
1

RTSJ Memory Areas and Their Affects on the
Performance of a Flight-like Attitude Control

System
Albert E Niessner, Edward G. Benowitz

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91 109

{ Al.Niessner,Edward.G.Benowitz } @jpl.nasa.gov

Abstruct- The two most important factors in improving
performance in any software system, but especially a real-
time, embedded system,%?knowing which components
are the low performers and knowing what can be done
to improve their performance. The word performance
with respect to a real-time, embedded system does not
necessarily mean fast execution, which is the common
definition when discussing non real-time systems. It also
includes meeting all of the specified execution dead-lines
and executing at the correct time without sacrificing non
real-time performance. Using a Java prototype of an
existing control system used on Deep Space 1[1], the effects
from adding memory areas are measured and evaluated
with respect to improving performance.

I. INTRODUCTION

A. Goal

Many features are added to the Java virtual ma-
chine and libraries through the Real-time Specifi-
cation for Java[2] (RTSJ) with the intent to im-
prove the real-time performance of Java. One of the
more interesting features is the addition of scoped
memory, where the intent is to separate functional
regions of the user’s application from interactions
with the garbage collector (GC). In theory, a scoped
memory area is entered prior to the execution of a

functional region and exited after the region. The
functional region does not interact with the GC
because reclamation occurs when the thread count
in a scoped memory region goes to zero and is
performed without the aid of the GC. Of course,
allocating and reclaiming memory without the aid
of the GC means that there are rules on cross
referencing memory areas that are detailed in the
RTSJ. The goal of this work is to demonstrate that
the intent of the scoped memory area holds true with
“real world” software.

B. Approach

A Java prototype of the Deep Space 1 attitude
control system was developed in order to show
that Java is usable in the production of space-
craft software. The prototype was profiled on the
desktop to measure memory and processor usage.
The profile information shows that almost all of
the garbage collected memory is allocated in the
portion of the system that computes the output
response from the sensor input - the control law.
The excessive allocation is due to the choice of
architecture for the prototype which forces an im-
mutable implementation of a physical units package.

mailto:jpl.nasa.gov

2

The physical units package is used extensively when
converting from the input of angular velocity to the
command thrust of each individual thruster. Hence,
the control law allocates enough data to activate
the GC in about 3 cycles. The software was then
adapted to include placing the control law within
a scoped memory block whose size was larger than
required as measured from the profiling and placing
instrumentation in critical parts of the system. The
latter adaptation was done because there are no tools

Implementation[3] of the RTSJ (RI).

Fig. 1. JVM 1.4.1 Latency Histogram
5

4 5

4

35

-
2 5

3 2

d

1

0 5

0
0 0 2 0 4 06 0 8 1 1 2 1 4 1 6 1 8 2 available for profiling with Timesys’s Reference Ttme (mlllasconds)

C. Tools

COTS graphical development tools were used
extensively in this project. Specifically, the open-
source Eclipse[4] integrated development environ-
ment provided graphical code editing, browsing,
debugging, and refactoring capabilities. Headway’s
Review[S] product was used to graphically in-
spect our design, plan refactoring, and allow us
to maintain a consistent architecture. Additionally,
JProbe[6] was used to examine memory usage and
to identify critical regions for future optimization.
Lastly, Timesys’s Reference Implementation[3] of
the RTSJ is used because it is the only fully func-
tional, freely available implementation of the RTSJ.

11. MEASURING TIME

The original intent was to use the clocks and
date functions provided by Sun’s JVM and the RI.
However, both of these implementations limit the
time resolution to a millisecond and the smallest
time scales being measured are hundreds of mi-
croseconds. Therefore, a simple JNI interface to
the Linux time services was developed which has a
microsecond resolution. This section is devoted to
the characterization of the JNI interface with Sun’s
JVM and the RI, using the same shared libraries and
byte code for all tests.

A. Using Sun’s JVM 1.4.1

As can be seen from the histogram (see Fig.
l), using either the Mandrake 9.0 stock kernel or
the Timesys real-time Linux kernel version 3.2 has
little affect on the latency where almost all calls are
between 3 and 25 microseconds. It can also be seen
in figure 3 that there appears to be a periodic delay
associated with the Sun JVM which corresponds
to the third mode around 1.3 milliseconds in the
histogram. An attempt was made to profile this test
in order to determine if the third mode was related to
the GC, but the profiler measurement interfered with
the test and the results were less than clear. How-
ever, an analysis of the test software indicates with
a good level of confidence that the object allocation
rate corresponds to the the second mode, but the
analysis is not complete and is too speculative to say
conclusively that it is the GC. There are only minor
differences in results between the two kernels and
they all appear in the distribution of higher ordered
modes.

B. Using the RI

As can be seen from the histogram (see Fig.
2), the RI behaves wildly different from the Sun
JVM, where the main difference for the little bit
of code being executed is the HotSpot compiler.

3

Fig. 2. RI Latency Histogram commands the individual thrusters on the spacecraft
to exert the specified force. The control law takes
as input the latest sensor readings and the desired
attitude requirements, allowing it to compute the
desired force to meet its requirements. The full
loop does all of the management related tasks,
making sure that the other two components have
their necessary inputs and that all other management
tasks are made aware of what is happening.

Just as with the previous tests, the software is

kernel to the Timesys real-time kernel using Sun’s
JVM as a baseline. It is then tested with RI JVM
using none of the RTSJ features. The RI scheduler
is then added, followed by scoped memory areas.
Some of the results will then be compared to
highlight the most interesting details.

In order to execute the same code on both the
desktop and with the RI, an abstraction layer was
added to the system to separate the problem being
solved from any implementation of the desi ed
solution. There are two abstraction layers where& t-
are used during this test to change the behavior
or the Java prototype: a scheduler abstraction layer
and a memory area abstraction layer. The scheduler
abstraction layer basically delegates either to the RI
default scheduler or to a home-grown scheduler. The
home-grown scheduler was written not as a serious
scheduler but, rather, as a tool to allow the Java tools
available on the desktop to used with the prototype.
The memory area abstraction layer either delegates
to the RI memory areas when on that platform or
simply uses the heap when using Sun’s JVM.

5

4 5

4

35

-
d 3
8 25 - I
2 2

15

1

0 5

0
0 0 2 04 06 08 1 12 l 4 moved from a Mandrake 9.0 system with a stock

Time (milliseconds)

.

Given a very aggressive GC, the allocation rate links
the second or third mode to the garbage collector.
However, there is still an undetermined, systematic
error just as influential as the GC which is causing
the other mode. The large difference can be seen
in the first mode of the histogram, where the RI’s
distribution is much more Poisson than is Sun’s
JVM counterpart’ and is centered at a much higher
value. The best explanation for the constant offset
and wider distribution is the RI’s lack of HotSpot
or any other just-in-time compiler technology. Each
iteration of the loop in the RI is interpreted, while
only the first few in Sun’s JVM are interpreted
before they are compiled. However, expecting tran-
sient delays from the HotSpot compiler, the first 100
were ignored in all the tests, allowing the JVMs
to reach a steady-state condition before measuring
began. Hence, none of the delays seen should be
associated with HotSpot.

Le

111. MEASURING PERFORMANCE

The Java prototype being measured can be broken
A. On the Desktop into three distinct parts: the full software loop, the

control law, and the thruster command processing.
The thruster command processing portion takes as
input the desired thrust from the control law and

The performance chart (see Fig. 4) shows a
distinct improvement (roughly 4x) in the maxi-
mum processing time between the stock kernel and
Timesys’s real-time kernel. In any case, all cycles
were processed within their alloted time. It is also

‘It is expected that the first mode of the histogram for Sun’s JVM
is also Poisson, but at a much smaller scale like 2 to 50 microseconds.

4

Fig. 3. Latency Times

0.001 6

0.001 4

0.001 2

0.001

u
%

0.0008 v

i=

0.0006

0.0004

0.0002

0
20000

*
30000

I

l l

40000 50000

I
Desktop -

RTDesktop -
RI -

60000 70000 80000
Sample Number

important to notice that none of the delays over two
milliseconds occurred while the control law was in
operation, which is the heaviest allocation portion
of the system. Profiling also suggests the GC caused
the difference, but it cannot be stated conclusively.
If it really was the GC, the expectation is the GC
would activate during the heaviest allocation portion
of the system because memory was exhausted. 0th-
erwise, the processor duty cycle is less than 25%,
which leaves plenty of processing power for the GC
to complete. If the GC did not complete in time,
then the software would either process as normal or
report that a complete cycle was missed. The jitter
from the GC and the scheduler is ignored as long
as the cycle boundaries are not exceeded.

B. Using the RI

The performance chart (see Fig. 5) shows that
the RI, even without memory areas and the built-

in scheduler, is much more deterministic than Sun’s
JVM. The 100 millisecond spikes in the loop are
interactions with the GC, and those interactions that
are missing occurred in portions of the system that
are beyond the scope of this paper - namely, the
home-grown scheduler developed for the desktop
and the spacecraft simulator. It is interesting that
none of the GC delays occurred within the control
law itself; the reason has still not been identified.

C. Using the RI Scheduler

The home-grown scheduler was then replaced
with the RI scheduler. The performance chart (see
Fig. 6) shows the full interaction of the system
with the GC - the 120 millisecond spikes. Three
of the GC executions occurred while commanding
the thruster. There is a small bit of allocation (about
5% of one cycle) that takes place between the
completion of the control loop and the start of

Full Lmp -

1W 120 140

Fig. 6.
0.14

0.12

0.1

- 0.m - H
E
F 0.06

0.04

0.02

0

Cyde Number

(a) stock kemel

Full Lmp -

0 0 3

0 025

Cycle Number

(b) Timesys real-time kemel

Fig. 5. RI Performance

0 40 69 80 100 120 140
Cycle Number

5

IU Scheduler Performance

23 40 W 80 1W 120 140
Cycle Number

the thruster command. Hence, it is not possible
to determine if the GC execution occurred before
or after the thruster command in the other cycles.
However, the results from adding memory areas
would imply that the delays come after the thruster
command is executed and some cycle cleanup is in
progress.

D. Adding Memory Areas

Lastly, scoped memory areas were included in
the test system. The performance chart (see Fig.
7) does not contain all of the GC interactions,
which is a minor mystery. The RI scheduler is being
used, but there is a more processing taking place
because of the scoped memory area. Hence, it is not
too surprising that the interaction between the test
system and the GC changes. There are minor spikes
at the correct periodicity to be the GC is another
minor mystery. There is no reason to measure such
minor delay from the GC unless the GC only did
a partial reclamation before returning control to the
test software.

E. Comparing the Results

Comparing the full loop performance of each
platform (see Fig. 8) highlights four very interesting
details. First, the best loop time, even if it is less

Fig. 7. RI Memory Area Performance

- . I
20 40 w 80 1W 120 140

Cycle Number

deterministic, is using Sun’s JVM with Timesys’s
real-time kernel. Second, the loop processing time
increases as RTSJ features are used. Third, the
periodicity of the GC changes with schedulers - (3)
and (4) in Fig. 8 - and the period is smaller with the
home-grown scheduler even though the allocation
rate and volume are larger. Fourth, the periodicity
of the GC activity is the same between (4) and (5)
in figure 8, even though there is at least a 30%
reduction in allocation on the heap.

The fact that Sun’s JVM performs better than
the RI in these tests is not too disturbing. To
put this observation into perspective we need to
investigate three anomalies: One, the large variation
between (1) and (2) in Fig. 8 can be attributed
to the difference in background services that were
running simultaneously, which could have interfered
with the test; most notably, X11 was not active
with the Timesys real-time kernel. Two, the main
difference between (2) and (3) in Fig. 8 is just-
in-time compilation technology that is present in
Sun’s JVM and non-existent in the RI. Third, the
test does not stress the capabilities of the hardware
that the test was performed on; which is to say, the
load is less than 50% of the hardware’s capability.
Hence, while Sun’s JVM did better in this instance,
it probably would not scale with loading which a
full implementation of the RTSJ presumably would.

Fig. 8. Full Loop Comparison
(1) is Sun’s JVM 1.4.1 with Mandrake’s
kernel.
(2) is Sun’s JVM 1.4.1 with Timesys’s
kernel.

6

9.0 stock

real-time

Cycle Number

This observation does imply that the performance,
both in the real-time and non real-time sense, can
be significantly improved from compilation.

Using RTSJ features adds performance penalties.
Increased time with the addition of memory areas is
understandable because more checks are required in
order to detect illegal assignments across memory
barriers. The increase between choices of schedulers
is a bit more perplexing. The home-grown scheduler
is a very poor scheduler that uses very short sleep

for yielding control to the rest of the test system.
The sleep interval is notoriously poor with jitter
and this, of course, bleeds over to the home-grown
scheduler, which is why I called it very poor.
However, the difference between (3) and (4) in Fig.
8 indicates the home-grown scheduler requires less
processing power than the RI’s scheduler, which
surprised me because the home-grown scheduler

intervals, the smallest available period, as interrupts L

is poorly written, is a high allocation rate, and is
interpreted. The RI scheduler, on the other hand,
appears to be part of the binary distribution and is
interfaced through the JNI, which suggests that the
scheduler should be fast and efficient. Hence, the
penalty observation implies that one should measure
every feature before using it to improve performance
because it may not have the expected outcome.

The home-grown scheduler GC period is smaller
than the RI scheduler’s period. Again, since the RI’s
default scheduler appears to be a binary distribution
accessed via the JNI, then less allocation should be
taking place. Less allocation means that it would
take more cycles to allocate enough trash to activate
the GC. The incorrect change of periodicity is
simply an extension of the penalty observation and
implies the same consequences as well.

Significantly reducing heap allocations through
the use of scoped memory increases overall process-
ing time and the GC’s activation periodicity does not
change. This observation is contrary to the intent
of scoped memory regions and is more than just
an extension of the penalty observation. As Fig. 9
shows, the processing time of the control law is
affected by the GC when running with Sun’s JVM,
but the RI performance contains all of the same
features which are more than one cycle in width
with only a constant between them. The control
law is straight forward code with a single branch
that is clearly present around cycle 110, where the
type of compensator is changed. In the two cases
(3) and (4) in Fig. 9, it is believable that they both
have the same features since they both use the heap.
However, (5) in Fig. 9 has the same structure as (3)
and (4), which implies one of the following:

1) The structure is a function of reading the time
through the JNI and therefore appears in all
the RI runs. Fig. 3 contradicts this implication
as there is no frequency of delay and, since
the structure is defined by more than a single

Fig. 9. Control Law Comparison
See Fig. 8 for line definitions

0004

0 0035

0 003

0 W25

- 0002 E
00015

L, v >&+ A
0 001

Oooo5

0
0 20 40 Ea 80 1W 120 140

cycle Number

cycle, it is unlikely for a random process to
repeat so well over an extended time.
The use of the scoped memory area is erro-
neous and the heap is being used. This is un-
likely because an illegal assignment exception
had to be fixed prior to the test working.
Scoped memory is strongly related to the
heap and therefore exhibits some of the same
features, but, at the end of the day, it is
independent of the heap and the intended
benefit can be realized. Fig. 8 clearly shows
that the scoped memory area and the heap are
not independent because the periodicity of the
two tests, (4) and (3, are identical when there
is at least a 30% reduction of allocations to
the heap.

Since none of the implications are valid, the intent
of the scoped memory area cannot be realized. The
last observation implies that memory areas are not
very effective in reducing GC interaction with the
user’s application.

IV. CONCLUSION

The best performance enhancements came from
compilation and not from trying to isolate the
system from the GC through the use of memory
areas. Memory areas require additional run-time

8

processing time to ensure that dangling references [9] M Deters, R. K. Cytron, “Automated Discovery

and other Droblems do not occur. The use of static of Scoped Memory Regions for Real-Time Java”,
http://www.cs. wustl.edu/-mdeters/doc/papers/ auto-
mated-discovery-of-scoped-memory-regions.pdf. compliers[7], [8] with automated scoped memory

detection[9] would remove the necessity for some
of the run-time checking, and, perhaps, allow the
intent of scoped regions to be realized.

As an aside, one of the problems associated with
using the RTSJ memory area is the difficulty of
moving data from one memory area to another; it
has a viral affect on the design and architecture
of the software (for further details see [lo]). It
was particularly time consuming and tedious to
add memory areas in an architecture that uses the
immutable object as a way of improving thread
safety.

As a further aside, this is a single test case and its
performance with RTSJ features may be improved
by removing many of the abstraction layers that
separate the prototype from any specific real-time
extension to Java and fully embracing the RTSJ
and it features, the existing benefits of the Java
prototype would be compromised through increased
complexity and the loss of the architectural, design,
and maintenance benefits of Java.

[lo] P. Dibble, Real-Time Java Plalfonn Programming, Prentice
Hall, 2002.

REFERENCES

N. Rouquette. T. Neilson, and G. Chen, “The 13th Technology
of DS 1 .” Proceedings of IEEE Aerospace Conference, 1999.
G. Bollella, J. Gosling. B. Brosgol, P. Dibble, S. Furr, M. Tum-
bull, The Real-Time Specz3cation for Java, Addison-Wesley,
2000.
Timesys Reference Implementation,
http://w w w. timesy s.com/index.cfm?bdy=java-bdy-ri.cfm,
2003.
“Eclipse.org” , http://www.eclipse.org/, 2003.
“Headway Software”, http://www.headwaysoft.com/, 2003.
“Sitraka JProbe”, http://www.sitraka.com/software/jprobe/,
2003.
M. Rinard et al., “FLEX Compiler Infrastructure”,
http://www.flex-compiler.Ics.mit.edu/, 2003.
A. Corsaro and D.C. Schmidt. “Evaluating Real-Time Java
Features and Performance for Real-time Embedded Systems.”
Technical Report 2002-001, University of Califomia, Irvine,
2002.

http://www.cs
http://w
http://www.eclipse.org
http://www.headwaysoft.com
http://www.sitraka.com/software/jprobe
http://www.flex-compiler.Ics.mit.edu

