
Defect Measurement and Analysis of JPL Ground Software:
A Case Study

John D. Powell & John N. Spagnuolo Jr.

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Rive

Pasadena, CA 91 109
M / S 125-233

Phone: 818-393-4355

Focus Issue:
Software and mission assurance, system integration, and testing

Abstract

Ground software systems at JPL
must meet high assurance standards
while remaining on schedule due to
relatively immovable launch dates for
spacecraft that will be controlled by such
systems. Toward this end, the Software
Quality Improvement (SQI) project’s
Measurement and Benchmarking
(M&B) team is collecting and analyzing
defect data of JPL ground system
software projects to build software
defect prediction models. The aim of
these models is to improve predictability
with regard to software quality activities.
Predictive models will quantitatively
define typical trends for JPL ground
systems as well as Critical
Discriminators (CDs) to provide
explanations for atypical deviations from
the norm at JPL. CDs are software
characteristics that can be estimated or
foreseen early in a software project’s
planning. Thus, these CDs will assist in
planning for the predicted degree to
which software quality activities for a
project are likely to deviation from the
normal JPL ground system based on
pasted experience across the lab.

The case study discussed in this
abstract will illustrate analysis of a

relatively rich source of JPL defect data
for ground system software. This data
allows conclusions to be drawn
regarding:

Effort to repair defects leading to a
generalized cost metrics for both the
test and operations phases
The use of CDs such as personnel
turnover and experience resulting in
higher defect densities for portions
of the software system
The use of the CDs describing
subsystem interconnectivity and
complexity resulting, on average, in
unusually high levels of effort to fix
defects based on the size of a
subsystem
The variations in the ability or
inability of defect trends to remain
consistent during both software
testing and operations.
Preliminary predictive metrics
regarding defects of varying types
and the amount of effort associated
with repairing those defect in
software code of a given size.
Once access to a project’s defect data

has been granted, the methodology used
to collect and analyze defect data for
projects at JPL can be best described as a
four-part process. First, to the extent that
the data will allow, the defects are

Figure 1: Defect Classification Hierarchy

characterized according to a
classification hierarchy. (See Figure 1)
The Hardware defects are eliminated
from consideration. Then the software,
as a whole is classified as either flight
software, ground software or instrument
software. Second, the software is
decomposed into logical units referred to
as Software Development Sets (SDS).
An SDS is similar, but not necessarily
identical to a Computer Software
Configuration Item (CSCI). It is at the
SDS level where the defect
characteristics are identified for each
software defect. Third, the - characteristics are then combine with
other characteristics such as software
size or test phase of discovery to for
relationship that are normalized across
SDSs. Forth and finally, the defect
characteristics and relationships are
grouped by software versions, releases
andor builds to examine trends over
time.

The desired set of data with respect
to each defect include:

Test phase of discovery for a defect
Development phase of introduction
(Requirements, Design, Code &
Test) for a defect

Effort to fully repair the defect.

ffect

Criticality of the defect

Desired data regarding the overall SDS
in which the defect resides includes 1)
software size (KSLOC), 2) Complexity
(CPLX from COCOMO), 3)
Interconnectivity (Coupling). The
combination of defect data and SDS data
allows relationships for the software as a
whole to be examined for trends. The
temporal groupings of interest involve
grouping the date by version, build,
release etc.. . to examine relationship
trends over time.

The case study project data is taken
from a JPL ground system and consists
of 580 defects
0 453 defects recorded during the test

phase of development
127 defects recorded during system
operations.
The overall defect density was 1.2

defects per LKSLOC. It was discovered
that the effort to repair defects during
operation of the ground software system
was approximately 50% greater than that
of defects found during software testing.
(See Figure 2) This is largely due to a
high percentage of defects occurring in
software test that took less than 8 hours
of effort to repair. Roughly 70 'YO of the
defects found in test fell into the less-
than-8-hours-to-repair category while
less than 40% of the operations defects

TEST / OPS Work Hours's

- 60%
- 40%

20% --

4 8 12 16 24 32 40 240More

I Hours to fix pfr

0 FrequencyOPS
0 FrequencyTEST
- - C u mu I at i ve %TE ST - Cumulative%OPS

Figure 2: Effort to Repair defects in Test versus Operations

120

100

0
0

I Number of Probls Reports I

Figure 3: Defect Densities for Each SDS I
&-

/- could be group in the 8 hours or less
category. In order to comparably
encompass approximately 70%
operations defects, all categories up to
and including the 16-hours-or-less
category must be included. It can be
observed that a general linear defect
density trend exists when the number of
problem reports is plotted against
LKSLOC. There exists one exception to
this trend in the case study project. (See
Figure 3) The outlier is explained by
CDs having to do with the fact that
wholesale turnover of the part of the
team working on that portion of the
system occurred and the new team had
far less experience that the original
development team. The data in the case
study goes on to show that while this
outlying portion of the system had an
inordinate number of problem reports it
did not require more than the average

number of work hours to repair them.
Therefore the allocation of personnel to
repair defects based on the number of
defects in existence is not always a
proper use of resources. Various CDs
and quantifiable data must be consulted
in order to make informed decisions
about resource allocations to quality
activities throughout the software
system. Fortunately, many of the CDs
lend them self to early estimation before
the software system enters the later test
phases of the development lifecycle.

Acknowledgement

The work described in this abstract was
carried out at the Jet Propulsion
Laboratory, California Institute of
Technology, under a contract with the
National Aeronautics and Space
Administration.

