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Abstruct-Formation flying is defined as a set of more than 
one spacecraft whose states are coupled through a common 
control law. This paper provides a comprehensive survey of 
spacecraft formation flying control (FFC), which encompasses 
design techniques and stability results for these coupled-state 
control laws. We divide the FFC literature into five FFC architec- 
tures: (i) Multiple-Input Multiple-Output, in which the formation 
is treated as a single multiple-input, multiple-output plant, 
(ii) Leader/Follower, in which individual spacecraft controllers 
are connected hierarchically, (iii) Virtual Structure, in which 
spacecraft are treated as rigid bodies embedded in an overall 
virtual rigid body, (iv) Cyclic, in which individual spacecraft 
controllers are connected non-hierarchically, and (v) Behavioral, 
in which multiple controllers for achieving different (and possibly 
competing) objectives are combined. This survey significantly 
extends an overview of the FFC literature provided by Lawton, 
which discussed the L/F, Virtual Structure and Behavioral 
architectures. We also include a brief history of the formation 
flying literature, and discuss connections between spacecraft FFC 
and other multi-vehicle control problems in the robotics, UAV, 
underwater vehicle and Automated Highway System literatures. 

I. INTRODUCTION 
In 1977, Sholomitsky, Prilutsky and Rodin studied a pro- 

posed infrared interferometer composed of multiple, free- 
flying telescopes [93]. Today, formation flying is a critical 
technology for planned and future missions of NASA [15], 
[109], the Department of Defense [16], [231, ESA [71, [38] 
and many other national space agencies. 

In deep space, formation flying enables variable-baseline 
interferometers [54], [39] and large-scale distributed sensors 
[46] that can probe the origin and structure of stars and 
galaxies with high precision. In addition, synthetic aperture 
imaging formations will be used to search for Earth-like 
planets orbiting other stars and study their atmospheres for 
signs of life [ 141. 

In Earth orbit, formation flying enables distributed sensing, 
sparse antenna arrays and contemporaneous spatial sampling 
for applications such as gravitational mapping, interferomet- 
ric synthetic aperture radar (InSAR) and studying the Sun- 
Earth connection. Further, by allowing instruments on separate 
spacecraft to be combined into a co-observatory? formation 
flying can replace an expensive multiple-payload platform with 
a large number of low cost spacecraft. 

This survey of spacecraft formation flying control is the 
second part of a two-part survey on formation flying guidance 
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2A co-observatory is a planet-orbiting formation in which independent 

science instruments on separate spacecraft examine the same physical location 
closely enough in time that measurements may be considered contemporane- 
ous. For example, the Cloudsat and Picasso-Cena satellites have been proposed 
as a co-observatory; CloudSat’s radar and Picasso-Cena’s lidar would observe 
the same groundtrack with less than 15 seconds of separation [50]. 

and control. In the companion survey on formation flying 
guidance [87], we defined formationJlying (FF) as a set of 
more than one spacecraft in which any of the spacecrafr 
dynamic states are coupled through a common control law.3 
In particular, at least one member of the set must (i) track 
a desired state profile relative to another member, and (ii) 
the associated tracking control law must at the minimum 
depend upon the state of this other member. The second 
point is critical. For example, even though prescribed relative 
positions are actively maintained, GPS satellites constitute 
a constellation4 since their orbit corrections only require an 
individual satellite’s position and velocity. 

A control law satisfying Condition (ii) above is called a 
formation tracking control law.’ Based on the above definition 
of FF, we present a comprehensive survey of the spacecraft 
formation flying control (FFC) literature. Specifically, FFC 
refers to design techniques and associated stability results for 
formation tracking control laws. 

A. A Brief History of Spacecraft Formation Flying 

After the initial conceptual study of a multiple spacecraft 
interferometer (MSI) by Sholomitsky et al. in 1977, several 
MSI mission architectures were proposed and evaluated in the 
early 1980s (e.g. [98]). See Labeyrie, Savaria and Schumacher 
[51] and Stachnik and Gezari [99] for further references. 
These early FF mission designs considered Earth-orbiting 
MSIs and included preliminary analyses of possible orbits and 
corresponding fuel requirements. 

In the late 1980s and early 1990s, research focused 
on developing aerodynamic drag compensation strategies 
(e.g. Matthews and Leszkiewicz [68] and Scolese, Folta and 
Borda [91]) and fuel-efficient relative trajectories for Earth- 
orbiting formations (e.g. DeCou [26]).6 

Significant interest in formation flying started to develop 
in the late 1990s. The first general study of a spacecraft 
FFC architecture was by Wang and Hadaegh in 1996 [118], 
who analyzed the Leader/Follower architecture (previous pa- 
pers considered specific controllers applied to two or three 
spacecraft formations). Also in that year, Folta, Newman and 

3This coupling can be in translational and/or rotational degrees of freedom 
and in position and/or velocity. For example, a formation may consist of ten 
spacecraft with synchronized angular velocities. 

4A constellation is defined as a set of spacecraft whose states are not 
dynamically coupled in any way. As a result, there is no interaction between 
the constituent spacecraft (i.e., the change of state of one spacecraft does not 
impact the state of another). Aj7eef is defined as a collection of constellations 
and formations. The definitions provided here have not been used consistently 
throughout the literature. 

s“Tracking” in this context includes regulation. 
6These fuel-efficient trajectories are referred to as passive relative orbits, 

and they are discussed extensively in Part I of this survey [87]. 
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Gardner defined classes of co-observatories and developed a 
LeaderFollower controller for enabling low Earth orbit (LEO) 
co-observatories [34].’ 

In 2000, Lawton overviewed the FFC literature up to that 
year [60]. As part of his overview, Lawton defined three main 
FFC architectures. In our current survey, we examine these 
architectures in more detail and add two new architectures. 
We also include the prolific research of the last few years and 
emphasize theoretical developments. 

B. Formation Classijication 

In general, formations can be categorized based on (1) 
size (i.e., number of spacecraft), (2) precision (i.e., control 
performance requirements), and (3) ambient dynamic environ- 
ment. These characteristics will in part determine which FFC 
algorithms are feasible for a formation. To define the size of a 
formation, let N be the number of spacecraft in a formation. 
If N I 5 ,  then we consider the formation “small,” and if 
N 2 20, we consider the formation “large.” These numbers 
are guidelines. Next, we consider the level of control precision 
required for formations: “high” precision (HP) formations 
require performance to the level of centimeters/arcminutes 
or smaller, whereas “low” precision (LP) formations have 
performance requirements greater than a meterldegree. Finally, 
we distinguish formations based on the ambient dynamic en- 
vironment. Specifically, in deep space (DS) relative spacecraft 
translational dynamics are approximated by a double integrator 
(Le., no state dependent forces are present in the open loop) 
[86], while in a planetary orbital environment (POE) spacecraft 
are subjected to significant gravitational dynamics and other 
environmental disturbances such as aerodynamic drag. 

The size of a formation, however, has not been a primary 
concern in the FFC literature. This omission is due to the 
common assumption that a formation estimator is available 
to provide all the information required for control [ 1011. 
However, as N becomes large, the sensing and communica- 
tion requirements imposed by an FFC algorithm can easily 
become impractical. An area for future research, discussed in 
the Conclusions, is reducing the amount of formation state 
information required by FFC algorithms. 

Precision can generally be traded for control effort; that 
is, the precision achievable is limited by the amount of fuel 
on-board. As a result, when precision is considered, it is 
given as a function of the fuel required to achieve a spe- 
cific precision level. However, non-ideal aspects of formation 
estimation, such as delayed measurements and asynchronous 
inter-spacecraft communication, have not been considered. 
Determining the achievable control precision in the presence 
of these practical constraints is an open area of research [ 1261. 

A formation’s dynamic environment has two ramifications 
for FFC. First, in DS applications only relative spacecraft 
translational measurements are available to the necessary 
accuracy. Inertial spacecraft positions are known only to the 

’The co-observatory classes were first published in 1992 [331. The purpose 
of th is  earlier paper was to analyze attitude pointing requirements for co- 
observatories. 

level of kilometers. This aspect of DS formations requires that 
spacecraft measure their translational positions with respect to 
either (1) a non-maneuvering, “inertial” reference spacecraft 
or (2) to other spacecraft that are also maneuvering. In 
comparison, inertial positions can be measured and controlled 
in POE FFC algorithms (e.g. see 

The second ramification of the formation dynamic envi- 
ronment on FFC is that DS dynamics are more benign than 
POE dynamics, i.e., translational degrees of freedom (DOFs) 
approximately decouple into single-input, single-output double 
integrators. As a result, stability theorems for certain FFC 
algorithms have been developed for DS formations, but not 
for POE formations (e.g. see [73]). 

C. Organization of Survey 

In the companion survey on formation flying guidance [87], 
the dynamic environment of a formation was the primary 
distinction in the literature. While the formation size, precision 
and dynamic environment affect FFC development in the 
ways discussed above, they are not driving factors in FFC 
research to date. The primary distinction in the FFC literature 
is the type of FFC architecture used. An FFC architecture 
determines the overall design approach for a specific FFC 
algorithm; many different algorithms are possible within a 
given architecture. In this survey, we define five basic forma- 
tion architectures: Multiple-Input, Multiple-Output (MIMO), 
LeaderEollower (LE), Virtual Structure (VS), Cyclic and 
Behavioral. The LE, VS and Behavioral architectures were 
originally described in Lawton’s overview [60]. 

We organize the FFC literature by FFC architectures, with 
DS and POE specific algorithms noted. Each architecture is 
defined formally in its respective section. The advantages 
and disadvantages of each architecture are discussed in the 
Conclusions, as are directions for future research. Note that 
some control algorithms in the robotics, UAV and automated 
highway system (AHS) literatures are similar to spacecraft 
FFC algorithms. While we do not exhaustively survey these 
other areas, we include some representative references. 

In designing FFC algorithms, formation stability must be 
addressed. Typically, authors only consider the stability of the 
relative dynamics of a formation. If the inertial position or 
attitude of a formation is relevant? an additional controller 
is assumed for tracking an inertial state. reflect this usage, 
unless otherwise noted, by stability we mean the Lyapunov 
stability of the relative spacecraft dynamics, whether trans- 
lational, rotational or both. In particular, the inertial position 
of a formation need not be controlled for a formation to be 
considered “stable.” 

While we have included rotational degrees of freedom in our 
definition of formation flying, the FFC literature focuses on 
translational control. Relative attitude control is as important. 

When inertial states are being controlled, one spacecraft‘s inertial reference 
trajectory must consist of another spacecraft’s inertial state plus an offset. 
Otherwise, spacecraft states will not be coupled. 

gFor example, consider a synthetic aperture in Earth-trailing orbit. Dis- 
placing this formation hundreds of kilometers will not significantly affect the 
scientific performance of the formation. 
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For example, in rotating an MSI to fill the upplane,  atti- 
tudes must be synchronized with relative positions. However, 
accurate inertial attitude information is generally available, 
which simplifies the relative attitude control problem. Unless 
otherwise stated, translational control is discussed. 

Finally, for brevity "architecture" is generally omitted from 
architecture names (e.g. L/F instead of the L/F architecture). 
Also, numerous acronyms are used throughout the paper. As a 
convenience, a table of acronyms is included in the appendix. 

11. MULTIPLE-INPUT, MULTI-OUTPUT 

In the Multiple-Input, Multiple-Output (MIMO) architec- 
ture, formation controllers are designed using a dynamic model 
of the entire formation. That is, the formation is treated as 
a multiple-input, multiple-output plant. Within this problem 
formulation, all the methods of modern control may be applied 
to formation control. For example, [41] formulates a minimal 
state space realization of the relative error states for a rigid 
formation" and designs an LQR controller. 

Given a state space representation of the formation dynam- 
ics and a state feedback gain matrix for relative state control, 
[94] develops an algebraic method for deriving alternate 
control topologies based on linear dependencies in relative 
position specifications (e.g. feeding back the relative position 
rij is equivalent to feeding back r ik  + rkj).  It also examines 
using controls that affect only the unobservable states (i.e., the 
inertial position and velocity of the formation) to minimize 
fuel use or to ensure the net force on the formation is zero. 

In [97], a decentralized LQG problem is considered. The 
resulting state feedback gain matrix is equivalent to a standard, 
centralized LQR controller. However, each spacecraft must 
optimally estimate the entire formation state using only a 
locally-optimal estimator (i.e., an estimator operating on a 
reduced set of measurements) and information communicated 
from other spacecraft. [97] reduces the information commu- 
nicated between spacecraft by compressing local spacecraft 
measurements using an augmented local estimator. [37] applies 
this decentralized LQG algorithm to formations in Lagrange 
point orbits. 

Directed graphs" (or digraphs) have been used in MIMO 
algorithms to both specify the desired formation geometry 
and to enforce specific spacecraft control interdependencies. 
Generally, multiple-input, multiple-output synthesis techniques 
may introduce arbitrary spacecraft control interdependencies 
(i.e., the resulting gain matrix is not sparse). 

Ref. [112] uses a digraph to specify the geometry (not the 
interdependencies) of POE formations, where the spacecraft 
are placed in multiple circular orbits with identical radii. 
The digraph specifies constant angular offsets that are to be 

"A formation is rigid if there exists a reference frame in which all relative 
spacecraft positions are constant. 

"A directed graph consists of a set of vertices V ,  a set of edges E,  and 
an optional set of weights W .  The edges are specified as ordered pairs (i, j), 
where i, j E V. The edge (i, j) E E means that an arrow is drawnfrom vertex 
i io vertex j. One interpretation for an edge (i, j) is that the vertex (spacecraft) 
i is to maintain a desired position with respect to vertex (spacecraft) j. The 
weights typically represent the lengths of edges. 

maintained between spacecraft (Le., the reference trajectories). 
The digraph is then encoded into an LQR formulation. 

In [73], rigid and unfoldable digraphs" are first used to 
specify the geometry of a formation. Algebraic constraints 
on vertex (spacecraft) locations resulting from the digraph 
are used to generate a potential function. The gradient of 
this potential function then forms the basis of a formation 
controller. Note that this approach enforces spacecraft control 
interdependencies, since only the spacecraft involved in a 
particular algebraic constraint enforce it. A general stability 
proof is also provided. This particular digraph approach is 
MIMO because a digraph specifying the entire formation 
is needed to design the formation controller. [75] discusses 
methods for constructing, merging and separating rigid and 
unfoldable digraphs. 

Finally, model predictive control (MPC) has also been used 
within the MIMO architecture. [32] formulates and numeri- 
cally solves a nonlinear, constrained MPC problem where the 
terminal state consists of a family of equilibria. Conditions for 
closed loop stability are also derived. 

111. LEADER/FOLLOWER 

The LeaderEollower (L/F) architecture is the most studied 
FFC ar~hitecture.'~ L E  uses a hierarchical arrangement of 
individual spacecraft controllers that reduces formation control 
to individual tracking problems. We first define LE, and then 
we discuss its stability properties. Finally, we summarize the 
L/F literature. 

To formally define L/F, we introduce the control dependency 
directed graph," which for brevity we refer to as the depen- 
dency digraph. The dependency digraph is similar to digraphs 
defined in [28], [30], [31] and [71], but it is less restrictive 
and does not depend on a particular control strategy. The 
vertices of the dependency graph represent the spacecraft in 
the formation. A directed edge (i, j )  is added to the digraph if 
the control action of spacecraft j is a function of (Le.. depends 
on) the state of spacecraft i. This dependency can arise in at 
least three ways: (1) a function of the relative state between 
spacecraft i and j is being tracked by spacecraft j, (2) the 
reference trajectory for spacecraft j is a function of the state 
of spacecraft i, or (3) the feedback control action of spacecraft 
i is used in the controller of spacecraft j . 14  

Reviewing digraphs briefly, a walk is a sequence of vertices 
such that each sequential pair is a directed edge (e.g. i j k  is 
a walk if (2 ,  j) and (j, k) are edges), and the length of the 
walk is the number of vertices in it. A cycle is a walk of at 
least length three with no repeated vertices except that the first 

"The definitions of "rigid' and "unfoldable" ensure that given sets of 
vertices, edges and weights, there is only one embedding of the digraph in 
R2 or R3 modulo rigid body motions of the entire embedding. That is, if the 
vertices are considered particles and the weights the lengths of rods connecting 
the particles (according to the edge set), then the digraph represents a unique 
rigid body. 

13Note that LeaderFollower has also been referred to as Chiefmeputy 
[90], Master/Slave [48] and, the traditional terminology from two-spacecraft 
rendezvous, TargeVChase. 

141n the literature, the third type of dependency has only been used in 
conjunction with one of the first two. 
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vertex must equal the last (e.g. iji). A digraph without (resp. 
with) a cycle is called acyclic (resp. cyclic). 

With these concepts, we define an L/F FFC algorithm to 
be an interconnection of individual spacecraft controllers that 
results in an acyclic control dependency directed graph.15 

For an edge (i, j )  in the dependency digraph, spacecraft j is 
called afollower and spacecraft i is called a leader. In any L/F 
algorithm, there is at least one spacecraft that does not follow 
another (see [27], pg. 230). This spacecraft is referred to as 
a fleet leader [ 1181. Note that a spacecraft can have multiple 
leaders, but care must be taken in this case to ensure that the 
tracking problem is well posed.16 A special case of the L/F 
architecture is when each spacecraft is required to have only 
one leader. This special case is referred to as single-leader U F  

In 1991, [117] presented a number of robotic formation 
control strategies, including a number of L/F algorithms. In 
1996, the seminal paper [ 11 81 generalized L/F and adapted 
it to spacecraft formations in both DS and POEs. For single- 
leader LE, [71], [ 1171 and [ 1181 prove the stability of directed 
tree dependency digraphs (i.e.. the most general single-leader 
case) for particular control laws. In each case, if the individual 
tracking control laws used by each follower are stable, then 
the entire formation is stable. However, general sufficient 
conditions for L/F stability were not addressed. 

General stability conditions are available for LE, but they 
apply to a type of stability called mesh stability. Intuitively, a 
hierarchically connected system is mesh stable if it is asymp- 
totically Lyapunov stable and perturbations to the top of the 
hierarchy (i.e., a leader) do not grow as they propagate through 
the system; specifically, if a leader is disturbed, then the 
peak tracking errors of its successive followers are uniformly 
bounded by the peak tracking error of the first follower. Mesh 
stability has its roots in the automated highway system (AHS) 
1iterat~re.l~ 

Mesh stability is based on the earlier concept of string 
stability. Both mesh and string stability are more restrictive 
than Lyapunov stability. Since there are many types of string 
stability, we briefly discuss each, noting the differences. This 
discussion will lead naturally to the definition of mesh stability. 

For the following discussion, we consider hierarchically 
connected systems (also called “look ahead”) where the dy- 
namics of each subsystem are given by 

[711. 

x i  = f i ( Z i , X & l , .  . * ,$I), 
where zi is the state of the ith subsystem, i E 2, where 2 is 
a possibly infinite subset of the natural numbers, and the state 

15Refs. [71] and [30] also use variations on acyclic digraphs to define more 
restricted forms of W. 

‘‘%e LIF algorithm discussed in [43] considers a chain of vehicles 
maintaining constant offsets. Except for the fleet leader, each vehicle uses 
the velocity of the vehicle immediately in front of it, and the acceleration and 
velocity of the fleet leader. Each vehicle has two leaders. 

17A “ m o n  concept for automated highways is a platoon of vehicles, 
which is an LIF arrangement of vehicles such that each vehicle literally follows 
the one in front of it. Quoting [106], “tracking (spacing) errors should not 
amplify downstream from vehicle to vehicle for safety.” 

of the system is z e [ ZT zz . . . I T .  For L/F FFC, the state 
zi should be thought of as the tracking error of a follower. 

We begin with the asymptotic string stability of [ 1061, which 
was defined for an infinite number of subsystems (i.e., Z 
equals the set of natural numbers). Asymptotic string stability 
requires that for that for all E > 0, there exists 6 > 0 such 
that supi Ilzi(0)II < 6 + supisup, Ilzi(t)ll < E (stability 
requirement) and that Ilzi(t)ll + 0 for all i (attractiveness 
requirement). The stability condition states that the the injnite 
chain of subsystems must be uniformly bounded. In particular, 
the peak error cannot increase continually as you move from 
one subsystem to the next; with an infinite number of subsys- 
tems the state would become unbounded. 

In [106], sufficient conditions are also derived for asymp- 
totic string stability. The fi(.) must be identical, but can be 
nonlinear and non-autonomous. Essentially, the subsystems 
(Le., & = f(zi, 0, .  . . , O ) )  must be exponentially stable, and 
the subsystem connections (i.e., how strongly fi(.) depends 
on xj, j < i) must be sufficiently weak.18 

Ref. [22] studies spatial asymptotic string stability (s.a.s.s.). 
Similar to the stability requirement for asymptotic string 
stability, s.a.s.s. requires the subsystems to be uniformly 
bo~nded.’~ However, the attractiveness requirement is differ- 
ent. Rather than requiring each subsystem’s error to go to 
zero in time, s.a.s.s. requires that limi-.+w Ilzi(0)ll = 0 + 
limi+w SUP, Ilzi(t)ll = 0. That is, subsystem errors must 
go to zero as you move through the system spatially; the 
errors must decay (not just be uniformly bounded) through 
succeeding subsystems. [22] derives sufficient conditions for 
s.a.s.s. for systems with linear and identical fi(.), again based 
on weak subsystem connections. 

A third type of string stability is for hierarchically con- 
nected systems with a jni te  number of subsystems. For finite 
dimensional systems, there is always a uniform bound on the 
subsystem states even if the peak error increases from one 
subsystem to the next [92]. In [43], [79] and [92], string 
stability is defined as the property that a finite hierarchically 
connected system is Lyapunov stable and that sup, Ilzi(t)II I 
SUP, 11 xi- 1 ( t )  11, that is, that peak errors decay monotonically 
as they propagate through the subsystems. We shall refer to 
this as monotonic string stability for ease of exposition. Recall 
s.a.s.s. only requires that the error goes to zero, not that 
the peak error is less in each subsequent subsystem. Also, 
the requirement for identical subsystem dynamics has been 
relaxed in monotonic string stability. 

Monotonic string stability is based on the concept of a 
line of vehicles, each one following the preceding vehicle. 
Refs. [92] and [79] treat mesh systems: finite hierarchically 
connected systems where the subsystems are arranged in 
a two-dimensional grid. Subsystems in a mesh system are 
double-indexed to reflect this two-dimensional organization. 

Mathematically, however, hierarchically connected systems 
18“Weak” is defined in terms of the Lipschitz constants of fi(.) and 

19S.a.s.s. requires uniformity in an 13, norm, whereas asymptotic string 
constants associated with a Lyapunov function. 

stability only requires uniformity in the 13, norm. 
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and mesh systems are equivalent through a change of vari- 
ables in the subsystem indices. With this observation, [78] 
formally defines a finite hierarchically connected system to 
be mesh stable if it is asymptotically Lyapunov stable and 
sup, Ilxi(t)lJ 5 maxk<i-1 SUP, Ilxk(t)ll. In monotonic string 
stability, the peak error of the current subsystem must be less 
than the preceding subsystem’s peak error, whereas for mesh 
stability this condition has been relaxed to only requiring the 
peak error to be less than maximum peak error of all the 
preceding subsystems.*O 

With the exception of asymptotic string stability, all the 
subsystem dynamics are assumed time-invariant. Therefore, to 
represent closed-loop error dynamics, the reference trajectories 
in the L/F architecture must be constant. [43] has an excellent 
bibliography for those wishing to investigate L/F in the AHS 
context, and the bibliography of [ 1061 provides a good starting 
place for those wishing to study connected system stability. 

We now discuss the numerous L/F algorithms in the litera- 
ture. Most authors consider a single-layer L/F architecture in 
which N - 1 spacecraft all follow the same leader spacecraft. 
Also, though not formally proven, it, is commonly assumed that 
if follower control laws are stabilizing, then an L/F connection 
of these controllers results in an asymptotically Lyapunov 
stable formation. As a result, the numerous contributions to the 
L/F literature differ primarily in the type of follower tracking 
control law designed. 

The following papers consider DS formations. [ 1201 simpli- 
fies the feedback linearized control laws of [ 1181 and applies 
them to synchronized translational and rotational control of 
deep space MSIs. [79] uses sliding mode control. [70] and [71] 
combine feedback linearization and linear matrix inequalities 
(LMIs) to design robust and switched controllers €or avoiding 
control saturation. [65] applies feedback linearization and 
model predictive control and also address saturation through 
controller switching. [84] and [85] develop and compare a 
variety of design techniques including proportionaVderivative 
(PD), time optimal and mixed fuel-time optimal. [ 1221 devel- 
ops and experimentally demonstrates a rule-based controller 
for forming an equilateral triangle and aligning the orientation 
of three air-levitated robots. [831 develops a two-tier controller 
where the coarse loop is a phase-plane controller with a 
vernier PD loop. [121] develops a rule-based control law for 
synchronizing the rotations of multiple spinning spacecraft. 
Based on [121], [42] develops a rule-based controller for 
synchronizing thruster deadbands across multiple spacecraft. 
Impulsive thruster synchronization is necessary for MSIs since 
the vibrations from thruster firings can corrupt interferometric 
measurements. [64] also designs a thruster synchronized L/F 
algorithm, but it addresses both translational and rotational 
control, and uses classical control theory with nonlinear 
dynamic compensation. [ 1281 designs a combined transla- 
tionalhotational controller using LQR and H ,  methods. 

20Since mesh stability is defined recursively, the peak tracking error of all 
subsystems must be bounded by the peak tracking error of the first subsystem. 
Note that the first subsystem, which corresponds to the error dynamics of a 
vehicle following only fleet leaders, is not uniquely defined. 

Similar to [ 1201, [ 1301 considers simultaneous translational 
and rotational control of a formation. However, the desired 
positions of the followers with respect to the leader are 
specified not in an inertial frame, as is generally done, but 
in the leader’s body frame. The advantage of this approach is 
that the entire formation can be rotated by simply changing 
the attitude of the leader. 

Ref. [74] builds a planar DS formation through node aug- 
mentation: spacecraft are added sequentially to a formation 
by specifying desired distances to any two existing formation 
spacecraft. This specification is such that the augmented 
formation remains rigid and unfoldable.2’ The two existing 
spacecraft “anchor” the new spacecraft to the formation. A 
similar approach is used in [30]. In [74], each new spacecraft 
uses a feedback-linearized controller to maintain the two spec- 
ified distances. This controller only depends on the relative 
states of the anchoring spacecraft (i.e., the anchors are the 
two leaders for the new spacecraft). 

Turning to the POE literature (which in many cases also 
applies to DS formations), the following papers develop vari- 
ations on linear quadratic (LQ) control for design of the fol- 
lower tracking control laws. All of these papers use variations 
of the Hill-Clohessy-Wiltshire (HCW) equations [20], [44], 
although a few authors modify them slightly. [49] develops a 
discrete-time LQ controller using pulse-based actuators. [ 13 11 
extends this controller to include a periodic gain. [ 1151 designs 
separate discrete-time LQ controllers for the in-plane (orbital 
plane) motion and the out-of-plane motion. [19] develops a 
similar, decoupled controller for GEO orbits. [96] also designs 
a decoupled LQ controller, but the angular velocity of the 
reference frame in the HCW equations is modified to include 
the effects of the Jz zonal harmonic. [82] designs a discrete 
LQ controller for disturbance rejection and a feedforward 
controller that plans trajectories and provides non-equilibrium 
point control offsets. [181 uses an LQ controller with the 
decentralized estimation scheme of [97].22 [95] designs an 
LQ controller and studies the frequency of thruster firings 
versus the total Av needed to reject realistic disturbances. 
[104], [lo31 and [19] design LQ controllers without using 
radial thrusting. [127] designs an LQG controller using GPS 
and includes many practical considerations. 

A variant on model predictive control (MPC) using linear 
time-varying models is developed in [451, [47], [ill] and 
references therein. Followers are first placed in error boxes 
relative to the leader. When a follower approaches the edge of 
its relative error box, an optimal, feedforward control problem 
is solved to return the follower to the center of its error 
box. The optimal, predictive portion of the controller includes 
differential disturbances and sensor noise effects. 

A variant on model predictive control (MPC) is developed 
in Refs. [8], [34], [35] and [36]. Followers are first placed in 
error boxes relative to the leader. When a follower approaches 

21See the MIMO section for definitions of graph theoretic terms. 
22Wbile the overall state is estimated using the MIMO method of [97], the 

control design is localized--eacb spacecraft uses an LQ controller to track 
a trajectoly with respect to the origin of the HCW frame. Hence, the FFC 
algorithm is UF. 
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the edge of its relative error box, a trajectory is planned to 
return the spacecraft to a desired position within the error 
box. The trajectory planning algorithm is based on Battin’s C* 
matrix (see [6], pg. 461), which is a convenient reformulation 
of the orbital state transition matrix. This MPC controller 
is applied to libration point formations in [37]. A similar 
MPC algorithm using linear time-varying models is developed 
in [45], [47], [ill] and references therein. The trajectory 
planning algorithm in this case uses optimal control theory 
and includes differential disturbances and sensor noise effects. 

Considering nonlinear control, [25] and [132] design po- 
sition feedback and output feedback nonlinear controllers, 
respectively, for the f u l l ,  nonlinear Keplerian relative orbital 
dynamics. These controllers are globally uniform ultimate 
bounded (GUUB)23 in position and velocity tracking errors. 
[ 1 181 develops feedback-linearized controllers for simultane- 
ous translationalhotational control. [ 1021 also considers simul- 
taneous 6 DOF control and uses a state-dependent Riccati 
equation to design a full state feedback, nonlinear controller. 

Adaptive control has also been used to design the fol- 
lower tracking control laws. [ 1231 develops a GUUB adaptive 
controller where the disturbance is assumed bounded by a 
known nonlinear function scaled by an unknown constant. 
[24] assumes that a single leader is in a circular orbit, but 
otherwise retains Keplerian relative orbital dynamics. Further, 
assuming that both the spacecraft masses and disturbance 
forces are unknown but constant, [24] develops a globally 
convergent,” full state feedback adaptive controller. [ 1331 
extends this controller to the case where the leader is in an 
unperturbed, elliptical orbit. [ 1251 then extends the controller 
of [133] to include an unknown, but periodic disturbance force 
with a known upper bound. [ 1241 departs from these previous 
papers and develops a locally convergent adaptive controller 
for constant disturbances that uses only position feedback. [77] 
develops a convergent 6 DOF adaptive controller that allows 
for unknown but constant masses and moments of inertia. 
[ 1071 includes a number of references for adaptive L/F design 
in the A H S  literature. 

Rather than using Cartesian reference trajectories, some au- 
thors use orbital elements (“orbital” omitted hereafter). [ 1081 
considers a formation of spacecraft in elliptical orbits where 
spacecraft distances are kept nearly constant via small element 
differences. For this formation, [ 1081 develops a feedback 
controller that controls the osculating25 element diference of a 

23A state space system is GUUB if for all initial conditions z(t0) = IO 
(globally), there exists a compact set X and a time 0 < T(zo) < 00 

independent of t o  (uniform) such that z ( t )  E X for all t 2 t o  + T (ultimate 
bounded). See [5 ] .  

241n adaptive control, asymptotic stability of the error dynamics (position 
and velocity tracking errors and parameter estimate errors) is generally 
extremely difficult to prove. A more common goal is to show that all the errors 
are uniformly bounded and go to zero asymptotically. These two properties 
are what we mean by “convergent.” 

25T0 the standard Keplerian elements, perturbations can cause secular 
variations (unbounded growth proportional to a power of time), short period 
variations (on the order of the orbital period) and long period variations (longer 
than short period-there is a considerable range of long periods depending on 
the perturbation considered and the specific orbit, but long period variations 
due to zonal (latitude dependent) harmonics are on the order of 10’s of 

follower and leader. In contrast, [90] develops a control law for 
mean25 elements. Note that inertial states are being controlled 
(Le., elements as opposed to differential elements), but the 
reference trajectory of the follower is the leader’s elements 
(state) plus an offset. [90] also compares the mean element 
controller to a controller that uses the inertial state represented 
in Cartesian coordinates (i.e., position and velocity), where 
again the reference trajectory is the leader’s position and 
velocity plus an offset. 

[89] considers a control law where the reference trajectory 
for the follower is specified as an osculating element difference 
(similar to [l08]) that is then mapped via a linearized trans- 
formation to desired Cartesian relative position and velocity 
vectors. The authors then compare this “hybrid” control law 
to a control law using mean elements. They show via example 
that a 20m increase in tracking accuracy results from using 
mean instead of osculating elements. Based on insights gained 
from Gauss’ variational equations, [ 881 develops an impulsive 
osculating element controller such that individual elements 
are changed without affecting others. This controller is not 
FFC unless the trajectory the controller tracks depends upon 
the state of another spacecraft. This comment also applies to 
the fuel-optimal impulsive and low-thrust osculating element 
controllers of [ 1 131. 

Finally, we present some papers that do not fall into any of 
the previous control L/F design methodologies. [ 1341 applies 
hybrid stability analysis to full state feedback controllers. 
[61] uses binary drag panels (i.e., deployednot-deployed) to 
move a spacecraft to and maintain it at the position of a 
leader (rendezvous). Whether their controller can be extended 
to maintaining offsets with respect to a leader is an open 
issue. For more on H ,  L/F control, see references in [128]. 
Lastly, while [ 1121 uses a MIMO controller to keep spacecraft 
phased within circular orbits, [72] estimates the mean motion 
and orbit-averaged, along-track offset (average phase) and 
develops two control schemes to maintain a desired offset. 

IV. VIRTUAL STRUCTURE 

In the Virtual Structure (VS) architecture, the spacecraft 
behave as rigid bodies (or particles) embedded in a larger, 
virtual structure (or body). Motions of the virtual structure and 
the constant, specified positions and orientations of spacecraft 
within the virtual structure are used to generate reference 
trajectories for the spacecraft to follow. The motions of the 
virtual structure include rigid body motions and contrac- 
tions/expansions. Individual spacecraft controllers are used to 
track the generated reference trajectories. 

We identify two types of VS: Iterated VS (IVS) and 
Guidance VS (GVS). In IVS, a formation template (Le., 
structure) is fit to the current spacecraft positions at each time 
step. The spacecraft then track desired states with respect to 
the fitted template. Spacecraft states are coupled through the 
template fitting step. [52] considers Earth-orbiting formations 
days for near-Earth satellites). Osculating (instantaneous) elements include 
all variations. Mean elements have either the short period or the short and 
long period variations averaged out. See [ 1141). 
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and uses a time-invariant Walker constellation template (see 
[53]). Different fitting algorithms are discussed in [401 and 
[76]. [63] considers non-holonomically constrained robots and, 
in addition to fitting a template each time step, incrementally 
perturbs the fitted template to eventually achieve a formation 
goal state. Similarly, [ 1101 finds the virtual center of a forma- 
tion through a least-squares fit. This center may be thought of 
as the location of a virtual “leader” spacecraft that minimizes 
the tracking errors of all the “followers.” However, since all 
the spacecraft states are coupled through the fitting step, this 
algorithm is not L/F. 

The second type of VS, called Guidance VS (GVS), is 
proposed in [lo]. GVS consists of an initial structure (Le. 
template) fitting step, followed by prescribed motion of the 
structure to generate desired spacecraft trajectories. In [55], 
an adaptive controller that includes saturation constraints is 
designed to track GVS trajectories. GVS has also been used 
to plan optimal formation rotations; see [ l l ]  and [12]. The 
pattern matching methodology of [3] is a GVS algorithm. 

By itself GVS is not FFC because spacecraft states are not 
coupled. However, if the virtual structure is referenced to a real 
spacecraft, then GVS becomes a type of L/F FFC algorithm 
with reference trajectories provided by the virtual structure. 
GVS also forms the basis for a Cyclic FFC algorithm. IVS, 
however, is FFC, and we advocate making it a type of Cyclic 
FFC. 

V. CYCLIC 

Similar to LE, a formation controller in the Cyclic architec- 
ture is formed by connecting individual spacecraft controllers. 
However, Cyclic differs from L/F in that the controller connec- 
tions are not hierarchical. We define a Cyclic FFC algorithm 
to be an interconnection of individual spacecraft controllers 
that results in a cyclic control dependency directed graph.26 

The stability analysis of Cyclic algorithms is difficult be- 
cause cycles in the dependency digraph add higher levels of 
feedback to the individual spacecraft feedback controllers. As 
a result, many Cyclic algorithms are studied through simu- 
lation only [ 11, [ 1171. However, potential field-based cyclic 
algorithms often have an associated stability proof since the 
potential function itself serves as the basis for a Lyapunov 
function. 

Ref. [ 1171 introduces multineighbor strategies, where each 
spacecraft controls itself with respect to the center-of-mass 
(COM) of a subset of neighboring spacecraft. A cycle arises 
in the dependency digraph if two spacecraft are neighbors of 
each other (e.g. spacecraft i and j each control themselves with 
respect to the COM of spacecraft i and j). [l] and [4] use 
similar approaches. In particular, [4] studies a unit-centered 
strategy in which robots control themselves with respect to the 
COM of the entire formation. We refer to these algorithms as 
centroid strategies, and they have only been studied through 
simulation. 

control dependency directed graphs. 
the beginning of the UF section for the definitions of cyclic and 

There also exist Cyclic algorithms for forming reg- 
ular geometric patterns from arbitrary distributions of 
spacecrafthobots. [ 1051 uses rule-based controllers to generate 
lines, circles, polygons and distributions of robots within 
convex polygons. [ 1371 extends [ 1051 by modifying the al- 
gorithms to better handle realistic actuators, sensors, and 
collision avoidance algorithms. 

The basic rules for forming a circle in [lo51 are (1) first 
move towards or away from the farthest robot until it is a 
prescribed distance Do away, and then (2) move away from the 
closest r0bot.2~ [ 1191 develops two Cyclic algorithms, one of 
which is a rule-based approach similar to [105]. In the second 
algorithm of [ 1191, potential fields are constructed that mimic 
rules similar to the two discussed above. That is, if a spacecraft 
is more than a distance Do away from another spacecraft, 
then an attractive force results, and if less, then a repulsive 
force results. In [ 1191, a stability proof for the potential field 
approach is provided, and the resulting formation equilibria 
are analytically characterized for up to four spacecraft. 

Ref. [69] also uses a potential field approach (every space- 
craft is repulsed by its neighbors) to evenly distribute space- 
craft in a circular orbit, and proves the stability of the 
algorithm. E761 starts with the work of [69] and considers 
different potential function forms and spacecraft arrangements. 
[129] consider a potential field strategy where robots are 
attracted to two preassigned neighbors. In addition, formation 
vectors are applied to specific robots. Formation vectors are 
additional velocity commands used to shape the formation.’* 
The stability of the algorithm is proven and conditions are 
imposed on the formation vectors for the formation to be 
stationary. Essentially, if the formation vectors are not selected 
properly, then the sum of their effects can lead to a fixed shape 
formation that translates as a rigid body. 

Refs. [135] and [136] introduce a Cyclic algorithm based 
on the GVS architecture. However, there are two important 
differences. First, the motion of the virtual structure is no 
longer prescribed, but is generated by specifying a goal state 
and a controller for the virtual structure. The spacecraft 
still have their own local controllers to track the reference 
trajectories generated by the motion of the virtual structure. 
The second difference is to make the feedback gain for 
the virtual structure’s control law dependent on the tracking 
errors of the spacecraft control laws. As a result, if the 
spacecraft begin to fall out of formation, the virtual structure’s 
control gain decreases, slowing down the virtual structure. This 
slowing of the virtual structure allows the spacecraft to reduce 
their tracking errors, thereby reestablishing the formation. The 
stability of this algorithm is proven in [136]. 

271t is theorized that flocking or schooling (i.e., formation maintenance) in 
animals is achieved by each animal: (1) being attracted to distant neighbors, 
(2) being repulsed by close neighbors, and (3) aligning its velocity with the 
velocities of neighbors [62]. 

**A simple analogy is to imagine beads (robots) placed along a length of 
rubber band. The rubber band represents the effect of the potential fields and 
the formation vectors specify a pull on each bead. For example, pulling on 
the two end beads in directions 90 degrees apart and pulling on the center 
bead with the proper magnitude and in a direction opposite the bisector of 
the 90 degree angle generates a stationary “L” formation. 
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Lastly, the dependency graph for IVS is completely con- 
nected (Le., every spacecraft depends on every other spacecraft 
through the virtual structure fitting step), and so it is Cyclic. 

VI. BEHAVIORAL 
As discussed in [4] and [13], the Behavioral architecture 

combines the outputs of multiple controllers designed for 
achieving different and possibly competing behaviors (i.e., 
objectives). According to Arkin [2], to whom formal behavior- 
based robotics is due, there is no universally accepted defi- 
nition of a “primitive behavior.” Drawing a consensus from 
the papers surveyed and [2], we consider a behavior to be 
an objective such as collision-avoidance or move-to-goal, 
functions that the spacecraft must individually or collectively 
perform. 

For formations the maintain-formation behavior is required 
[ 11, [4]. For example, an L/F algorithm plus a repulsive poten- 
tial field centered on each spacecraft is a Behavioral algorithm 
consisting of maintain-formation and collision-avoidance be- 
haviors. Note that the maintain-formation behavior may itself 
be a composition of lower-level actions:7 but we still consider 
it to be a single behavior. Note also that control laws for 
individual behaviors can be FFC algorithms in their own right, 
and are classifiable independent of the Behavioral aspect of 
the overall controller. Many of the FFC algorithms for the 
maintain-formation behavior were discussed more fully in the 
Cyclic section (e.g. centroid strategies). 

Ref. [ 11 provides an excellent example of a Behavioral FFC 
algorithm. They consider velocity-commanded aircraft with 
collision-avoidance, obstacle-avoidance, m ~ v e - t o - g o a l ~ ~  and 
formation-maintenance behaviors. Each of the behaviors has 
an associated velocity vector and weighting, and the velocity 
of each aircraft is set to the summed value of its behavioral 
velocities. 

Ref. [4] develops a rule-based behavioral controller for 
platoons of robotic jeeps. For the maintain-formation be- 
havior they consider L/F and two Cyclic strategies similar 
to the centroid strategies of [117]. To this behavior they 
add collisiodobstacle-avoidance and move-to-goal behaviors. 
[ 1051 considers arbitrary groupings of robots and develops 
simple, rule-based Cyclic algorithms for forming them into 
regular geometric shapes. To these maintain-formation rules, 
a “left-swerve” collision avoidance algorithm is added. [ 1371, 
however, performs an exhaustive simulation study of the algo- 
rithm in [lo51 and identifies many cases where the collision- 
avoidance behavior “blocks” the maintain-formation behav- 

Behavioral control is based upon the idea that by adding 
control actions for individual behaviors, one obtains a part of 

29F0r spacecraft using an LF architecture a goal might be specified as a 
position with respect to another spacecraft, thus conflating the move-to-goal 
and maintain-formation behaviors. To avoid confusion, a goal is defined as a 
target state that is meaningful in the absence of other spacecraft. 

3% particular, the collision-avoidance algorithm (1) can give rise to limit- 
cycle-like behavior where the robots almost form the proper shape but then 
spread apart, only to almost form the proper shape again, etc., or (2) can 
result in deadlock, where all the robots stop, waiting for the other robots to 
move. 

i~r .~O 

each behavior. However, as illustrated in [137], it is possible 
for the behaviors to destructively interfere. Generally, simu- 
lation is the only tool for verifying that the combination of 
behaviors functions as desired. 

The previous Behavioral FFC algorithms do not have any 
theoretical guarantees or stability proofs. In contrast, the 
following series of papers proves the stability of its Behavioral 
algorithm. 

Ref. [59] introduces the concept of coupled dynamics. 
There are two behaviors in this concept: maintain-formation 
and move-to-goal. The underlying idea is that the maintain- 
formation behavior is implemented by coupling goal-state 
tracking errors: if all the robots have the same tracking error 
with respect to their goal states, then the robots are in forma- 
tion. Feedback linearized controllers are used by each robot 
to track its goal state (move-to-goal) and to track the average 
goal state tracking error of two neighboring robots (maintain- 
formation). Note that by itself the maintain-formation behavior 
(i.e., tracking the error of two neighbors) is a Cyclic centroid 
strategy, for which a general stability proof does not exist. 
However, in this case the Cyclic algorithm is stabilized by 
coupling it to the move-to-goal behavior. 

Ref. [58] extends the concept of coupled dynamics to 
rotational motion using rate feedback and passivity based 
controllers. [56] compares L/F and the coupled dynamics 
approach in terms of control effort and tracking errors. Con- 
sidering synchronized attitude maneuvers, [57] decomposes an 
individual spacecraft’s current attitude into eigenaxis and off- 
eigenaxis components. The eigenaxis rotations are coordinated 
through coupled dynamics, and the off-axis deviations are 
damped using a PD controller. Unabridged stability proofs of 
the coupled dynamics Behavioral algorithm can be found in 
[601. 

Finally, note that we did not find any papers applying 
Behavioral FFC to a POE formation. 

VII. CONCLUSIONS AND FUTURE DIRECTIONS 
Formation flying control algorithms have been divided 

into five architectures: (i) Multiple-Input Multiple-Output, in 
which the formation is treated as a single multiple-input, 
multiple-output plant, (ii) Leader/Follower, in which individ- 
ual spacecraft controllers are connected hierarchically, (iii) 
Virtual Structure, in which spacecraft are treated as rigid 
bodies embedded in an overall virtual structure, (iw) Cyclic, 
in which individual spacecraft controllers are connected non- 
hierarchically, and (w) Behavioral, in which multiple con- 
trollers for achieving different (and possibly competing) ob- 
jectives are combined. 

A. Comparison of FFC Architectures 

When discussing the advantages and disadvantages of the 
various FFC architectures, we need only consider MIMO, L/F 
and Cyclic. As was argued in the VS section, VS FFC algo- 
rithms are either L/F or Cyclic depending on implementation. 
Also, Behavioral algorithms are combinations of MIMO, L/F 
and Cyclic algorithms. As part of the architecture comparison, 
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information requirements will be discussed. Information re- 
quirements are the inter-spacecraft sensing and communication 
links necessary to support an FFC algorithm. 

The primary advantages of the MIMO architecture are that 
optimality can be guaranteed and that stability follows directly 
from multiple-input, multiple-output synthesis techniques. Op- 
timality can be guaranteed since the entire formation state 
is available for controller synthesis. However, for this rea- 
son, MIMO algorithms also have the highest information 
requirements. Typically, each spacecraft must know the entire 
formation state. Also, MIMO algorithms are not robust to local 
failures. For example, it can be shown that if a thruster fails on 
a single spacecraft, then the entire controller can go unstable, 
driving all the spacecraft apart. That is, a local failure can 
have a global eaect. 

The L/F architecture addresses both of these concerns, 
information requirements and robustness, at the expense of 
global optimality. Since L/F reduces formation control to 
individual tracking problems, each spacecraft only needs in- 
formation about its leaders. This fact also simplifies formation 
coordination. For example, only a locally stabilizing controller 
and a leader assignment are needed to add a spacecraft to an 
L/F formation. In contrast, to join a spacecraft to a MIMO 
formation, the entire controller must be redesigned. Also, by 
commanding the fleet leaders, overall formation motion is 
easily specified in L/F formations. Regarding LE robustness, 
if a spacecraft fails, then only its followers are affected. By 
reassigning the followers, the immediate effects of a failure can 
be minimized. However, all the advantages of L,/F discussed 
above are traded for optimality. Connecting individual, locally- 
optimal tracking controllers does not guarantee a globally 
optimal formation controller. Also, if an WF formation is 
required to be mesh stable, information requirements can 
approach those of a MIMO formation. 

The Cyclic architecture lies between the MIMO and L/F 
architectures. By allowing non-hierarchical connections be- 
tween individual spacecraft controllers, Cyclic algorithms can 
perform better than L/F algorithms (e.g. see [4] and the 
discussion of “formation feedback” in [ 136)) and distribute 
control effort more evenly [56]. Cyclic algorithms can also 
be completely decentralized [69] in the sense that there is 
neither a coordinating agent nor instability resulting from 
single point failures. The formation geometry “emerges” from 
the interactions of the individual  controller^.^' 

The two primary drawbacks of Cyclic algorithms are that 
the stability of these algorithms is poorly understood and that 
in many cases the information requirements are as great as 
for MIMO algorithms. For example, in the rule-based Cyclic 
algorithms for forming regular polygons, each spacecraft needs 
to know the entire formation state. However, Cyclic algorithms 
are generally still more robust than MIMO algorithms. In the 
polygon algorithm, even if multiple spacecraft are removed or 
added, the formation adjusts without controller redesign. 

31Emergent behavior is also a property of Behavioral algorithms. Note that 
Behavioral formations exhibit more complex behavior than seen in a Cyclic 
formation (e.g. a colony of ants foraging). 

B. Future Research Directions 

The advantages and disadvantages of these architectures 
highlight three main areas for future research: (1) rigorous 
stability conditions for Cyclic and Behavioral architectures, 
(2) reduced algorithmic information requirements, and (3) 
increased robustnesslautonomy. 

I )  Stability Conditions 

First, rigorous stability conditions must be developed for 
general Cyclic and Behavioral algorithms. To this end, the 
cooperative robotics literature may prove helpful; see the 
bibliography of [ 171. Stability conditions would enable gen- 
eral design techniques and better comparisons between the 
different architectures. In addition, the stability of hybrid 
FFC architectures should also be studied. For example, sub- 
formations may be controlled via full-information, optimal 
MIMO algorithms, with the sub-formations being coordinated 
through a lower-information L/F algorithm. 

2)  Reduced Information Requirements 

Next, for all FFC algorithms, information requirements must 
first be made explicit. Then techniques must be developed for 
reducing these  requirement^.^^ For example, one approach for 
reducing information requirements is to add interdependency 
constraints to MIMO formation control synthesis [73]. Sim- 
ilarly, Cyclic algorithms can be designed that use only local 
information [62], [69]. A significant challenge in this case is 
to determine the local actions that give rise to the desired 
global formation behavior [67], [80]. However, to achieve 
certain global behaviors, it is likely that formation-wide co- 
ordinating information will still need to be passed between 
local spacecraft controllers [ 131, [ 1161. Another approach 
to reducing information requirements is to develop control 
algorithms robust to inter-spacecraft communication delays.33 
The theory of jump systems is promising in this respect 
[126]. [9] develops an algorithm that eliminates the need for 
communication altogether: probabilistic, internal models of the 
other spacecraft enable individual spacecraft to make robust 
decisions for formation coordination. 

Information requirements also couple formation estimation 
and control. Techniques must be developed for designing 
integrated estimatiodcontrol algorithms with sensing and com- 
munication constraints. For example, during formation maneu- 
vers, FFC algorithms should be able to reconfigure if sensing 
and communication links (i.e., the estimation topology) change 
W I .  

3)  Autonomy and Robustness 

The third main area for future research is the autonomy 
and robustness of FFC algorithms. It is cost prohibitive to 

32Ref. [I371 states, “One of the biggest challenges in implementing existing 
formation algorithms is the inability to sense the location (or even just the 
presence) of all other robots.. . .” 

33A related field is designing inter-spacecraft communication systems robust 
to spacecraftltransmittexkceiver failures. See for example [81] and [lOO]. 
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have a ground-based control center for each spacecraft in a 
formation (e.g. consider the thirty-plus spacecraft formation 
proposed for MAXIM [39]). Further, it is not uncommon for 
a spacecraft to enter “safe mode,” in which case it ceases 
to participate in the formation [21]. Clearly, formations must 
function autonomously, particularly in the presence of such 
faults. 

To varying degrees, Cyclic algorithms have an innate robust- 
ness, i.e., failed spacecraft do not affect the stability of the 
formation [69], [119]. However, MIMO and L E  algorithms 
must take immediate action to prevent the loss of further 
spacecraft from the formation. For LE, when a leader fails, the 
followers must be reassigned. Refs. [48], [71], [29] and [311 
consider leader switching. A related topic is deciding who 
should be a new leader. Network theory is applicable in this 
case; see [66] for references on leader election protocols. 

Considering MIMO robustness, synthesis techniques have 
been developed that are robust to parameter variations and 
actuator saturation (e.g. [7 11). An additional constraint that 
must be addressed is robustness to actuator (Le., spacecraft) 
failures. 

Finally, FFC algorithms should ultimately be scalable. One 
concept for the Terrestrial Planet Imager [ 141, the follow-on 
mission to Terrestrial Planet Finder, is a twenty-five spacecraft 
formation operating over a 350 km baseline that will image 
Earth-like planets at ten parsecs well enough to resolve con- 
tinents. And that is a truly exciting and challenging goal. 

ACKNOWLEDGMENT 
This research was performed at the Jet Propulsion Labora- 

tory, California Institute of Technology, under contract with the 
National Aeronautics and Space Administration. The authors 
thank Professor Roy Smith of the University of California 
Santa Barbara for his comments and the library staff at JPL, 
especially Raymond Hewitt. 

APPENDIX 
Table of Acronyms and Abbreviations 

AHS 
CA 
COM 
Digraph 
DOF 
DS 
FFC 
FOV 
GEO 
GPS 
GUUB 
GVS 
HCW 
HP 
IVS 
LEO 
L/F 
LMI 

Automated Highway Systems 
Collision Avoidance 
Center of Mass 
Directed Graph 
Degree of Freedom 
Deep Space 
Formation Flying Control 
Field-of-View 
Geosynchronous Earth Orbit 
Global Positioning System 
Globally Uniform Ultimate Boundedness 
Guidance VS 
Hill-Clohessy- Wiltshire 
High Precision 
Iterated VS 
Low Earth Orbit 
LeadedFollower 
Linear Matrix Inequality 

Table of Acronyms and Abbreviations (Continued) 
LP Low Precision 
LQ Linear Quadratic 
LQG Linear Quadratic Gaussian 
LQR Linear Quadratic Regulator 
MIMO Multiple-Input, Multiple-Output FFC Architecture 
MSI Multiple Spacecraft Interferometer 
PD ProportionaIDerivative 
POE Planetary Orbital Environment 
S.A.S.S. Spatial Asymptotic String Stability 
UAV Uninhabited Aerial Vehicle 

Virtual Structure 
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