = Failed)
(when-donext ((EngineA = Standby) AND
(Camera = Off))
(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

(EAS AND CO)

MAINTAIN (EAF)

N

Y [EAR)

o EAS AND CO N

(EAF AND EBS AND CO)
ya \‘

[V N
S yEBR
N EAF AND EBS N

AND CO

16

Rkl
Wir L

IL

Compiling RMPL to HCA

[~}

JPU

Orbitinsert()::
(do-watching ((EngineA = Firing) OR
(EngineB = Firing))
(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)
(when-donext ((EngineA = Standby) AND
(Camera = Off))
(EngineA = Firing)))

(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

transition

transition
guard

MAINTAIN (EAR OR EBR)

MEAS) EAS (EngineA = Standby)
N EAF (EngineA = Failed)
. EAR (EngineA = Firing)

—EBS) EBS (EngineB = Standby)
N EBF (EngineB = Failed)
TN EBR (EngineB = Firing)

*‘\CO/i‘ CO (Camera = Off)

MAINTAIN (EAF)

/EAS AND CO

(7<ND EBS AND CO)
/ N
()
T
> }

————————————P{EBR)
EAF AND EBS N
AND CO

17

Bkl
"“H..I

Al

CSAIL

Compiling RMPL to HCA

&

JPu

OrbitInsert()::
(do-watching ((EngineA = Firing) OR
(EngineB = Firing))
(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)
(when-donext ((EngineA = Standby) AND
(Camera = Off))
(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

MAINTAIN (EAR OR EBR)

LEGEND:
AN\/EAS\J EAS (Eng_ineA = Stgndby)
N EAF (EngineA = Failed)
o~ EAR (Eng!neA = Firing)
—»EBS) EBS (EngineB = Standby)
N EBF (EngineB = Failed)
TN EBR (EngineB = Firing)
—+CO) CO (Camera = Off)
_/
MAINTAIN (EAF
| (EAS AND CO) (EAF)
7 N
[— ~
\ N
Y (EAR)
o EAS AND CO N

(EAF AND EBS AND CO)
‘ EAF AND EBS
AND CO

€9

18

i ""'_.1'1:' Control Program Overview E
Illll CSAIL AP0

» Control programs can be viewed as deterministic state
transition systems, acting on the plant by asserting and
checking constraints in propositional state logic

» Propositions are assignments of state variables to values
within their domains

» Reactive combinators allow flexibility in expression of
complex system behavior and dynamic relations

» Similar to constructs in:
— Concurrent Constraint languages (CC, TCC, PCCP, etc.),
— Robotic execution languages (TDL, RAPs, ESL, etc.),
— Synchronous programming languages (Esterel, Lustre, Signal, etc.)
— Graphical specification representations (StateCharts, etc.)

19

ool Model-based Program E
Illll CSAIL [=
M odel-based
Program
Control
Program
M odel-based
I) | Executive
1| System |,
! Model 1
1]
System Under Control
Observations Commands

20

10

H] .
t]’1 Concurrent Constraint Automata E
Illll CSAIL | o | B

 Variant of Factored POMDP (component models, state not
directly observable, next state probability distribution
depends on current state and control actions)

Engine Model Camera Model
C:‘ (power_in = zero)
o
(shutter = closed)

Off Resettable

(eng_cmd = off)

(eng_cmd = standby)
(thrust = zero) &
(power_in = nominal)

Standby [

0.01

(cam_cmd =
turnon)

0.01

(cam_cmd =

(flow_in1 = nom) turnoff)

& (flow_in2 = nom)
& (eng_cmd = fire)

(cam_cmd = reset)

(eng_cmd = standby)|

(thrust = full) & On

(power_in = nominal) &
L. C’ (flow_in1 = nominal) & (power_in = nominal) &
Firi ng (flow_in2 = nominal) (shutter = open)

lr-i] gh .
i) Concurrent Constraint Automata E
IIIII CSAIL | = |

* Variant of Factored POMDP (component models, state not
directly observable, next state probability distribution
depends on current state and control actions)

Engine Model e —, Camera Model
. (power_in = zero)
nominal :
modes | Off modal

constraints off Resettable

(eng_cmd = off)

(eng_cmd = standby) Falled

guarded

0.01

prObabi”StiC (catrSﬁﬁ)T\;jz
Y 0.01
transitions y e (cam_cmd =
& (flow_in2 = nom) turnoff) cam_cmd = reset)

& (eng_cmd = fire)

fault
(thrust = full) modes On

(power_in = nom
n (flow_in1 = inal) & [(in=
Flrlngc' o 3 = o | | powerin =nom modal rewards

(flow_in2 = nominal) (shutter = op

(eng_cmd = standby)|

P.=99.9%

InE RS . . :
:,t_-,'__:jj..;]__j; Translating CCA to Propositional Logic
Miircs..

[~}

JPuU

» System Model captured as CCA

Oxidizer tank Fuel tank Valve

® @ |-
1 L b
Open‘ |Close

' Stuck

CIosed@‘ closed

Stuck
open

0.01

\ inflow = outflow = 0

23

I H
f,t_ M| Translating CCA to Propositional Logic
IIIII CSAIL

&

JPL

» System Model captured as CCA

» CCA representation translates directly to clauses in
propositional logic

* Logical representation is used by reasoning algorithm in
Deductive Controller

Oxidizer tank Fuel tank

mode = open = (Piy = Pou) A (fin = fou)

mode = closed = (f;, = 0) A (f,; = 0)

| 1
(mode = open) A (cmd-in = close) =
(next (mode = closed))
(mode = closed) A (cmd-in = open) =
(next (mode = open))

24

12

:"-1'_.1'-7'. Semantics of Model-based Programs @
Illll CSAIL -

* The power of Model-based Programming lies in its
rigorous underlying semantics
— Defines the theoretical underpinnings of the approach

— Allows us to derive useful properties of model-based
programs

— Allows us to make certain simplifying assumptions that
enable tractable on-line deduction

* Formal computational model has its roots in:
— Automata Theory
— Markov Decision Theory
— Control Theory

25

g Lo Control Program Semantics ﬁ
Illll tSAlL APU
Model-based Semantic Model: Deterministic Automaton

~ Program _ * program locations
: Control “state” of program at time t
= frgg_rain_ 2 * transitions between |ocations
conditioned on plant states
System * configuration _goals associated with each
Model program location
goal states for plant

Obg

26

LRyl

1&lAg] Control Program Semantics
Miircs..

[~}

JPU

» Control program represented as a deterministic
automaton:

set of program
locations

system states

CP=<Lg, Ap» Tpr Gep» 26 >

set of all feasible

initial program .
. config. goal
location I
9 (1) = Z
transitions between locations,
conditioned on state
27
i .
,t_ _".:]_'i System Model Semantics E
Illll CSAIL APU
M odel-based

Program

Control

Program Semantic Model: Factored POMDP
e « variables (state/control/observable)
I ; « state (assignments to variables)
1| System |, . ,
I Moddl ; * transition functions
L / * transition probabilities

' « observation probabilities
i e rewards on state
Observationg
28

14

i","-__'!_;f_-!'. System Model Semantics E
Illll CSAIL SRl

e Variables:
I = {I1°,11°,11°}
1 1 1

state control obs
vars vars vars

+ Factored POMDP:

%: full assignments o
over all vars in I1

X plant states s

X control actions p

X, observations o

SM:<2: T;P@1PT1PO1R>

transitions
TIX 2

initial state

transition prob || obs prob
prob P, (s,)

Pr(s’|s,)

R(s)

29

L' Model-based Program Semantics ﬁ
I csan APU

» Can view all possible evolutions of system state, given a
model-based program, in the form of a trellis diagram:

80 &M A0 §a+1)

30

15

t *1

Summary
Illll CSAIL

JPU

* Model-based program:
— specification of state intent (Control Program)
— specification of state behavior (System Model)

» Control Program:
— Textual (procedural) and graphical representations
— Hierarchical constructs provide flexibility & expressivity
— Semantically represented as a deterministic automaton

e System Model:
— Textual (logical) and graphical representations
— Compositional description of system provides modularity
— Semantically represented as a Factored POMDP

31

t alks

Up Next...
IIIII tsmL P

JPU

* Introduction to Model-based Execution:
— Control Sequencer
— Deductive Controller

o ——eE—_—_—_—_—_—_—_———— -~
M odel-based / M odel-based Executive \
Program 1 |
1 1
;g;tr:;ln i Control Sequencer 1
1 |
1 State esti matesT l Configuration goals 1
1 1
System 1 |
Model 1 Deductive Controller 1
1 |

\

System Under Control
Observations Commands

32

16

