
1

1

Model-based Programming

2

Outline

• Introduction & Overview
• Model-based Programming

– Control Programs: RMPL & HCA
– System Models: CCA
– Model-based Program Semantics

• Execution of Model-based Programs
• Fundamentals of Model-based Reasoning
• Modeling via State Analysis
• Advanced Methods
• Conclusion

2

3

System Under Control

Model-based
Program

Model-based Program

Control
Program

System
Model

CommandsObservations

Model-based
Executive

4

Control Programs

Code specifying reactive control
mechanisms:

• Concurrent Task Management
• Contingency Handling
• Resource Management
• Goal Achievement
• Constraint Maintenance

Control Programs refer to hidden states as if they were
directly observable & controllable;

(Let the Deductive Controller worry about hidden state…)

Model-based
Embedded Program

State
Plant

Hidden State
Model-based Executive

Obs Cntrl

3

5

Example

OrbitInsert()::
(do-watching ((EngineA = Firing) OR (EngineB = Firing))

(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Directly
monitors state

Issues goals
on state

6

Example

OrbitInsert()::
(do-watching ((EngineA = Firing) OR (EngineB = Firing))

(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Allows for
pre-emption…

Conditional
execution…

Parallel
execution…

And many other
features…

4

7

Reactive Model-based
Programming Language

next Adelay
if c thennext A elsenext Bconditional execution with default behavior
when c donext A temporally extended conditional execution

RMPL Constructs (Reactive Combinators)

whenever c donext Aiterated conditional execution

do A watching cpreemption
always Aiteration
A ; Bsequential composition
A , Bfull concurrency
unless c thennext Aguarded transition
if c thennext Aconditional execution
A maintaining cmaintenance constraint
gconstraint (goal) assertion

B
as

ic
C

on
st

ru
ct

s
D

er
iv

ed
C

on
st

ru
ct

s

8

RMPL – Alternative Syntax

(next A)delay
(if-thennext-elsenext c A B)conditional execution with default behavior
(when-donext c A) temporally extended conditional execution

RMPL Constructs (Reactive Combinators)

(whenever-donext c A)iterated conditional execution

(do-watching c A)preemption
(always A)iteration
(sequence A B)sequential composition
(parallel A B)full concurrency
(unless-thennext c A)guarded transition
(if-thennext c A)conditional execution
(do-maintaining c A)maintenance constraint
(g)constraint (goal) assertion

B
as

ic
C

on
st

ru
ct

s
D

er
iv

ed
C

on
st

ru
ct

s

5

9

Compiling RMPL to HCA

• Hierarchical Constraint Automata (HCA): graphical
specification language for control programs, in the
spirit of StateCharts

• Writable, inspectable by systems engineers
• Directly executable by Control Sequencer

10

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

6

11

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

maintenance
constraint

conditioned on state constraints

12

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

compact encoding: multiple locations
can be simultaneously marked

7

13

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

primitive
location

goal constraint
(hidden state)

act on hidden state

14

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

8

15

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

16

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

composite
location

9

17

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

transition

transition
guard

18

Compiling RMPL to HCA

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

10

19

Control Program Overview

• Control programs can be viewed as deterministic state
transition systems, acting on the plant by asserting and
checking constraints in propositional state logic

• Propositions are assignments of state variables to values
within their domains

• Reactive combinators allow flexibility in expression of
complex system behavior and dynamic relations

• Similar to constructs in:
– Concurrent Constraint languages (CC, TCC, PCCP, etc.),
– Robotic execution languages (TDL, RAPs, ESL, etc.),
– Synchronous programming languages (Esterel, Lustre, Signal, etc.)
– Graphical specification representations (StateCharts, etc.)

20

System Under Control

Model-based
Program

Model-based Program

Control
Program

System
Model

CommandsObservations

Model-based
Executive

11

21

Concurrent Constraint Automata

StandbyStandby

Engine ModelEngine Model

OffOff

((eng_cmdeng_cmd = off)= off)

((eng_cmdeng_cmd = standby)= standby)

0.010.01

(thrust = full) &
(power_in = nominal) &
(flow_in1 = nominal) &
(flow_in2 = nominal)FiringFiring

0.010.01

((eng_cmdeng_cmd = standby)= standby)

(flow_in1 = nom) (flow_in1 = nom)
& (flow_in2 = nom) & (flow_in2 = nom)
& (& (eng_cmdeng_cmd = fire)= fire)

(thrust = zero) &
(power_in = zero)

(thrust = zero) &
(power_in = nominal)

0.010.01

FailedFailed

Camera ModelCamera Model

OnOn

OffOff

((cam_cmdcam_cmd = =
turnoff)turnoff)

((cam_cmdcam_cmd = =
turnonturnon))

(power_in = zero) &
(shutter = closed)

(power_in = nominal) &
(shutter = open)

0.010.01

0.010.01

ResettableResettable

((cam_cmdcam_cmd = reset)= reset)

• Variant of Factored POMDP (component models, state not
directly observable, next state probability distribution
depends on current state and control actions)

22

Concurrent Constraint Automata

StandbyStandby

Engine ModelEngine Model

OffOff

((eng_cmdeng_cmd = off)= off)

((eng_cmdeng_cmd = standby)= standby)

0.010.01

(thrust = full) &
(power_in = nominal) &
(flow_in1 = nominal) &
(flow_in2 = nominal)FiringFiring

0.010.01

((eng_cmdeng_cmd = standby)= standby)

(flow_in1 = nom) (flow_in1 = nom)
& (flow_in2 = nom) & (flow_in2 = nom)
& (& (eng_cmdeng_cmd = fire)= fire)

(thrust = zero) &
(power_in = zero)

(thrust = zero) &
(power_in = nominal)

0.010.01

FailedFailed

Camera ModelCamera Model

OnOn

OffOff

((cam_cmdcam_cmd = =
turnoff)turnoff)

((cam_cmdcam_cmd = =
turnonturnon))

(power_in = zero) &
(shutter = closed)

(power_in = nominal) &
(shutter = open)

0.010.01

0.010.01

ResettableResettable

((cam_cmdcam_cmd = reset)= reset)

• Variant of Factored POMDP (component models, state not
directly observable, next state probability distribution
depends on current state and control actions)

modal
constraints

nominal
modes

fault
modes

modal rewards

guarded
probabilistic
transitions

Pτ = 99.9%

Pτ = 0.1%

12

23

Translating CCA to Propositional Logic

ClosedClosed

ValveValve

OpenOpen StuckStuck
openopen

StuckStuck
closedclosed

OpenOpen CloseClose

0. 010. 01

0. 010. 01

0.010.01

0.010.01

inflow = outflow = 0

Fuel tankFuel tankOxidizer tankOxidizer tank

• System Model captured as CCA

24

Translating CCA to Propositional Logic

Fuel tankFuel tankOxidizer tankOxidizer tank
mode = open ⇒ (pin = pout) Λ (fin = fout)

mode = closed ⇒ (fin = 0) Λ (fout = 0)

(mode = open) Λ (cmd-in = close) ⇒
(next (mode = closed))

(mode = closed) Λ (cmd-in = open) ⇒
(next (mode = open))

…

• System Model captured as CCA
• CCA representation translates directly to clauses in

propositional logic
• Logical representation is used by reasoning algorithm in

Deductive Controller

13

25

Semantics of Model-based Programs

• The power of Model-based Programming lies in its
rigorous underlying semantics
– Defines the theoretical underpinnings of the approach
– Allows us to derive useful properties of model-based

programs
– Allows us to make certain simplifying assumptions that

enable tractable on-line deduction

• Formal computational model has its roots in:
– Automata Theory
– Markov Decision Theory
– Control Theory

26

System Under Control

Model-based
Program

Control Program Semantics

Control
Program

System
Model

CommandsObservations

Model-based
Executive

Semantic Model: Deterministic Automaton
• program locations

“state” of program at time t
• transitions between locations

conditioned on plant states
• configuration goals associated with each

program location
goal states for plant

14

27

Control Program Semantics

• Control program represented as a deterministic
automaton:

CP = < Lcp , λcp , τcp , gcp , Σs >

initial program
location

transitions between locations,
conditioned on state

config. goal
()cp sg l ⊂ Σ

set of all feasible
system states

set of program
locations

28

System Under Control

Model-based
Program

System Model Semantics

Control
Program

System
Model

CommandsObservations

Model-based
Executive

Semantic Model: Factored POMDP
• variables (state/control/observable)
• state (assignments to variables)
• transition functions
• transition probabilities
• observation probabilities
• rewards on state

15

29

System Model Semantics

• Variables:

• Factored POMDP:

{ }, ,s c oΠ = Π Π Π

state
vars

control
vars

obs
vars

transitions
: sτ Σ → Σ

initial state
prob 0()P sΘ

transition prob
(' | ,)P s s µΤ

obs prob
(|)P o sΟ

state
reward

()R s

Σ: full assignments σ
over all vars in Π

Σs: plant states s
Σc: control actions µ
Σo: observations o

SM = < Σ , Τ , PΘ , PΤ , PO , R >

30

Model-based Program Semantics

• Can view all possible evolutions of system state, given a
model-based program, in the form of a trellis diagram:

16

31

Summary

• Model-based program:
– specification of state intent (Control Program)
– specification of state behavior (System Model)

• Control Program:
– Textual (procedural) and graphical representations
– Hierarchical constructs provide flexibility & expressivity
– Semantically represented as a deterministic automaton

• System Model:
– Textual (logical) and graphical representations
– Compositional description of system provides modularity
– Semantically represented as a Factored POMDP

32

Up Next…

• Introduction to Model-based Execution:
– Control Sequencer
– Deductive Controller

System Under Control

Model-based
Program

Control
Program

System
Model

CommandsObservations

Model-based Executive

Control Sequencer

Deductive Controller

Configuration goalsState estimates

