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Abstruct- The two most important factors in improving 
performance in any software system, but especially a real- 
time, embedded system,%?knowing which components 
are the low performers and knowing what can be done 
to improve their performance. The word performance 
with respect to a real-time, embedded system does not 
necessarily mean fast execution, which is the common 
definition when discussing non real-time systems. It also 
includes meeting all of the specified execution dead-lines 
and executing at the correct time without sacrificing non 
real-time performance. Using a Java prototype of an 
existing control system used on Deep Space 1[1], the effects 
from adding memory areas are measured and evaluated 
with respect to improving performance. 

I. INTRODUCTION 

A. Goal 

Many features are added to the Java virtual ma- 
chine and libraries through the Real-time Specifi- 
cation for Java[2] (RTSJ) with the intent to im- 
prove the real-time performance of Java. One of the 
more interesting features is the addition of scoped 
memory, where the intent is to separate functional 
regions of the user’s application from interactions 
with the garbage collector (GC). In theory, a scoped 
memory area is entered prior to the execution of a 

functional region and exited after the region. The 
functional region does not interact with the GC 
because reclamation occurs when the thread count 
in a scoped memory region goes to zero and is 
performed without the aid of the GC. Of course, 
allocating and reclaiming memory without the aid 
of the GC means that there are rules on cross 
referencing memory areas that are detailed in the 
RTSJ. The goal of this work is to demonstrate that 
the intent of the scoped memory area holds true with 
“real world” software. 

B. Approach 

A Java prototype of the Deep Space 1 attitude 
control system was developed in order to show 
that Java is usable in the production of space- 
craft software. The prototype was profiled on the 
desktop to measure memory and processor usage. 
The profile information shows that almost all of 
the garbage collected memory is allocated in the 
portion of the system that computes the output 
response from the sensor input - the control law. 
The excessive allocation is due to the choice of 
architecture for the prototype which forces an im- 
mutable implementation of a physical units package. 
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The physical units package is used extensively when 
converting from the input of angular velocity to the 
command thrust of each individual thruster. Hence, 
the control law allocates enough data to activate 
the GC in about 3 cycles. The software was then 
adapted to include placing the control law within 
a scoped memory block whose size was larger than 
required as measured from the profiling and placing 
instrumentation in critical parts of the system. The 
latter adaptation was done because there are no tools 

Implementation[3] of the RTSJ (RI). 

Fig. 1. JVM 1.4.1 Latency Histogram 
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C. Tools 

COTS graphical development tools were used 
extensively in this project. Specifically, the open- 
source Eclipse[4] integrated development environ- 
ment provided graphical code editing, browsing, 
debugging, and refactoring capabilities. Headway’s 
Review[S] product was used to graphically in- 
spect our design, plan refactoring, and allow us 
to maintain a consistent architecture. Additionally, 
JProbe[6] was used to examine memory usage and 
to identify critical regions for future optimization. 
Lastly, Timesys’s Reference Implementation[3] of 
the RTSJ is used because it is the only fully func- 
tional, freely available implementation of the RTSJ. 

11. MEASURING TIME 

The original intent was to use the clocks and 
date functions provided by Sun’s JVM and the RI. 
However, both of these implementations limit the 
time resolution to a millisecond and the smallest 
time scales being measured are hundreds of mi- 
croseconds. Therefore, a simple JNI interface to 
the Linux time services was developed which has a 
microsecond resolution. This section is devoted to 
the characterization of the JNI interface with Sun’s 
JVM and the RI, using the same shared libraries and 
byte code for all tests. 

A. Using Sun’s JVM 1.4.1 

As can be seen from the histogram (see Fig. 
l), using either the Mandrake 9.0 stock kernel or 
the Timesys real-time Linux kernel version 3.2 has 
little affect on the latency where almost all calls are 
between 3 and 25 microseconds. It can also be seen 
in figure 3 that there appears to be a periodic delay 
associated with the Sun JVM which corresponds 
to the third mode around 1.3 milliseconds in the 
histogram. An attempt was made to profile this test 
in order to determine if the third mode was related to 
the GC, but the profiler measurement interfered with 
the test and the results were less than clear. How- 
ever, an analysis of the test software indicates with 
a good level of confidence that the object allocation 
rate corresponds to the the second mode, but the 
analysis is not complete and is too speculative to say 
conclusively that it is the GC. There are only minor 
differences in results between the two kernels and 
they all appear in the distribution of higher ordered 
modes. 

B. Using the RI 

As can be seen from the histogram (see Fig. 
2), the RI behaves wildly different from the Sun 
JVM, where the main difference for the little bit 
of code being executed is the HotSpot compiler. 
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Fig. 2. RI Latency Histogram commands the individual thrusters on the spacecraft 
to exert the specified force. The control law takes 
as input the latest sensor readings and the desired 
attitude requirements, allowing it to compute the 
desired force to meet its requirements. The full 
loop does all of the management related tasks, 
making sure that the other two components have 
their necessary inputs and that all other management 
tasks are made aware of what is happening. 

Just as with the previous tests, the software is 

kernel to the Timesys real-time kernel using Sun’s 
JVM as a baseline. It is then tested with RI JVM 
using none of the RTSJ features. The RI scheduler 
is then added, followed by scoped memory areas. 
Some of the results will then be compared to 
highlight the most interesting details. 

In order to execute the same code on both the 
desktop and with the RI, an abstraction layer was 
added to the system to separate the problem being 
solved from any implementation of the desi ed 
solution. There are two abstraction layers where& t- 
are used during this test to change the behavior 
or the Java prototype: a scheduler abstraction layer 
and a memory area abstraction layer. The scheduler 
abstraction layer basically delegates either to the RI 
default scheduler or to a home-grown scheduler. The 
home-grown scheduler was written not as a serious 
scheduler but, rather, as a tool to allow the Java tools 
available on the desktop to used with the prototype. 
The memory area abstraction layer either delegates 
to the RI memory areas when on that platform or 
simply uses the heap when using Sun’s JVM. 
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Given a very aggressive GC, the allocation rate links 
the second or third mode to the garbage collector. 
However, there is still an undetermined, systematic 
error just as influential as the GC which is causing 
the other mode. The large difference can be seen 
in the first mode of the histogram, where the RI’s 
distribution is much more Poisson than is Sun’s 
JVM counterpart’ and is centered at a much higher 
value. The best explanation for the constant offset 
and wider distribution is the RI’s lack of HotSpot 
or any other just-in-time compiler technology. Each 
iteration of the loop in the RI is interpreted, while 
only the first few in Sun’s JVM are interpreted 
before they are compiled. However, expecting tran- 
sient delays from the HotSpot compiler, the first 100 
were ignored in all the tests, allowing the JVMs 
to reach a steady-state condition before measuring 
began. Hence, none of the delays seen should be 
associated with HotSpot. 

Le 

111. MEASURING PERFORMANCE 

The Java prototype being measured can be broken 
A. On the Desktop into three distinct parts: the full software loop, the 

control law, and the thruster command processing. 
The thruster command processing portion takes as 
input the desired thrust from the control law and 

The performance chart (see Fig. 4) shows a 
distinct improvement (roughly 4x) in the maxi- 
mum processing time between the stock kernel and 
Timesys’s real-time kernel. In any case, all cycles 
were processed within their alloted time. It is also 

‘It is expected that the first mode of the histogram for Sun’s JVM 
is also Poisson, but at a much smaller scale like 2 to 50 microseconds. 
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Fig. 3. Latency Times 
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important to notice that none of the delays over two 
milliseconds occurred while the control law was in 
operation, which is the heaviest allocation portion 
of the system. Profiling also suggests the GC caused 
the difference, but it cannot be stated conclusively. 
If it really was the GC, the expectation is the GC 
would activate during the heaviest allocation portion 
of the system because memory was exhausted. 0th- 
erwise, the processor duty cycle is less than 25%, 
which leaves plenty of processing power for the GC 
to complete. If the GC did not complete in time, 
then the software would either process as normal or 
report that a complete cycle was missed. The jitter 
from the GC and the scheduler is ignored as long 
as the cycle boundaries are not exceeded. 

B. Using the RI 

The performance chart (see Fig. 5) shows that 
the RI, even without memory areas and the built- 

in scheduler, is much more deterministic than Sun’s 
JVM. The 100 millisecond spikes in the loop are 
interactions with the GC, and those interactions that 
are missing occurred in portions of the system that 
are beyond the scope of this paper - namely, the 
home-grown scheduler developed for the desktop 
and the spacecraft simulator. It is interesting that 
none of the GC delays occurred within the control 
law itself; the reason has still not been identified. 

C. Using the RI Scheduler 

The home-grown scheduler was then replaced 
with the RI scheduler. The performance chart (see 
Fig. 6 )  shows the full interaction of the system 
with the GC - the 120 millisecond spikes. Three 
of the GC executions occurred while commanding 
the thruster. There is a small bit of allocation (about 
5% of one cycle) that takes place between the 
completion of the control loop and the start of 
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the thruster command. Hence, it is not possible 
to determine if the GC execution occurred before 
or after the thruster command in the other cycles. 
However, the results from adding memory areas 
would imply that the delays come after the thruster 
command is executed and some cycle cleanup is in 
progress. 

D. Adding Memory Areas 

Lastly, scoped memory areas were included in 
the test system. The performance chart (see Fig. 
7) does not contain all of the GC interactions, 
which is a minor mystery. The RI scheduler is being 
used, but there is a more processing taking place 
because of the scoped memory area. Hence, it is not 
too surprising that the interaction between the test 
system and the GC changes. There are minor spikes 
at the correct periodicity to be the GC is another 
minor mystery. There is no reason to measure such 
minor delay from the GC unless the GC only did 
a partial reclamation before returning control to the 
test software. 

E. Comparing the Results 

Comparing the full loop performance of each 
platform (see Fig. 8) highlights four very interesting 
details. First, the best loop time, even if it is less 
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deterministic, is using Sun’s JVM with Timesys’s 
real-time kernel. Second, the loop processing time 
increases as RTSJ features are used. Third, the 
periodicity of the GC changes with schedulers - (3) 
and (4) in Fig. 8 - and the period is smaller with the 
home-grown scheduler even though the allocation 
rate and volume are larger. Fourth, the periodicity 
of the GC activity is the same between (4) and (5) 
in figure 8, even though there is at least a 30% 
reduction in allocation on the heap. 

The fact that Sun’s JVM performs better than 
the RI in these tests is not too disturbing. To 
put this observation into perspective we need to 
investigate three anomalies: One, the large variation 
between (1) and ( 2 )  in Fig. 8 can be attributed 
to the difference in background services that were 
running simultaneously, which could have interfered 
with the test; most notably, X11 was not active 
with the Timesys real-time kernel. Two, the main 
difference between ( 2 )  and (3) in Fig. 8 is just- 
in-time compilation technology that is present in 
Sun’s JVM and non-existent in the RI. Third, the 
test does not stress the capabilities of the hardware 
that the test was performed on; which is to say, the 
load is less than 50% of the hardware’s capability. 
Hence, while Sun’s JVM did better in this instance, 
it probably would not scale with loading which a 
full implementation of the RTSJ presumably would. 

Fig. 8. Full Loop Comparison 
(1) is Sun’s JVM 1.4.1 with Mandrake’s 
kernel. 
(2 )  is Sun’s JVM 1.4.1 with Timesys’s 
kernel. 
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This observation does imply that the performance, 
both in the real-time and non real-time sense, can 
be significantly improved from compilation. 

Using RTSJ features adds performance penalties. 
Increased time with the addition of memory areas is 
understandable because more checks are required in 
order to detect illegal assignments across memory 
barriers. The increase between choices of schedulers 
is a bit more perplexing. The home-grown scheduler 
is a very poor scheduler that uses very short sleep 

for yielding control to the rest of the test system. 
The sleep interval is notoriously poor with jitter 
and this, of course, bleeds over to the home-grown 
scheduler, which is why I called it very poor. 
However, the difference between (3) and (4) in Fig. 
8 indicates the home-grown scheduler requires less 
processing power than the RI’s scheduler, which 
surprised me because the home-grown scheduler 

intervals, the smallest available period, as interrupts L 



is poorly written, is a high allocation rate, and is 
interpreted. The RI scheduler, on the other hand, 
appears to be part of the binary distribution and is 
interfaced through the JNI, which suggests that the 
scheduler should be fast and efficient. Hence, the 
penalty observation implies that one should measure 
every feature before using it to improve performance 
because it may not have the expected outcome. 

The home-grown scheduler GC period is smaller 
than the RI scheduler’s period. Again, since the RI’s 
default scheduler appears to be a binary distribution 
accessed via the JNI, then less allocation should be 
taking place. Less allocation means that it would 
take more cycles to allocate enough trash to activate 
the GC. The incorrect change of periodicity is 
simply an extension of the penalty observation and 
implies the same consequences as well. 

Significantly reducing heap allocations through 
the use of scoped memory increases overall process- 
ing time and the GC’s activation periodicity does not 
change. This observation is contrary to the intent 
of scoped memory regions and is more than just 
an extension of the penalty observation. As Fig. 9 
shows, the processing time of the control law is 
affected by the GC when running with Sun’s JVM, 
but the RI performance contains all of the same 
features which are more than one cycle in width 
with only a constant between them. The control 
law is straight forward code with a single branch 
that is clearly present around cycle 110, where the 
type of compensator is changed. In the two cases 
(3) and (4) in Fig. 9, it is believable that they both 
have the same features since they both use the heap. 
However, ( 5 )  in Fig. 9 has the same structure as (3) 
and (4), which implies one of the following: 

1) The structure is a function of reading the time 
through the JNI and therefore appears in all 
the RI runs. Fig. 3 contradicts this implication 
as there is no frequency of delay and, since 
the structure is defined by more than a single 

Fig. 9. Control Law Comparison 
See Fig. 8 for line definitions 
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cycle, it is unlikely for a random process to 
repeat so well over an extended time. 
The use of the scoped memory area is erro- 
neous and the heap is being used. This is un- 
likely because an illegal assignment exception 
had to be fixed prior to the test working. 
Scoped memory is strongly related to the 
heap and therefore exhibits some of the same 
features, but, at the end of the day, it is 
independent of the heap and the intended 
benefit can be realized. Fig. 8 clearly shows 
that the scoped memory area and the heap are 
not independent because the periodicity of the 
two tests, (4) and (3, are identical when there 
is at least a 30% reduction of allocations to 
the heap. 

Since none of the implications are valid, the intent 
of the scoped memory area cannot be realized. The 
last observation implies that memory areas are not 
very effective in reducing GC interaction with the 
user’s application. 

IV. CONCLUSION 

The best performance enhancements came from 
compilation and not from trying to isolate the 
system from the GC through the use of memory 
areas. Memory areas require additional run-time 
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processing time to ensure that dangling references [9] M Deters, R. K. Cytron, “Automated Discovery 

and other Droblems do not occur. The use of static of Scoped Memory Regions for Real-Time Java”, 
http://www.cs. wustl.edu/-mdeters/doc/papers/ auto- 
mated-discovery-of-scoped-memory-regions.pdf. compliers[7], [8] with automated scoped memory 

detection[9] would remove the necessity for some 
of the run-time checking, and, perhaps, allow the 
intent of scoped regions to be realized. 

As an aside, one of the problems associated with 
using the RTSJ memory area is the difficulty of 
moving data from one memory area to another; it 
has a viral affect on the design and architecture 
of the software (for further details see [lo]). It 
was particularly time consuming and tedious to 
add memory areas in an architecture that uses the 
immutable object as a way of improving thread 
safety. 

As a further aside, this is a single test case and its 
performance with RTSJ features may be improved 
by removing many of the abstraction layers that 
separate the prototype from any specific real-time 
extension to Java and fully embracing the RTSJ 
and it features, the existing benefits of the Java 
prototype would be compromised through increased 
complexity and the loss of the architectural, design, 
and maintenance benefits of Java. 

[lo] P. Dibble, Real-Time Java Plalfonn Programming, Prentice 
Hall, 2002. 
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