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Abstract - An important property of a piezoelectric 
material for practical applications is its ability to 
generate and to detect stress waves, i.e. to convert 
electrical energy into mechanical energy and vice 
versa. As it is well known, the electromechanical 
coupling factor IC fully characterize this energy con- 
version under static conditions. In a previous work 
we demonstrated that, like in the static conditions, it 
is possible to define the k factor in dynamic situa- 
tions as ratio of energies (k,,)); we also showed that k,,, 
is proportional to the static material coupling factor 
(k,,J of the considered 1-D vibration mode, and the 
proportionality coefficient does not depend on the 
mode. In this work we show that the definition of k, 
as ratio of energies can also be extended to lossy ma- 
terials (k,,]); the losses are accounted by considering 
complex quantities for the elastic, dielectric and pie- 
zoelectric material constants. The obtained result is 
that k,,, is proportional to the material coupling factor 
k,,,, which in this case is a complex parameter, and 
the proportionality coefficient is the same of the case 
without losses. 

I. INTRODUCTION 

In the current IEEE Standard on Piezoelectricity [l], 
section 5.4 defines the quasistatic material coupling 
factors (k,J for a loss--less material in terms of en- 
ergy ratio of a piezoelectric material subjected to 
specific boundary conditions. In the derivation of 
these factors a mechanical stress (or an electric field) 
is applied to an extreme value under a specific elec- 
trical (or mechanical) boundary condition and the en- 
ergy density is calculated. At the extreme value the 
boundary condition is changed and the stress (or 
field) is removed and the energy density is again cal- 
culated for the decreasing applied stress (or field). 

The difference in the energy densities of the sample 
is then related to the conversion of mechanical to 
electrical (or electrical to mechanical) energy that 
occurred in the sample and delivered to an ideal elec- 
trical (or mechanical) load. This approach was ini- 
tially developed in order to give a physical signifi- 
cance to these coupling factors, rather than just con- 
venient constants that appear in various derivations. 
In a previous work we demonstrated that, like in 
static conditions, it is possible to define the k factor 
as ratio of energies also in dynamic situations [2]. 
Indeed for a loss less piezoelectric element in free 
oscillation, mechanically and electrically insulated, 
the k factor can be defined as the square root of the 
ratio of the converted electrical energy to the total 
energy involved in a transformation cycle, i.e. the ki- 
netic energy. By means of 1-D distributed models, 
we showed that these results can be applied to piezo- 
electric elements vibrating both in a longitudinal (for 
example length extensional) and a transverse (for ex- 
ample length transverse) mode, and that the obtained 
results are proportional to the appropriate k, [3]. In 
this work we extend these definitions to lossy mate- 
rials: we compute k,,, for a piezoelectric element vi- 
brating in the length longitudinal mode and for an 
element vibrating in the length transverse mode. 

11. THE DYNAMIC COUPLING FACTOR FOR LONGITU- 
DINAL MODES 

In order to compute the electromechanical coupling 
coefficient when the piezoceramic element is in os- 
cillation, let us consider, a piezoelectric bar of length 
I along z (or 3 direction), with its end faces elec- 
troded and with its cross section A of small radius, 
compared with the length (see Figure 1). Due to the 
1-D geometry, the piezoceramic material axial isot- 



ropy and the electrical and mechanical boundary 
conditions, the element can be described by a one 
dimensional stress-strain system and therefore by 
two scalar constitutive equations [4]: 

Fig. 1. Geometry of a piezoelectric bar vibrating in 
the length extensional mode. 

As it is well known, in lossy systems D and E, like S 
and T, are out of phase, therefore, in order to account 
losses, a complex notation can be introduced for the 
elastic, dielectric and piezoelectric constants [5,  61: 

For this propagation mode the wave equation can be 
written as [4]: 

where c3 (z, t )  is the particle displacement in the z di- 
rection. The propagation velocity is: 

v 3 = / r r , p .  1 
(7) 

In order to solve the differential equation ( 6 )  we op- 
erate in the Laplace (s) domain; in this domain (6) 
becomes: 

where Z7 (s, t )  is the Laplace transformed of c3 (z, t) .  
Imposing stress-free conditions on the two terminal 
faces (T.? (0) = T3 ( I )  = 0) and supposing a constant 
(in the Laplace domain) excitation (D3 = Do), the 
solution of the wave equation (8) is: 

where & = (s I> / v3. From (9)  the particle velocity and 
the strain in the z direction can easily be computed: 

The electric field E3 can be evaluated by the consti- 
tutive equation (2): 



By integrating the electric field along z between 0 
and 1, we obtain the voltage between the two elec- 
troded surfaces of the bar: 

In a previous work [2] we demonstrated that, for a 
loss-less piezoelectric element in free oscillation, 
mechanically and electrically insulated, the coupling 
factor in dynamic conditions can be defined as the 
square root of the ratio between the converted elec- 
trical energy density (w,) and the total energy density 
involved in a transfomiation cycle, i.e. the kinetic en- 
ergy density (M+J: 

In the present case the energy densities wk and w, are 
complex quantities and can be computed by using 
(10) and (13): 

Y 
E &  

1 
where C,, =- A is the so called “clamped” capaci- 

tance of the element. According to IEEE Standard on 
piezoelectricity [ 13, in order to compute the electro- 
mechanical coupling coefficient, the element must be 
mechanically and electrically insulated from the sur- 
rounding, therefore the ratio w, /wk  must be com- 
puted in this conditions. In the present analysis the 
element is mechanically insulated because we im- 
posed stress free conditions; because the electrical 
boundary conditions (D3 = Do) impose an exciting 
current, the element can be considered electrically in- 
sulated when the input current goes to zero, or, 
equivalently, when the electrical input impedance 

goes to infinity. The electrical input impedance is 
given by: 

From previous equation we can be observe that the 
poles of the input impedance are: 

(1 8) 
V 

SI, ( )  = 0 ; S/),, = i n r7c 2- 
1 

with n integer and positive. We are obviously inter- 
ested to solutions s and we can compute the elec- 
tromechanical coupling factor as: 4” 

This result has the same expression of that obtained 
in the case without losses (see [2]): 

in eqn. (19) are present the complex expressions of 
the material constants taking losses into account. It 
must be noted that the dynamic coupling factor is 
proportional to the material coupling factor, but it is 
smaller of about 10 % because in the dynamic case 
not all the involved energy is electrically (or me- 
chanically) coupled, due to the sinusoidal electrical 
and mechanical variables distribution. The mechani- 
cal and dielectric losses are usually given in the ma- 
terial data sheets by piezoceramic manufacturers in 
terms of the mechanical quality factor Q,,, and the di- 
electric loss tan& these parameters can be easily re- 
lated to losses defined in ( 3 )  and (4): 

D 1 S = arctan( - -) 
Q, 

dS = arctan(-tand) 

and k,  can be expressed as a function of Q,,, and 
tan& 



Figure 2 shows the behavior of the electromechanical 
coupling factor, normalized to the value without 
losses, as a function of mechanical losses, when 
tanS=O; we report k,,, only for small QNI values be- 
cause only for QIl<5 there is an appreciable influ- 
ence of the mechanical losses on the coupling factor. 
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Fig. 2: Behavior of k,, (normalized to the value with- 
out losses) as a function of mechanical 
losses, when tanS=O. 

It can be observed that the imaginary part of k ,  is not 
negligible only for Q,,,<2.5 and therefore the cou- 
pling factor is practically a real quantity also when 
the mechanical losses are considered. Figure 3 shows 
the behavior of the electromechanical coupling fac- 
tor, normalized to k,,., as a function of dielectric 
losses when Q/,l=m, as it can be seen, also in this 
case the imaginary part of k,, is not negligible only 
for tan6values never shown by real piezoelectric ma- 
terials and therefore the coupling factor can be con- 
sidered a real quantity also when electric losses are 
accounted. As it is well known, in real piezoelectric 
materials are present both mechanical and electric 
losses and therefore it is interesting to study the be- 
havior of the electromechanical coupling factor con- 
sidering both these quantities. Figure 4 shows the be- 
havior of k,,,, also in this case normalized to k,,, as a 
function of Q,l,, with various values of tand As it can 
be seen, the differences between the real part of k,,, 
and IC,,, are not negligible only for el,, values less than 
5 and tan6 values greater than 0.2; it must be also 
noted that the two losses compensate each other. In 

order to put in a more evidence the influence of the 
material losses on the coupling factor we computed 
d k  = IRe[k,] - /c,,l*100; Figure 5 shows the obtained 
result. As it can be seen, the electrical losses have a 
small influence on k,,: for Qm>3.2 d k  varies less 
than 1 % when tan6goes from 0 to 0.2; further, dk 
becomes more than the 10 % only for Qm<0.9. In 
Figure 5 it is more evident that the two losses com- 
pensate each other: for Qm<5,  if we keep Qm con- 
stant the increase of tan6produces a decrease of dk. 

11. THE DYNAMIC COUPLING FACTOR FOR 
TRANSVERSE MODES 
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Fig. 3: Behavior of k,, (normalized to the value with- 
out losses) as a function of dielectric losses, 
when Qm = co. 
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Fig. 4: Behavior of k,,, real part (normalized to the 
value without losses) as a function of me- 
chanical losses, computed with various Val- 
ues of tan8 



. 

I n  order to show that the previous results are inde- 
pendent on the wave propagation direction, we coin- 
puted the dynamic coupling factor for a piezoelectric 
element vibrating in the length transverse mode. Let 
LIS consider a piezoelectric bar with its length d along 
the x direction, with the electroded surfaces normal 
to the z direction (the polarization direction) and with 
both cross-sectional dimensions a and b small com- 
pared with d (see Figure 6); applying the same ap- 
proach as in  the previous section and taking into ac- 
coiint that the electrical boundary conditions impose 
a constant (in the Laplace domain) electric field 
(E3 = Eo), the (total) kinetic energy density is: 

(24) 
1 df ,  9, -sinh9, 

3, cosh' 1 
2 

W P ( S )  =-- 4 &SI< 9 E ; ?  

while the (converted) potential electrical energy den- 
sity is: 

where 

is the static (material) coupling factor for this vibra- 
tion mode, computed taking the losses into account, 
in fact it has the same expression given i n  [4], but 
with the complex material constants. I n  this case the 
electrical boundary conditions impose an exciting 
voltage and therefore the element can be coilsidered 
insulated when the input voltage goes to zero, or 

~ t a i i  S = 0 
tan S = 0.2 
tali 6 = 0.4 

- 
. . . . . . . 

Fig. 5 :  Percent variation of the k,,, real part in  respect 
to k,,, as a function of mechanical losses, 
computed with various values of the tan6. 
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Fig. 6: Geometry of a piezoceramic element vibrat- 
ing i n  the length traiisverse mode. 

, equivalently, when the electrical input admittance 
Y, (s) approaches infinity; the poles of Y, (s) are: 

( 3  0) ' VI 

1 
sp0 = 0 ; sp,, = z n n- . 

The electromechanical coupling factor is given by: 

We can conclude that, for one dimensional vibration 
modes, longitudinal or transverse, the dynamic cou- 
pling factor is related to the appropriate complex ma- 
terial coupling factor by the proportionality coeffi- 
cient Ji IT .  

IV. CONCLUSIONS 

In this work the definition of the electromechanical 
coupling factor (k)  as ratio of energies, is extended to 



the dynamic case and to lossy materials: we showed 
that the coupling factor can be computed as the 
square root of the ratio between the converted (elec- 
trical) and the total (kinetic) energy involved in a 
transformation cycle. We have showed that the k fac- 
tor computed in dynamic conditions k,, is related to 
the static (material) parameter k,, by a proportionality 
coefficient: 

The proportionality coefficient takes into account 
that in the dynamic case not all the involved energy is 
coupled, due to the sinusoidal variables distribution. 
Both k,,, and k,,, are coinplex quantities related to the 
complex material parameters taking the losses into 
account. We computed both the material and the dy- 
namic coupling factors as functions of mechanical 
and electrical losses; as expected from a physical 
point of view, both these parameters decrease in- 
creasing losses and the imaginary part of both k,, and 
k, is comparable with the real part only for high loss 
materials ( QOl < 5 and tali& 0.2). The resumed results 
were obtained by means of the l-D distributed mod- 
els describing the vibration of a piezoelectric element 
in the length extensional and the length transverse 
mode, showing that (32) is independent on the vibra- 
tion mode. 
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