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Abstract

Autonomous off-road navigation of robotic ground vehicles has important applications
on Earth and in space exploration. Progress in this domain has been retarded by the limited
lookahead range of 3-D sensors and by the difficulty of preprogramming systems to under-
stand the traversability of the wide variety of terrain they can encounter. Enabling robots
to learn from experience may alleviate both of these problems. We define two paradigms
for this, learning from 3-D geometry and learning from proprioception, and describe initial
instantiations of them we have developed under DARPA and NASA programs. Field test
results show promise for learning traversability of vegetated terrain, learning to extend the
lookahead range of the vision system, and learning how slip varies with slope.

1. Introduction

Robotic ground vehicles for outdoor applications have achieved some remarkable suc-
cesses, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (?),
and off-road navigation on Earth (?). Nevertheless, major challenges remain to enable reli-
able, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D
perception of terrain geometry with imaging range sensors is the mainstay of off-road driv-
ing systems. However, the stopping distance at high speed exceeds the effective lookahead
distance of existing range sensors. Moreover, sensing only terrain geometry fails to reveal
mechanical properties of terrain that are critical to assessing its traversability, such as poten-
tial for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the
Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced sig-
nificant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots
today have very limited ability to discriminate traversable vegetation from non-traversable
vegetation or rough ground. It is impossible today to preprogram a system with knowledge
of these properties for all types of terrain and weather conditions that might be encountered.
The 2005 DARPA Grand Challenge robot race, despite its impressive success, faced few of
these issues, since the route was largely or completely on smooth, hard, relatively low-slip
surfaces with sparse obstacles and no dense, vegetated ground cover on the route itself.
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Figure 1: LAGR robot (left), Rocky 8 robot (center), and a simple view of their baseline
navigation software architecture (right). Both robots are just over 1 meter long.

Learning may alleviate these limitations. If 3-D geometric properties of obstacle vs.
non-obstacle terrain are strongly correlated with appearance in 2-D imagery (eg. color and
texture), then it may be possible to use close-range 3-D analysis to learn to predict the
traversability of terrain beyond 3-D sensing range based only on its appearance in imagery.
We call this learning from 3D geometry (Lf3D). In principle, information about mechanical
properties of terrain is available from low-level sensor feedback as a robot drives over the ter-
rain, for example from contact switches on bumpers, slip measurements produced by wheel
encoders and other sensors, and roughness measurements produced by gyros and accelerom-
eters in the robot’s inertial measurement unit (IMU). Recording associations between such
low-level feedback and visual appearance may allow learning to predict mechanical proper-
ties from visual appearance alone; we call this learning from proprioception (LfP).

While clustering, neural nets, and related algorithms with a learning component have
long been used for image classification in the context of terrain typing (?) and road-
following (?), learning specifically to assess terrain traversability for ground robots has only
begun to be addressed very recently (Wellington, 2005). Discuss related work...

This paper outlines some key issues, approaches, and initial results for learning for off-
road navigation. We describe work in the DARPA-funded Learning Applied to Ground
Robotics (LAGR) program and the NASA-funded Mars Technology Program (MTP). Both
use wheeled robotic vehicles with stereo vision as the primary 3-D sensor, augmented by
an IMU, wheel encoders, and in LAGR, GPS; they also use closely related software archi-
tectures for autonomous navigation (Figure 1). Section 2 outlines these architectures and
how they need to change to address Lf3D and LfP. Sections 3, 4, and 5 present results of
our initial work on Lf3D and two flavors of LfP, one aimed at learning about vegetation
and the other aimed at learning about slip. Our work to date necessarily stresses fairly
simple methods with real-time performance, due to the demonstration-oriented nature of
the LAGR and MTP programs; nevertheless, the results justify the value of our approaches
and their potential to evolve to more sophisticated methods.

2. Architectures and issues

The baseline navigation software architecture in both the LAGR and MTP programs
operates roughly as follows (Figure 1). Stereo image pairs are processed into range imagery,
which is converted to local elevation maps on a ground plane grid with cells roughly 20
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Figure 2: Typical information zones from proprioception and stereo (image space, left; map
space, right), with specific numbers for the LAGR robot. See text for discussion.

cm square covering 5 to 10 m in front of the vehicle, depending on camera height and
resolution. Geometry-based traversability analysis heuristics are used to produce local,
grid-based, “traversability cost” maps over the same area, with a real number representing
traversability in each map cell. The local elevation and cost maps are accumulated in a
global map as the robot drives. Path planning algorithms for local obstacle avoidance and
global route planning are applied to the global map; the resulting path is used to derive
steering commands sent to the motor controllers.

Figure 2 gives a deeper look at information available from stereo vision and how this
relates to Lf3D, LfP, and richer local map representations. The near-field region is where
stereo vision gets range data of sufficient resolution to build a local elevation map; color and
texture information (collectively, “appearance”) is also available for insertion in the map.
The mid-field region is where the range data samples the ground too sparsely to create a
useful elevation map; image appearance is also available. The far-field region is beyond the
range of stereo vision (i.e. zero disparity), so only image appearance is available. To make
things concrete, in LAGR, the near-field is about 70% of the image, the mid-field is 7%, and
the far-field is 2%; conversely, on the ground plane, the near-field extends to about 10 m,
the mid-field from 10 to 50 m, and the far-field from 50 m to infinity (right side of Figure 2).
The inset at the bottom of the image in Figure 2 represents information available from the
proprioceptive sensors - the bumper, IMU, and wheel encoders.

Given this view, our problem can be cast as learning correlations between the adjacent
distance regimes in Figure 2: (1) between under foot and near-field (proprioception vs.
appearance plus rich geometry), (2) between near-field and mid-field (appearance plus rich
geometry vs. appearance plus poor geometry, and (3) between mid-field and far-field (ap-
pearance plus poor geometry vs. appearance only). In this process, the effective lookahead
distance of the sensors is extended by using the learned correlations to ascribe properties
sensed proprioceptively or geometrically in the closer zones to regions sensed just by ap-
pearance or weaker geometric perception in the more distant zones. Our ultimate goal is
to develop a theoretical framework for estimating terrain traversability T that unifies the
Lf3D and LfP concepts and encompasses slippage, sinkage, and obstacle compliance.

Framework for learning traversability

Traversability T is a random variable associated with a certain site s, either a pixel in
the scene or a cell in the map. T (s) always takes values in the unit interval, but depending
on context, we may take it to be binary (e.g., bumper hits) or real-valued (e.g., wheel slip).
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In making the link to path planning, it may be helpful to define T (s) as the probability that
the robot can successfully move out of a map cell s after deciding to do so. We could imagine
a physics-based simulation that would determine this self-transition probability given vehicle
and terrain parameters. Accumulating this T over a path would then yield the cumulative
probability of a successful sequence of moves.

Lacking such a model, we view T as a random variable to be predicted from correlated
information, where the predictor is in turn learned from training data. Our learning strategy
is to use high-quality (typically, nearer the robot, as in Figure 2) input examples to produce
training labels T̃ , which serve as proxies for the unknown T . The proxy labels are given to a
learning algorithm which trains a regression model T̂ that approximates T̃ . The regression
model is then used to drive the robot. In Lf3D, object location statistics {s}, specifically
elevation changes, are used to provide the proxy T̃ , which is estimated using appearance
information (normalized color in our case). In LfP, the proprioceptive inputs (e.g., bumper
hits and slip) are used to generate the proxy traversability index, which is then estimated
using the available appearance and geometry information from stereo images.

3. Learning near-field traversability from proprioception

In the LAGR program, we are using the LfP paradigm to address the key problem of
learning about traversability of vegetation. For robots in general, the bumper, IMU, and
slip measurements ultimately will all be important for this. In practice, for the robot and
terrain used in the LAGR program to date, the bumper provides most of the information,
so we currently model the proxy T̃ as a 0/1 quantity. Operationally, we gather samples of
T̃ by recording the location statistics of the brush we can and cannot push through.

A technical problem of blame attribution arises because roughly six map cells are over-
lapped by the bumper at any time, so the nontraversable samples are contaminated with
data from traversable cells. Heuristics alone may prove sufficient to narrow down blame to
one cell, or a constrained clustering approach may be needed to separate these two classes.
To avoid solving the blame attribution problem, initially we obtained training data from
hand-labeled image sequences: a human identifies a mix of traversable and untraversable
map cells.

Terrain representation

Elevation maps per se do not adequately capture the geometry of vegetated and forested
terrain. Three-dimnensional voxel density representations have been used successfully in
the past with range data from ladar (?). We are experimenting with such a representation
for range data from stereo vision. The space around the robot is represented by a regular
three-dimensional grid of 20 cm×20 cm×10 cm high voxels. Intuitively, we expect that only
low-density voxels will be penetrable (see Figure 3). The voxel density grid is constructed
from range images by ray-tracing: for each voxel, we record both the number of passes (rays
that intersect the voxel) and the number of hits (rays that terminate in the voxel). The
per-voxel density ρ equals the ratio of hits to passes. Since the ground may be non-planar,
we also identify a ground voxel g in each voxel column; we assume that this voxel represents
the surface of support for a robot traversing this column. The ground voxel is determined
using a simple heuristic that locates the lowest voxel whose density exceeds some preset
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threshold. Although calculating it is relatively complex, in practice the density estimate is
robust and rich in information.

Each map cell s has an above-ground density column [ρg(s)+1 ρg(s)+2 · · · ρ32]. For sim-
plicity, we have started with the following reduced feature set: ρ∗, the maximum density;
ρ∗∗, the next-highest; i∗, the height of ρ∗; and i∗∗. We have used ρ∗ and ρ∗∗ below, but ρ∗

and i∗ provide similar performance when used together. The average color within a map
cell would also be a good feature, but we have not used this in classifications yet.

Learning algorithm

Initially, we wanted to validate the use of the density features and to replace our existing
hand-coded, geometry-based traversability cost heuristic with a learned value. In this offline
context, training time is not an issue so we chose to use a Support Vector Machine (SVM)
classifier. We employed a radial basis function kernel, with the SVM hyper-parameters
estimated using cross-validation. The training data consisted of 2000 traversable and 2000
non-traversable examples, and the resulting model has 784 support vectors (SVs). The large
number of SVs for a relatively modest two-dimensional problem indicates a considerable
degree of overlap between the classes. Tests were performed on an independent image
sequence which contains roughly 2000 examples. We achieved a classification error rate of
14% on the test set, again indicative of strong class overlap from these limited features.

Classification is done at frame rates of 2–5 Hz, so SVM query time is an issue. We coded
the SVM into a lookup table (LUT) for speed and simplicity, but a reduced-set SVM would
be easy to substitute (Schlkopf, 1999). The continuous output f of the SVM is turned into
a traversability classification by thresholding. The results of SVM classification and the
LUT are shown in Figure 3. This system was used for path planning in LAGR test 5.

4. Learning mid-field and far-field traversability from near-field 3-D

geometry

To address another key goal of the LAGR program, we are using the Lf3D paradigm
to extend near-field range-based proxies T̃ to mid-field and far-field traversability estimates
T̂ . Here T̃ is a function of the heights of all pixels landing in a (20 cm)2 map cell. When
at least 10 pixels land in one cell, their height standard deviation becomes resolvable: a
large value indicates rough ground or obstacles. We use the standard deviation to compute
a traversability proxy in [0, 1] for the cell, which is associated with the appearance u of all
pixels mapping into that cell, thus providing a training set T of (u, T̃ ) pairs. We use this
T to select a function T̂ = T̂ (u) from appearance to traversability.

Currently, we use only two appearance-based features: the mean RGB color within a
map cell, normalized to sum to unity, leaving two degrees of freedom: normalized R and G.
Training data for the experiments described below was gathered from 10 consecutive frames
(∼4500 examples). We would like to retrain classifiers at each frame, so speedy training
and evaluation are required, prompting the reduction of the training set to a parameterized
model. Below, we consider two approaches: unsupervised clustering using k-means, and
supervised discriminant analysis with Mixtures of Gaussians (MoG); a close variant of the
first was used in LAGR test 7.

Unsupervised K-means
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Figure 3: Learning from proprioception. Top row: schematic illustrating the voxel density
map representation (left), sample camera image (middle), and its projection onto
a local map (each map cell is colored with the mean of all pixels projecting into
it). Bottom left: learned cost lookup table as a function of ρ∗ and ρ∗∗. Bottom
right: cost map computed from voxel densities; green is traversable, red is not.

The geometry-based proxy is itself heuristic, so we might prefer to use T̃ somewhat
weakly. We had success with unsupervised clustering of the input pixel appearance, followed
by deducing the per-cluster traversability from the average proxy value within each cluster.
That is, we discard the T̃ labels within T and perform a k-means clustering with K = 5
(e.g., Figure 4). The resulting traversability estimate is a weighted combination of the
per-cluster traversabilities

T̂ (u) =
∑K

k=1
T̃k exp(−‖u − µk‖

2/2λ2)
/

∑K

k=1
exp(−‖u − µk‖

2/2λ2),

where T̃k is the average traversability proxy value per cluster and µk is the kth cluster
center. To form a classifier and compute error rates, pixels with T̂ (u) ≥ τ are considered
traversable, otherwise not; τ is chosen so that 65% of the data is traversable. The parameter
λ is selected using cross-validation. Classification error is 7% with λ = 0.5. (Note: we report
within-sequence error rates because extrapolation is done within a single frame.)

Supervised MoG-based discriminants

It may be preferable to constrain the cluster membership a priori (using T̃ up front)
rather than extracting clusters after the fact. At the expense of some reliance on a prior rule
about association based on T̃ , we may extract more stable and homogeneous clusters. We
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Figure 4: Top row: K-means (left) and MoG (middle and right) algorithms. (??? how to
describe this). Bottom row: example image from the training set (left), K-means
classification results overlaid on that image (center), and map generated from this
classification (right). Note that this map extends through the mid-field region
(nearly 50 m). Pixels from the training set are shown in light green (traversable)
and red (non-traversable). Classified pixels are shown in blue (traversable) and
olive green (non-traversable).

have experimented with three approaches: introducing T̃ -based cannot-link constraints into
k-means (Wagstaff, 2001), stratifying the cluster memberships according to T̃ within the
EM algorithm in a semi-supervised framework (McLachlan, 2000, sec. 2.20) and adopting
a two-class discriminant-based approach with populations determined by T̃ .

In the discriminant approach, rough thresholds based on T̃ are used to form sets of
positive and negative examples: T0 = {(u, T̃ ) : T̃ ≤ τ}, T1 = {(u, T̃ ) : T̃ > τ}. We selected
τ = 0.4 so that 65% of T belongs to T1. It is also conceivable to define a “don’t-care”
traversability class by using separate thresholds. Two separate MoGs p0(u) and p1(u) are
fit to the two training sets, and we declare a pixel traversable if p1(u)/p0(u) > 0.65/0.35. We
have used K = 5 component, full-covariance Gaussian mixtures to parameterize each of the
two distributions, and fit the parameters by maximum-likelihood using the EM algorithm
(Figure 4). The test error achieved is 6%. Training time for N = 1000 is about 40 ms in an
unoptimized code. Evaluation time for 5000 pixels (about 9% of a 192×256 pixel image) is
less than 10 ms, which easily permits training and evaluation at our path-planning rates of
2–5 Hz.

Putting traversability in the map
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Note that both approaches classify terrain in the image space: each pixel is assigned a
traversability estimate T̂ . To use this result for navigation, these values must be projected
into the map. There are two issues: how to combine traversability estimates and proxies,
and how to determine the 3D location of image pixels. For data fusion, we currently
allow traversability proxies derived from geometry (the near-field training set) to override
traversability estimates inferred from appearance (the mid- and far-field query set). To
project pixels from the image into the map, when the pixel has a non-zero disparity (mid-
field), 3D locations are computed by triangulation. Because of range uncertainty, this
leads to maps with more blur with increasing range; at present, this is unavoidable. When
disparity is zero (far-field), pixels can in principle be projected onto a nominal ground plane;
we are not yet using this region due to complications caused errors in the nominal ground
plane estimate.

The results of both algorithms are shown on Figure ??. The main limitation of these
methods at present is the low information content of the appearance features used. In-
troducing local texture measures should substantially improve classification accuracy and
robustness, at which point new algorithmic tradeoffs could be evaluated.

5. Learning slip from proprioception

Slip measures of lack of progress of the vehicle and can be defined as the difference
between the commanded velocity (estimated from vehicle kinematics) and the actual velocity
(estimated here using VO). Slip influences total traversability cost: the robot’s mobility on
certain terrains significantly degrades, especially as slope angle increases (Lindemann, 2005).
Thus, we seek to improve path planning by predicting slip before entering a given terrain.

Slip depends on terrain slopes, but the precise relationship varies across terrain types (Bekker,
1969), so both appearance and geometry are needed. Slip learning fits in to our proprio-
ceptive learning framework: information about the terrain geometry s and appearance u
of pixels within a map cell, collectively referred to as {(u, s)}, is measured from stereo
imagery. At training time, this information is correlated to the traversability proxy, the
rover’s slip, as the rover traverses the cell. At query time, slope and appearance alone are
used to estimate slip.

Slip learning framework

Slip is learned in a Mixture of Experts framework in which terrain is classified first using
appearance information and then the slip, as a function of terrain slopes, is learned (An-
gelova, 2006). The rationale for doing that is: 1) it is reasonable to assume that terrain
type and appearance are independent of slope; 2) introducing this structure helps constrain
learning to better balance limited training data and a potentially large set of texture fea-
tures. Here we focus on learning slip as a function of slopes when the terrain type is known.
We briefly outline the terrain type classification algorithm, which is a subject of our current
work.

Slip is a nonlinear function of terrain slopes. We use the Locally Weighted Projective
Regression method (Vijayakumar, 2005), preferring it to other nonlinear approximation
methods, like Neural Networks, because it can be easily extended to online learning. The
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Figure 5: Learning slip as a function of slopes: soil (left), gravel (right).
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Figure 6: Example terrain classification results: sand, soil, and gravel.

slip T̃ is learned in terms of input slopes x via

T̂ (x) =
∑C

c=1
K(x,xc)

(

bc
0 +

∑r

i=1
bc
i 〈p

c
i ,x〉

)

where K(x,xc) = exp(−‖x − xc‖
2/λ) is a receptive field centered about xc, controlling

the dominant local linear regression model, and r is the number of linear projections (here
≤ 2). Learning proceeds by assigning receptive fields to cover populated regions of the
input domain and then fitting a linear regression (i.e., estimating factor loadings bc

i and
directions pc

i) locally in each receptive field. This fit weights all training points with their
corresponding distance to the receptive field center xc, thus giving more influence to the
nearest points (Angelova, 2006, has details). The receptive field size λ is selected using a
validation set, and varies dependent on the dataset.

We compute slopes within a 2D map cell representation. Cells are 0.2 m×0.2 m and the
map looks 15m ahead. The minimum-square-error plane fit at cell s is computed using the
mean elevations of cells in the 6×6-cell neighborhood of s. The slope is then decomposed
into a longitudinal (along the direction of motion) and a perpendicular lateral component,
corresponding respectively to the pitch and roll of the vehicle. VO is used for localization
and the vehicle’s attitude (received from the IMU) gives an initial gravity-leveled frame to
retrieve correct longitudinal and lateral slope angles from the terrain (Angelova, 2006).

Figure 5 shows learning and prediction of longitudinal slip as a function of slopes for soil
and gravel terrains. Training is performed on the first portion of the traverse, and testing
on a later, nonoverlapping, portion. The average root mean squared (RMS) error is given
atop each plot. Slip is normalized by the average velocity per step to get the results in
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percent. It is apparent that the right qualitative relationship between slope and slip has
been captured. Note that there are (roll,pitch) angle combinations in the gravel test data
which were not seen during training, which requires good generalization. The results are
very promising given the noise level and the limitations of the training data. Figure 6 shows
preliminary terrain classification results using a texton-based approach (Varma, 2005) in the
image plane. Despite some classification errors, the method is successful in discriminating
visually similar terrains at close range which serves the purposes of slip prediction. For
now, the system is working offline, but we are exploring methods to speed up the terrain
classification algorithm and integrate it into the navigation system.

6. Discussion
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