
Recent Developments in the ROAMS Planetary Rover Simulation Environment

A. Jain, J. Balaram, J. Cameron, J. Guineau, C. Lim, M. Pomerantz, G. Soh1
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 9 1 109

Abstract
This paper describes recent developments in the ROAMS

physics-based simulator for planetary surface exploration
rover vehicles. ROAMS includes models for various sub-
systems and components of the robotic vehicle including
its mechanical subsystem, sensors, on-board resources, on-
board control software, the terrain environment and ter-
raidvehicle interactions. The ROAMS simulator can be used
for stand-alone simulation, closed-loop simulations with on-
board software or for operator-in-the-loop simulations.

1 Introduction
There has been significant growth in the number of space ex-
ploration missions devoted to planetary surface exploration
using mobile rover vehicles. The Mars Exploration Rover
(MER) project launched in 2003 is a prime example of such
a current mission, with the Mars Science Laboratory (MSL)
representing the next generation of such surface exploration
missions. Highlights of the MSL mission include signifi-
cantly extended mission life (over 18 months) and rover tra-
verse distances for Mars surface exploration.

The development and testing of onboard software for
planetary rovers has traditionally been done using rover
hardware platforms and testbeds. These hardware resources
however are expensive and typically over-subscribed. To al-
leviate this situation, validated modeling and simulation ca-
pabilities for surface rovers are being developed to support
the mission in carrying out surface system trade studies, de-
velopment of new rover technologies, closed-loop develop-
ment and test of onboard flight software, and for use during
mission operations.

ROAMS includes models for various subsystems and
components of the robotic vehicle including its mechani-
cal subsystem, sensors, onboard resources, on-board control
software, the environment and terraidvehicle interactions.
ROAMS provides interfaces to close the many different rover
control loops ranging from low level motor control, locomo-
tion estimation and control, to navigation and vision con-
trol loops shown in Figure 1. The ROAMS simulator is be-
ing used for stand-alone simulation, closed-loop simulations
with onboard software and for operator-in-the-loop simula-
tions. ROAMS is also being used to support the develop-
ment, testing and maturation of new rover technologies for
eventual infusion into missions such as MSL and beyond.

Figure 1: Typical closed-loop interfaces to the raver

. .
References [1,2] earlier reported on the key architectural

elements of ROAMS and provided a snapshot descripiion of
its functionality. In this paper, we describe the further ca-
pabilities that have been developed in ROAMS as well as
preliminary validation results.

2 ROAMS Design Goals
We describe first some of the key design goals that are driv-
ing the ROAMS development.

2.1 Validated Physics Based Models
A primary requirement on ROAMS is that it serve as a high-
fidelity surrogate rover to support closed-loop testing beyond
what is possible with just hardware rover testbeds. These
high fidelity needs require ROAMS to implement (a) de-
tailed physics based models of the rover mechanical plat-
form including its kinematics and dynamics, (b) its suite of
actuators and sensors such as wheel & steering motors and
encoders, inertial measurement units (IMUs), sun sensors,
cameras, and (c) models of the environment and the rover's
interactions with the environment. Hand in hand wiih the
model development process is an ongoing ROAMS simula-
tor validation effort consisting of a series of experiments in-
volving deterministic as well as statistical comparison:; with
physical rover data.

2.2 Model Configurability
The rover flight system development typically involves test
rover platforms ranging from experimental technology de-
velopment rovers all the way to flight breadboards and
spares. The configuration of these platforms typically

1

evolves over time with updates to the sensor/actuator suite, KOAhlS/Surface
its avionics and other hardware. ROAMS is expected to pro- 1 Arm j

DSENDSXEDL
~ Parachute 1 ’ Atmospheric &

Wind models
Aerodynnniics
Landing sensor!;

MPF, DIS-1,
Stardust,

Stdlght, SIM,

vide models that shadow these multiple rover platform con-
figurations at any given time and their evolution over time.
This requires that ROAMS stay away from monolithic, rover
platform specific simulation implementation. Instead a con-
scious design strategy has been to allow users to configure
ROAMS for different rover models easily at run-time via
model data files. While allowing users to easily tailor sim- ~n&jd & I Casdni, Gmlileo,
ulations to the specific platforms, this configurability has
been useful during the simulation validation effort to tai-
lor ROAMS to specific configurations to match experimental
rover models.

2.3 Closed-Loop Simulations
As a test platform, ROAMS is meant to be used in closed-
loop with the onboard rover software and hardware. This re-
quires ROAMS to be embeddable within closed-loop testbed

~ Camera SenSOrS
~ Wheel/soil dynamics

Resource modris 1

L.. Mobility models J I *
’ D~peceVidintioO

Darts/Dshell
1.-

Figure 2: Common Dshell simulation infrastructure
for ROAMS and Dsends

environments containing a mix of onboard software, real
hardware and simulated hardware. ROAMS provides hard-
ware like command and sensing interfaces to allow such loop
closure. Particular attention has been paid to keeping the
simulation algorithm performance high to meet the closed-
loop timing requirements. Also, ROAMS is portable across
Unix as well as real-time VxWorks platforms. The Dmex
tool [I] is also available to auto-generate interfaces for em-
bedding ROAMS within a Matlab/Simulink environment for
control algorithm development and testing.

2.4 Layered Toolkit Approach
While simulations are expected to to the “right” thing, i.e.
provide good fidelity, they also need to provide a significant
level of instrumentation and features for them to be usable.
Since the inclusion of these features adds to code size and
the number of external dependencies, ROAMS has adopted a
layered design, where many of the features are implemented
as optional plug-in extensions so they can be included as
needed at run-time. This approach has also helped increase
the amount of reusable modules within ROAMS .
2.5 Spacecraft Simulation Framework
To accelerate the development of ROAMS , we decided to
build ROAMS upon the existing DARTS & Dshell simula-
tion framework [3] in use for spacecraft simulations.. This
strategy has allowed the ROAMS development to focus on
the extensions needed for the surface rover domain. Like-
wise this has had the effect of making available these exten-
sions to other simulators sharing the same simulation infras-
tructure. A case in point here is the Dsends entry, descent
and landing simulation tool [4] which uses the same DARTS
& Dshell simulation framework and shares several modules
with ROAMS including those for dynamics simulation and
terrain environment modeling.

2.6 Open source tools
Complementing our goal of using established spacecraft
simulation capabilities, we have placed emphasis on us-
ing and adapting open source software wherever possible.

This has led to the use of computational libraries such as
SWIFT++ [5]and ANN [6], visualization layers such as
OpenInventor [7], POVRAY [XI, graphical user interface
tools such as Tk [9], Tix, Gtk [lo], Gnocl [I 13, TCL [9] &
SWIG [121 scripting interfaces, and documentation genera-
tion tools such as Doxygen [131 within ROAMS .

2.7 Usable
With the increase in detail and functionality of ROAMS ,
we recognize the need to provide user interfaces to facili-
tate the use of ROAMS and help reduce the learning curve.
While the ROAMS core is implemented in C/C++, ROAMS
includes a TCL [9] scripting interface (auto-generated by the
SWIG [121 wrapper generation tool) to its C/C++ cla,sses to
facilitate the configurability of the simulation and facilitate
regression testing. This scripting interface is also used to
develop graphical user interfaces for users to change simu-
lation modes, set rover goals, change simulation speed, take
time steps, exercise rover degrees of freedom, select terrain
models etc. The Dspace 3D visualization tool [I] provides
run-time visualization of the rover simulation state.

3 ROAMS Models
In order to provide a high-fidelity virtual rover, ROAMS ’
vehicle models span rover kinematics and dynamics algo-
rithms as well as models of its hardware components., mod-
els of the rover environment including the terrain and the
sun, and interactions between the rover and its environment.
To facilitate testing of the simulated rover, ROAMS also in-
cludes representative models for software components such
as navigation, locomotion and motor control algorithms.

The sections below describe in more detail some of the
recent ROAMS model developments in the areas of camera
image synthesis, terrain models, wheel-soil interaction, plan-
etary ephemerides and sun camera models. Reference 1:1] de-
scribes previously developed ROAMS ’ models of the rover
kinematics and dynamics as well of its hardware devices
such as inertial measurement units (IMU), motors etc.

In addition to vehicle modeling, ROAMS must also model
the rover environment. As a surface vehicle, the rover in-
teracts with the environment primarily through the terrain.
Accurately modeling of this terrain and the contact forces
between it and the rover are the primary focus of environ-
mental modeling in ROAMS . In addition to physical char-
acteristics, ROAMS also provides an accurate graphical rep-
resentation of the terrain for presentation to onboard cam-
era models. The relative position of the sun can be used to
generate realistic shadows and is computed using planetary
ephemeris information.

3.1 Rover Model Definition
An important provision within ROAMS is a flexible model-
ing infrastructure that can handle multiple vehicle types and
configurations. ROAMS employs modular, hierarchical pa-
rameter templates to provide the flexibility needed to manage
rover simulations involving hundreds of parameters. These
template trees are constructed using the Tree TCL package
[14]. Branches of the parameter tree are based on physical
rover sub-systems (Le. arms, wheels, mast) and environment
(Le. location, soil type, time of day). These parameters are
used to instantiate the run-time rover model.

At start-up, ROAMS constructs a parameter tree contain-
ing default values along with text descriptions of each pa-
rameter. When a particular rover type is loaded into ROAMS
at run-time, it inherits these defaults. However, the model
can also overload or modify any of the existing parameters.
This is required in order to specialize parameters such as
kinematics, mass and inertia properties for a particular rover.
This ability to inherit and overload parameters has been use-
ful in allowing new parameters to be added to the ROAMS
parameter tree without any changes to the vehicle models
(unless the default value needs to be modified). It also allows
ROAMS to instance multiple rovers of the same or different
types with ease as well as to easily vary the rover parameters
for Monte Carlo simulations.

3.2 Terrain Modeling
An important consideration in rover simulation is modeling
the terrain upon which the vehicle moves. Being a surface
vehicle, the rover has intimate interaction with the terrain.
ROAMS provides provisions and common interface for us-
ing digital elevation map (DEM) terrain models from a vari-
ety of sources, which can be generally categorized as empir-
ical, analytical or synthetic.

Empirical terrain models are representations of natural
landscapes used for rover traverses such as in field tests.
These terrain models are useful for comparing physical rover
data with simulated rover data for simulation validation as
well as for predictive purposes. The mechanism by which
empirical terrain data is collected ranges from manual mea-
surement and optical surveying to high-precision radar and
laser scanning techniques. In all cases, the data are collected
from the actual landscape under consideration and are later
reconstructed to generate a topography of the landscape.

Analytical terrain models are useful when specific sur-
face topography (eg. constant slope) is desired for simulat-

ing controlled rover scenarios. Such terrain models can be
generated algorithmically using parameterized mathematical
functions. Using this analytical method, surfaces such as a
precisely controlled slope or a specific type of obstacle such
as a bump or a pothole may easily be generated with precise
characteristics.

Synthetic terrain models are useful in simulation scenarios
where statistically realistic planetary landscapes, eg. Mar-
tian landing sites, are required for the simulations. Synthetic
terrain generation algorithms [15,161 allow the user to spec-
ify general characteristics such as the range of rock sizes
and distribution densities, along with other features such as
craters. The terrains can be synthesized from scratch or can
be enhancements of lower resolution base terrains. These in-
put parameters for these terrain synthesis algorithms can be
varied to generate a range of terrain models for use in statis-
tical rover simulation studies.

3.3 Soil contact modeling
The primary goal of the terrain interaction modeling in
ROAMS is to compute the forces and moments exerted by
the terrain on the vehicle. Given these forces, the reisulting
motion of the rover is a well understood rigid multi-body
dynamics problem. ROAMS makes the simplifying assump-
tion that contact forces are applied at a single point for each
wheel and hence the applied moments from contact can be
regarded zero. The force at the contact point for each wheel
is decomposed into normal and tangent components. The
normal direction is defined as perpendicular to the terrain
at the contact point. ROAMS uses a non-linear compliance
system to compute the force in the normal direction. As
the rover sinks into the terrain, the compliance syst1:m in-
creases the normal force until equilibrium is reached. This
allows ROAMS to solve for the statically indeterminate nor-
mal forces. The magnitude of the normal force serves as the
foundation for almost every contact model.

Once the normal force has been computed, the forces in
the tangent plane can be computed. ROAMS employs a
two-dimensional compliance system described in [171. Pre-
viously, ROAMS used a simple Coulomb friction law to
compute the maximum allowable tangent force (IlF~ll 5
pI IFN I I). This has been updated to limit tangent force based
on the soil mechanics parameters of internal friction angle
(4) and soil cohesion (c). These parameters provide :I more
accurate representation of the transition between rolling and
sliding behavior in soil. Maximum tangent forces are now
given as:

IlFTll I c A c + IlFNll *tan$

where A, is the area of the wheelkoil contact patch.
ROAMS currently uses heuristic techniques for computing
the area of the contact patch. These heuristics will be re-
placed by more accurate modeling based on terra-mechanics
equations [181.

3.4 Ephemeris Interface
Another new feature of ROAMS is an interface to the SPICE
software package [19]. The SPICE package provides ii pow-

erful, extensible database of ephemeris information for all
major bodies in the solar system. Sun position relative to the
rover can be computed at any time and for any location on
the surface of Earth or Mars. The sun position in the sky
is used by several models including the sun-sensor and sun
camera models, the solar panel model, and in the future will
be used for the accurate generation of shadows for camera
image synthesis. ROAMS provides the sun position infor-
mation to Dspace to generate a graphical image of the sun
for simulating a sun camera image. The SPICE interface
also allows the computation of relative planetary positions
for simulating antenna pointing and telecommunication up-
link/downlink link scenarios. In addition to planetary bodies,
SPICE can import spacecraft ephemeris in order to compute
the position of orbiting spacecraft relative to the rover.

3.5 Camera Image Synthesis
Camera image synthesis is an important new capability cur-
rently under development within ROAMS . Simulation of
stereo camera images allows ROAMS to close the loop with
with the stereo pipeline in the onboard software. The stereo
pipeline is used for generating range maps for the onboard
hazard detection and rover navigation algorithms. These im-
ages can also be used for visual odometry and visual tracking
applications. We describe here the current status of our cam-
era image synthesis work while it remains an active area for
both development and validation.

3.5.1 CAHVORE Camera Models
The basic camera model in use for robotic vehicles used
in Mars planetary exploration was originally developed by
Yakimovskly and Cunningham [20,2 I]. This model included
a central perspective projection and an arbitrary affine trans-
formation in the image plane. Since then this model has been
extended to include radial lens distortion [22] and represen-
tation of entrance pupils suitable for use with fish-eye type
lenses [23]. The basic camera parameter in these models
consist of C - the Center Vector of the entrance pupil, A - the
Axis Vector normal to the image plane, H - the Horizontal
Vector for the image, V - the Vertical Vector for the image, 0
- the Optical Vector that is the symmetry axis for radial dis-
tortion, R - Radial Distortion polynomial coefficients, and
E - Entrance Pupil polynomial coefficient terms. Together
these CAHVORE parameters (1 8 for the CAHVOR portion)
allow modeling of a wide variety of optical system including
lenses with wide field-of-views and fish-eye distortions. Rig-
orous least square procedures exist for estimating the values
of all of the CAHVORE parameters.

3.5.2 Image Synthesis using Dspace
Currently the ROAMS simulated camera models take into
account only the CAHV camera parameters while the simu-
lation of the radial and fish-eye distortion effects is planned
for the near future. ROAMS utilizes the Dspace 3D visu-
alization tool to synthesize stereo image pairs for the vari-
ous hazard cameras (hazcams) and panaromic cameras (pan-
cams) on the rover. To perform image synthesis, Dspace
uses its list of 3D visualization graphical objects such as

DEM based terrains, associated textures, CAD file represen-
tations for all rovers in the simulation, the position of the Sun
and other light sources, in combination with camera param-
eters derived from the CAHV parameters for each of 1 he left
and right stereo cameras, to render images for processing by
stereo correlation code.

For each simulated camera, position and attitude informa-
tion for the camera is passed to Dspace by ROAMS . along
with the field of view and resolution (in pixels) for tb: cam-
era. Since the camera’s optical axis may not be perfectly
centered in the image plane, Dspace renders an image larger
than the resolution of the camera and then extracts thi: cam-
era image region from about the optical center to plroduce
the final rendered image. This over-rendering is required
because OpenInventor/OpenGL cameras do not support off-
center boresite rendering. Currently, depth-of-field c(3lcula-
tions are not supported. When camera image rendering is
complete, that image is converted to a 8 bit greyscale image
for further processing. Dspace performs the camera render-
ing in an “off-screen” mode. Figure 3 shows an example

Figure 3: Synthetic stereo camera image pair

We have used a Stereo Vision C++ library [24] dev’eloped
at JPL to verify that range map information can be success-
fully extracted from the synthetic images. Figure 4 shows
the resulting range map generated for the stereo image pair

Figure 4: Range map from the synthetic stereo camera
image pair

representations of the the distance and height for each point
in the range map. The bottom image shows a top down view

of the range map where the dark areas in the middle are the
"holes" in the range map due to occlusion of the area by the
rocks. The Stereo Vision library is flexible in the image input
format and can process 8 bit grey-scale to color pixels (up to
96-bits of precision) if greater accuracy is desired. Using
a CAHVOR camera model as input, the Stereo Vision code
compares the camera images to produce a single "disparity"
image from which a range map (three-dimensional distance
of each pixel from the camera) is computed. We have been
using this stereo code to test and validate the synthetic cam-
era images being generated by ROAMS .

0 . 6

0 . 8

4 ROAMS Validation

- ,

~ '

. _ ..._ ~ ..., - . . . ," . . . , .

In order for a rover simulation to be useful in developing
rover navigation and control software, its behavior must cor-
respond well with the operation of a real physical rover
in a real environment. Hence, in parallel with the ongo-
ing development of ROAMS , we have been undertaking a
validation effort for ROAMS using experimental data from
rover mobility runs. Our validation strategy has two tracks.
One track is pursuing deterministic validation for parts of
the system that are deterministic (eg. the rover hardware
model). Another track is using statistical matching for the
non-deterministic or difficult to characterize parts of the sys-
tem (eg. wheel slippage). Deterministic comparisons be-
tween simulated and experimental data is difficult due to the
uncertainty in environment models and the inherent com-
plexity in creating them.

The motion of a rover over a planetary terrain is a product
of many different components and levels of the system. At
the lowest level, there are rover rockers and bogeys (suspen-
sion components), wheels, actuators (motors), and sensors.
External influences, such as the terrain shape and properties,
are also a critical factor in the rover motion. A key goal of
our ROAMS validation effort is to validate the rover motion
at various levels of operation. We are validating the opera-
tion of actuator and other individual component models. We
also seek to validate the overall motion of the simulated rover
to validate the higher level navigation loops in the system. It
is important to establish good correspondence for the lower
loops in the system between the simulation and physical ex-
periments, since they serve as the foundation for the system
level behavior of the system.

Eventually, the level of detail needed in the individual
component models for adequate simulation fidelity is in-
timately driven by the rover's operational parameters, i.e.
rover speed, terrain slope and roughness, onboard sensors
etc. One of our goals in the validation activity is to develop
benchmarks and guidelines in this area. To this end, we are
carrying out a series of validation experiments that allow us
to analyze the performance of individual components as well
as of the over all system over controlled, easily modeled, sur-
faces. The following section describes the results from these
experiments. Our eventual goal is to validate the simulation
over natural terrains. However, such validation requires good
simulation models of the terrain, and Section 4.2 describes
our current work on terrain model reconstruction.

4.1 Vehicle model validation on controlled
surfaces

Our first rover model validation experiments included driv-
ing a rover straight on a flat surface. We used these early
experiments to improve our motor and gear train models for
the wheels and steering motors.

4.1.1
We performed an experiment of driving the Rocky8 [25]
rover in a 45 degree circular arc of 0.5 meters radius on a
flat surface in the JPL Mars Yard [26]. The Mars Yard is an
area with rocks and surface materials that are representative
of Martian surfaces. The purpose of the experiment was to
validate various rover wheel and steering motor control mod-
els associated with making a turn, the wheel diameters and
the IMU model. During the turn, the average wheel angle
deviations at the end of the turn was approximately 2 1 YO as
shown in Figure 5. Figure 6 shows the steering angle profile
whose the average deviation was 0.9%. During the time the
rover chassis was rotating, the IMU rate deviation bctween
the experimental and simulation data was about 4% as shown
in Figure 7.

Rocky8 rover driving in a 0.5 meter circular arc

FRONT WHEEL ANGLES Rocky8 45 Degree Arc Turn 0 5 MBlw Radius (Mas Yard 200 bo1 24)

, I Rlgh S I I T ~ U I ~ I M
'"llf RtQ1, n I ,<I

91 " " " " '
0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I6 17 18 I9

Time (E)

Figure 5: Front wheel angles during Rocky8 circular arc

STEERING ANGLES R d y 8 45 Degree Arc Turn. 0 5 Meter Radus (Mam Yard 2003.01-24)

Figure 6: Steering angles during Rocky8 circular arc

In summary, this experiment showed excellent agreement

GYRO RATES. Rocky8 45 Degree Arc Turn. 0.5 Meter Radius (Mari Yard. zooil.01-24)
5

4.5

4

3.5

3

250

225

200

175

150

6 125
- -
9 100

-05L.' " " " " " " " " " 1 ' "
-2 .1 0 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21

Time Is)

X (m) rm-0 3 -.. --- , I n l i l l > t 0 1 ,
~

x i m i mu 0 4
Y imi mu n i
Y in,) ,nil n 7

-

-
-

,:. ...-.._.._ -

-

-

Figure 7: IMU Z rotation during Rocky8 circular arc

50

25

0

25

on Rocky8 steering kinematics, wheehteering motions, and
gyro response. We were unable to compare actual vehicle
motion because the physical positions were not measured
during the experiments.

4.1.2
We subsequently performed an experiment driving the Fido
rover [25] from a flat surface up a 13.4 degree slope. The
rover went a total of 230 cm, including about 65cm on the
flat surface before the front wheels touched the ramp. In this
experiment we were able to accurately measure the position
of the rover at the beginning and ends of the motion using a
Totalstation. The purpose of this experiment was to validate
rover kinematics, dynamics, and wheel slippage models over
a non-flat terrain. In this experiment, the wheel angle devi-
ation at the end of the run was 5% or less. The deviation in
the total distance moved was 1.6% based on the Totalstation
measurements.

This was the first experiment that included significant
rockerhogey motions. Since the rover contacted the ramp
straight on, the rocker angles should be small since they mea-
sure the relative rotation between the rockers on the two sides
The deviation of the bogey angles was about 27.1% and the
left bogey and 30.4% for the right bogey and is shown in
Figure 8.

Various data-collection and calibration problems pre-
vented us from analyzing IMU operation during the exper-
iment.

This experiment also allowed us to do some rough analysis
of the traction of the wheels on the ramp surface (which was
covered with a plywood board). We did a series of simula-
tions that varied the coefficient of friction between the wheel
and the ramp surface. We obtained a good match the actual
motion with a coefficient of friction of 0.6 as seen in Figure
9.

In summary, this experiment shows good agreement on
wheel angles and actual overall rover motion. It allowed us
to estimate the coefficient of friction between the wheels and
the ramp. There was moderately good agreement between
real and simulated bogey angles. Some of the discrepancy
between real and simulated bogey angles may be due to cal-

Fido rover driving up a ramp

~

-

Slam HitRBmpMldRamp End

FlDO ROCKERBOGEY MOTIONS D i m up ramp 230cm Genu's. 3cm'sY (Man Yard. 201N-04-07)

0 5 10 15 20 25 30 35 40 45 50
-25 I

Time (SI

Figure 8: Rocker and bogey angles for Fido rover driv-
ing up a ramp

0 10 20 30 40 50 60 70
Time (SI

<"

Figure 9: Forward motion for various wheel-surface
coefficients of friction

ibration problems on the Fido rover and needs hrther inves-
tigation.

4.2 Empirical Terrain Reconstruction from

In more interesting scenarios, the rover will drive ovtx nat-
ural terrains which are not geometrically simple surfaces.
Different wheels can encounter different rocks at different
times and produce complex motions. In order to validate
rover simulations in realistic situations, it is clear that ia good
model of the terrain surface and traction properties is essen-
tial. This section provides an overview of an empirical ter-
rain topography reconstruction process we have been devel-
oping at JPL's Mars Yard.

4.2.1 The Laser Scanner
The scan of the Mars Yard was done using a high-end
laser scanning device, the LMS-Z360, manufactured by
Riegl Laser Measurement Systems. The LMS-Z360 is a
lasedmirror scanning device that utilizes a fixed laser beam
and a rotating deflection mirror, mounted within a rotat-
ing pedestal. This configuration allows the user to obtain

Laser Scanner data

a panoramic range map of the environment surrounding the
scanner. The device uses the time of flight (TOF) of a pulsed
laser beam to determine range information, while precisely
controlling the rotation angle of the mirror to effect a vertical
scan range of approximately +/- 45 degrees from horizontal.
This provides a precisely controlled vertical sweep of range
measurement locations.

Rotating mirror

Lasa plse &
detector

Object (e&. rock)

Figure 10: Laser Mechanism

Figure 10 shows a simple schematic diagram of this mech-
anism. The entire laser/mirror unit is then rotated about it’s
vertical axis to provide the horizontal sweep, generating a
panoramic set of vertical scans centered about the scanner’s
position. The scanner unit itself is mounted on a tripod to
provide portability. This also gives it a vertical elevation cen-
terline from the ground on the order of about 1-1.5 meters.

The manufacturer claims the best-case resolution of the
range data to be 5mm, with a 1 sigma std dev accuracy of
+/- 12”. Angular resolution for both the vertical and hori-
zontal sweeps is specified at a minimum of 0.01 degrees. The
software allows selection of various modes of operation, an-
gular scan limits and resolution as well as selecting the focal
point of the laser beam. The various quality settings have a
large impact on the time it takes to scan an area as well as
the volume of data collected.

4.2.2 Scanner Output
The output produced from the LMS-Z360 software consists
of an ASCII file containing data for each individual laser
range measurement and a set of three bitmap images: a range
image, an intensity image and a true-color image. Each pixel
in the image corresponds to an individual laser measurement
point, which in turn corresponds to an entry in the ASCII
data file. The ASCII data file consists of one line for each
point containing a user-selectable set of data for that point.
In this experiment the software was configured to output the
(X, Y, Z) coordinate of each sample along with a laser re-
flection intensity value. The coordinate of each point is in
a scanner-relative frame of reference where the scanner is at
the origin. This X, Y, Z representation of the scanner data is
a point cloud of individual points in 3D space but contains no
explicit surface information (Le. no correlation as to which
points are part of the same objects surface.) When plotted on
a computer with a 3D viewer (for example as a VRML file),

the human eye can easily distinguish the original scene as
long as sufficiently high resolution was used when collect-

Figure 11: Sample point cloud generated by the scanner

4.3 Scan procedure
By nature, laser is a line-of-sight mechanism and can there-
fore only produce range data (Le. reflections) from surfaces
that are reasonably normal to, and lie along, the path of
the laser beam. However just as when shining a flashlight
against a tree or a rock, a shadow is cast behind the (object.
In the case of a laser scan, there will be no range information
obtained in these shadow areas. This effect can be seen in

Figure 12: Laser shadows behind rocks

of the image. As a result, the scanner data collection must be
done from several strategic vantage points for full coverage

of the terrain, and each scanner position must then be merged
into a single dataset. For example, 4 separate scans, one from
each of the front, back, left and right "sides" of the area un-
der consideration may be needed. This will insure coverage
of all sides of objects such as rocks, terrain undulations and
other markers. When the multiple scans are later merged,
the resulting 3D topology may be viewed from virtually any
angle covered by the collective scanner perspectives.

In order to register and correctly merge the multiple scan
data sets, a number of fiducials - or fixed-place markers -
visible to the laser from each of the scanner orientations are
used. The fiducials are generally small, highly reflective tar-
gets placed at precisely known locations. In Figure 13, a

Figure 13: Mars Yard scan setup

fiducial is placed at each comer of the Mars Yard and has
been precisely surveyed using a Totalstation. The reflec-
tive targets produce bright, well-defined reflections (spikes)
in the laser intensity data. We created utilities to post-process
the intensity image data and automatically locate the posi-
tions of the reflectors relative to the scanner location.

In this experiment, we also placed several standard pa-
tio bricks at various points in the terrain and measured their
precise locations. These "markers" were used later to mea-
sure the accuracy of the reconstructed terrain. The layout
of the scanner positions and bricks is shown in Figure 13.
The green squares are bricks and the blue circles are scan
positions. The laser target detection software annotates the
intensity image as shown in Figure 14, and outputs an ASCII
table of coordinates for the location and dimensions of each
reflector as well as a 3D laser intensity surface plot, which
is useful for visualizing the quality of the scan data of each
reflector as show in Figure 15.

4.4 Registering and Merging the Scan Data
Sets

Using the known absolute locations of the reflector fidu-
cials in together with their scanner-relative locations in the
scanned data, one can construct a transformation matrix for
each scanner position. Using this transformation matrix, the
point clouds for each scanner position can then be translated

Figure 14: Annotated laser scanner image

and rotated so as to register each individual scanner-centric
coordinate frame into a common reference frame (wlhich is
typically the frame of the fixed fiducials.) Again, we created
utilities to automate this process and produce a set of ASCII
point cloud files in one (Mars Yard) frame of reference. The
accuracy with which the location of the fiducials are known
along with the accuracy and resolution of the scanned data
determine to a large extent the accuracy of the registration
of the point clouds, and therefore the fidelity of the recon-
structed terrain.

Another utility then merges the multiple co-registered
scanner positions into a single dataset. This software can
provide false coloring of the point clouds from eaclh scan
position. The idea being that the merged scans from mul-
tiple strategic vantage points will fill-in the distant low-
density areas from scans taken further away. We can see
from the merged, color coded point cloud in Figure 16 color-
coded scans where each scan position was taken frorn (e.g.
green=left, red=top etc.), and how each local scan filled in
missing data from the distant scans across the Mars Yard.
When plotted in a 3D viewer, the colorized point clouds re-
veal a great deal of information as to the contribution of each
scan position to the overall dataset. Figure 17's shows ii close
up view of the false coloring of the merged data.

4.5 Surface Reconstruction
There are many factors that contribute to the actual resolu-
tion and accuracy of the data obtained from a laser scanner.
In the LMS-Z360 the laser beam emanates from a fixed point
in space and is then deflected, by mirror angle and device ro-
tation angle, to a target sample vector. This geometry ,results
in an angular separation of adjacent scanned points that in-

Figure 15: Reconstructed surface of a reflector

creases with the distance from the scanner; the further away
from the scanner a surface is, the lower the effective reso-
lution of the scanned image at that surface. In other words,
scanner resolution decreases as distance from the scanner in-
creases, resulting in a variable resolution of scanned data. It
is therefore important to consider the number and position of
each scanner location such that distant objects receive ade-
quate coverage to faithfully represent the surface. For exam-
ple, with the scanner set to a vertical and horizontal angular
rotation step of 0.05 degrees (a medium-high resolution set-
ting for the Z360), a vertical surface 2 meters away will see
an effective coverage of about 1.7mdpoint whereas a ver-
tical surface 20 meters away will see an effective resolution
of about 17.5mdpoint - 1/10 the coverage! This effect is
illustrated in Figure 18.

Applying the same reasoning to a horizontal surface (e.g.
the ground) with the scanner mounted 1 meter off the ground,
the difference in resolution goes from a about 3mdpoint at
2 meters away to over 30mdpoint at 20 meters from the
scanner! When scanning large areas such as the JPL Mars
Yard (which is approximately 20x20 meters in size), this ef-
fect must be taken account and additional scanner positions
must be considered to maintain a minimum level of scanner
coverage. When looking at the point cloud of a single scan-
ner position, this effect is very pronounced as can be seen
in Figure 19. In this top view illustration, the scanner is in
the upper-left corner, where one can see a very dense point
distribution, but by the time you get to the lower-right cor-
ner, only 4 or 5 meters away, the degradation in resolution
coverage along the ground is already quite apparent.

A second significant factor to consider when using a laser
scanner instrument such as the LMS-Z360 is the actual di-
ameter of the laser beam itself, and the response timing ca-
pabilities of the receiving electronics. For the LMS-Z360,
the laser beam is under software focus control, and can be
focused from 2 meters to infinity. According to the man-
ufacturers specifications, at 2m focus the beam diameter is
approximately 5mm, while at 10m focus, the beam diameter
is approximately 22”. Given the above described impli-

Figure 16: Merged, color-coded scans

cations of angular separation effects on resolution, consider
that at 10 meters there is an effective resolution of about
9 W p o i n t and a beam diameter of 22”. This mems that
the laser beam will overlap each adjacent scan point, provid-
ing a level of uncertainty in the exact location of the detected
reflection.

In addition, when the beam hits the edge of an object (for
example a flat-edged rock or a brick “marker”), the beam
will be “split.” Part of the beam will reflect from the brick’s
surface, the other part of the beam will continue on past the
brick and reflect from whatever it happens to hit along it’s
path beyond the brick. The effect is that the scanner will
see multiple reflections from a single laser pulse. If those
reflections fall within the pulse timing detection window of
the receiver, the scanner will not be able to resolve the dif-
ference. The LMZ-Z360 allows the user to select either the
“first return” or the “last retum” to resolve this ambiguity in
choosing the range value from the multiple reflections. This
beam splitting effect is very pronounced in terrains w Ith ob-
jects having sharp edges (such as the bricks used for val-
idation of the scan registration) and in fact is a source of
great distortion in the reconstructed terrain that must be fil-
tered out to retain the fidelity of the original landscape. This
beam-splitting effect can be seen in Figure 20. Here is a side
view of a brick, scanned from several meters away with the
beam focus set to infinity. You can actually trace the angle of
the “shroud” of sample over-spray back to the originail scan-
ner location. Given the beam diameter overlap with apparent
resolution coverage that varies with distance, the best {choice
between first or last response is not always clear. In adtiition,
the reflective qualities of the actual material being scanned
will affect the intensity of the reflections (and components
of split reflections) so as to potentially trick the thresholding
of the laser response detection sensor circuitry, adding fur-

Figure 17: Close-up view of the color-coded merged
scans

Figure 18: Angular separation effect on resolution

ther “noise” to the measurements. By controlling the beam
focus and taking banded, limited-range scans (by limiting
the vertical sweep angles to cover a small concentric radius
about the scanner’s position) you can achieve significantly
better results as shown in Figure 2 1. Of course, this requires
a many more extensive scans, with a significant increase in
the amount of post-processing of the data.

Again we wrote utilities to perform further filtering of the
point clouds, which removed most of the beam splitting ar-
tifacts, but at the cost of some lost information. The filter-
ing algorithm passes a cube of configurable size (e.g. lcm)
throughout the entire 3D terrain dataset and simply deletes
all points within the cube if the density of points is below
some specified threshold. This type of filtering must be per-
formed on the final, merged datasets to prevent it from delet-
ing entire valid, low-density regions of a single scan position
that are far from the scanner location (Le. due to the resolu-
tion degradation effects described previously.)

More work is needed in separating out the features (rocks,

Figure 19: Decrease in scan point density with distance

bricks etc) from the base terrain to retain detail in the ren-
dered image. An example of a 12m x 14m patch 01‘ Mars
Yard, as a 3D mesh an be seen in Figure 22 as a VRML
mesh.

4.5.1 Surface Texture
Another step in the reconstruction process makes use of
the true-color image generated by the LMS-Z360 software.
Using the same transformations of each scan position, and
a simple 3D to 2D projection algorithm, the true-color
panorama images can be merged and converted into a tex-
ture overlay for the terrain data. Some image process,ing to
adjust gamma, brightness and contrast provides a realistic
looking terrain for rover simulation - Figure 23. In this view,
it is possible to see the effects of each scan position as the
subtle radial shadows emanating from each of the 4 scanner
positions. Some image processing was done to compensate
for this, but the effects could not be eliminated completely.
Additional, more closely spaced scanner positions will likely
make a significant improvements here.

In the final analysis, our validation analysis showed i:he re-
constructed terrain to be mostly within 1 cm accuracy, with a
worst-case of less than 2cm error. This is well within the ex-
pected limitations of the scanner for the scanner modes used
for the data collection. Future terrain reconstruction experi-
ments will make use of the lessons learned here to improve
the quality and accuracy of the reconstructed terrain.

5 Closed-Loop Simulations
In stand-alone simulation mode, a user normally interacts
with ROAMS through a comprehensive GUIs (shown in Fig-
ure 24), for simulation configuration, control and visualiza-
tion. The majority of the simulator is written in C++, with
scripting interfaces (e.g. TCL) exposed at key points in the

Figure 20: Shroud effect from brick beam splitting

Figure 22: Reconstructed Mars Yard terrain mesh

Figure 21: Reduction in shroud effect with improved
beam focus

architecture. In order for an extemal application to close
the loop with ROAMS , a light-weight set of C++ interface
classes, denoted RoamsIF, has been developed to provide
programmatic access to initialize, configure and interact with
the simulator.

5.1 Overview of RoamsIF
Using RoamsIF, an application can gain complete control
of the ROAMS simulator, from high-levels to the very low-
level. RoamsIF provides two C++ classes with which a users
application program can interact with ROAMS ,

The primary class, RoamsIF, provides methods for sim-
ulation configuration and control as well as various utility
methods for timer callbacks and terrain selection. For exam-
ple, RoamsIF exposes methods for selecting the state prop-
agation mode (e.g. kinematics or dynamics), methods for
adding new rover vehicles to the simulation and methods for
controlling the simulation clock and advancement of time.
The application program can then step the simulation one
step at a time, or it can advance the simulation to some point

into the future.
For each new rover that is added to the simulation, a

RoverIF object is created for the rover. The RoverLF ob-
ject provides methods for accessing rover-specific inlorma-
tion and settings. RoverIF has methods for selecting high-
level features such as the navigation algorithm to use (or no
navigation at all), for specifying the rover’s position and nav-
igation goal location. RoverIF also provides low-levell com-
mand access to the rover’s underlying subsystems, such as
it’s wheel and steering motors. Using these methods, the ap-
plication software can control the rover’s movement at the
individual wheel motor level by commanding motion pro-
files (e.g. maximum acceleration, coast velocity and final
desired position).

Both RoamsIF and RoverIF also provide acces., e to a
wealth of simulation parameters and run-time variables. This
enables the application to tune the behavior of the simulation
and the simulated rover vehicles, as well as to monitor and
log output from the rover’s simulated sensor devices (e.g. a
wheel position encoder, or the outputs of a gyro).

The RoamsIF interface is continuing to evolve as do the
simulator and the users needs. A recent addition to Ro,amsIF
has been the addition of a “takepicture” methods to generate
synthetic images from ROAMS hazcam and pancam camera
models. The RoamsIF interface is currently in use by JPL‘s
Mission Data System (MDS) and CLARAty [25] projects
for closed loop rover simulations with ROAMS . We plan to
convert the current ROAMS closed-loop interface to NASA
Ames’ Mission Simulation Framework [27] to RoamsIF in
the near future.

6 Rover 3D Visualization Models
ROAMS uses the Dspace 3D graphics tool for visualizing

Figure 23: Texture image for the Mars Yard terrain

simulation output [I]. Dspace displays include graphics
models of the rover, the terrain environment as well as graph-
ics “omaments” to annotate and highlight simulation state
such as trails, field of view displays, frame axes etc. The
graphical terrain models are auto-generated from the under-
lying terrain DEM at run-time so that they are always con-
sistent with the underlying simulation model of the terrain.

On the other hand, in the case of rover models, corre-
sponding CAD like graphical models of the rover are needed
to visualize the rover behavior during simulations. Unfortu-
nately, even when they are available, CAD based graphics
models are typically unsuitable for use in closed-loop sim-
ulations. For one, these models are often far too detailed
and when used in real-time they significantly impact the per-
formance of the simulation. Secondly, the instrumentation
needed to display the rover articulation is absent from CAD
models. As a result, such models in the past have required
labor-intensive processing to either simplify the models and
add the articulation information in, or to simply create the
needed rover graphics model from scratch. While techni-
cally possible, this approach however tums out to be imprac-
tical when used with ROAMS which is meant to handle a
whole variety of existing and new rover models. The pri-
mary bottleneck is the labor-intensive process for generat-
ing the rover graphics model for new rovers to be used in
simulations. Moreover, keeping such models in sync with
parameter updates and changes to the kinematics and geo-
metric configuration of the rover has to be manually done
and is difficult in the best of circumstances. Due to these
difficulties, the graphics models can get out of sync with the
underlying physics based model and can be a source of con-
fusion for users who may rely on the graphics feedback to
interpret and monitor simulation behavior.

Figure 24: ROAMS ’ graphical user interface

We have recently developed a strategy to address these
issues. We have created a utility within ROAMS that can
auto-generate a VRML “stick” graphics model for the rover
from the the rover’s kinematics data. The “stick” mnemonic
for this model reflects the fact that this graphics model only
contains the backbone information from the rover model and
is exactly faithful to the underlying kinematics of the rover.
Thus the location and orientation of all attachment nodes,
articulation hinges, body center of mass etc. are included in
the graphics model. Some simple wheel and chassis graph-
ics objects are attached to the backbone to generate a rea-
sonable representation of the rover. The left image in Fig-
ure 25 shows an example of such a stick graphics model.

Figure 25: Stick and Xmas rover graphics models

The key benefits of the stick graphics model are thiit it is
auto-generated and hence does not require any manual effort,
and that it is always consistent with the underlying physical
model of the rover. This model can be generated for any
rover - including conceptual ones for design and analysis.

The one drawback - though not a serious one - of the
stick model is that it lacks geometrical information and while
kinematically accurate may lack the intuitive look of the
physical rover. To address this concem, we have taken the
stick model one step further, where a user can attach graph-
ics components for the various parts of the rover (eg. the
rockers, the bogeys, the chassis etc.) to the backbone. We
refer to the resulting model as the “Xmas tree” model since
the process mimics one of adding omaments to a Christmas
tree. The right image in Figure 25 contains an example of the
Xmas tree version of the stick figure in the left image. When
generating the Xmas tree model, the user is able to scale,
position, rotate the individual graphics parts as needed. We
have found the combination of the stick and Xmas tree mod-
els generation capability to be very valuable since it allows
users to use arbitrary rover designs in the simulation and
have a good visualization capability right away to accom-
pany the simulations. In any case, when CAD like models
for specific rovers are available, users have the option of us-
ing them instead of the stick or Xmas models.

7 Conclusions

“DSENDS - A High-Fidelity Dynamics and Spacecraft
Simulator for Entry, Descent and Surface Landing,” in
IEEE 2002 Aerospace ConJ, (Big Sky, Montana), Mar.
2002.

[5] S. A. Ehmann, “Swift++: Speedy walking via im-
proved feature testing for non-convex objects,” 1997.
URL: http://www.cs.unc.edu/ geom/SWIFT++.

[6] D. M. Mount and S. Arya, “Ann: Library for
approximate nearest neighbor searching.” URL:
http://www.cs.umd.edul mounVANN.

[7] “Openinventor.” URL:
http://oss.sgi .com/proj ectsiinventor.

[8] “Povray.” URL: http://www.povray.org.

[9] J. Ousterhout, “Tcl - tool command language.” URL:
http://www.tcl.tk.

[101 “Gtk.” URL: http://www.gtk.org.

[1 I] “Gnocl.” URL: http://www.dr-baum.net!gnocl.

This paper contains an overview of new ROAMS capa-
bilities developed beyond what was previously reported in
reference [11. While continuing the addition of new model-

[I21 ‘‘Swig.” URL: hWwww.swig.org.

[I3] ‘‘Doxygen.” URL: http:’’www.doxygen.org.
~~

ing hnctionality such as synthetic stereo camera simulation
models, there has been a parallel validation effort to validate
the ROAMS models. The target user for these ROAMS de-

[141 “Tcl tree package.” URL: http://www.uvic.ca/ erem-
pel/tcl/tree/tree. html.

velopments is NASA’s Mars Science Laboratory mission. [151 R. Gaskell, J. collier, L. H ~ ~ ~ ~ ~ , and R. Chen, “syn-
thetic Environments for Simulated Missions,” in Pro-
ceedings IEEE Aerospace Conference, (Big Sky., Mon-
tana), Mar, 2o01,

Acknowledgments
The research described in this paper was performed at the Jet
Propulsion Laboratory (JPL), California Institute of Tech-
nology, under contract with the National Aeronautics and
Space Administration. We would also like to acknowl-
edge the NASA’s Mars Technology Program’s support of the
ROAMS development.

References

[16] M. L~~ and R. Weiher, y n + i h site knowledge
system,” in IEEE Aerospace Conference, Bi,g Sky,
Monatana, 2001.

[I71 P. Kraus, A. Fredricsson, , and V. Kumar, “Modeling
of Frictional Contacts for Dynamic Simulation:” in In-

A. Jain, J. Guineau, C. Lim, W. Lincoln, M. Pomer-
antz, G. Sohl, and R. Steele, “Roams: Planetary sur-
face rover simulation environment,” in International
Symposium on Artificial Intelligence, Robotics and Au-
tomation in Space (i-SAIRAS 2003), (Nara, Japan),
May 2003.

J. Yen, A. Jain, and B. Balaram, “ROAMS: Rover
Analysis Modeling and Simulation Software,” in i-
SAIRAS’99, (Noordwijk, The Netherlands), June 1999.

J. Biesiadecki, D. Henriquez, and A. Jain, “A Reusable,
Real-Time Spacecraft Dynamics Simulator,” in 16th
Digital Avionics Systems Conference, (Irivine, CA),
Oct. 1997.

J. Balaram, R. Austin, P. Banerjee, T. Bentley,
D. Henriquez, B. Martin, E. McMahon, and G. Sohl,

ternational Conference on Intelligent Robot Systems

(IROS’97), (Grenoble, France), Sept. 1997.

[181 K. Terzaghi, Theoretical Soil Mechanics. Wile)!, New
York, 1943.

[I91 C. Acton, N. Bachman, L. Elson, B. Sernenov,
E. Wright, B. Engelhardt, and S. Chien, “Spice: A real
example of data system re-use to reduce the costs of
ground data systems development and mission opera-
tions,” in 5th International symposium on Reducing the
cost of spacecraft ground systems and operations (RC-
SGSO), (Pasadena, CA), July 2003.

[20] Y. Yakimovsky and R. T. Cunningham, “A system
for extracting three-dimensional measurments Yrom a
stereo pair of tv cameras,” Computer Graphics and Im-
age Processing, vol. 9, pp. 195-210, 1978.

http://www.cs.unc.edu
http://www.cs.umd.edul
http://oss.sgi
http://www.povray.org
http://www.tcl.tk
http://www.gtk.org
http://www.dr-baum.net!gnocl
http://hWwww.swig.org
http://www.uvic.ca

[21] T. Litwin, “Camera model parameters.” URL:
http://eis.jpl.nasa.gov/ telitwidpublic-jpl/src/ccal/ccal-
parameters. html.

[22] D. Gennery, Calibration and Orientation of Cameras
in Computer %ion. Springer Verlag, 2001.

[23] D. Gennery, “Camera calibration including lens distor-
tion,” Tech. Rep. JPL D-8580, Jet Propulsion Labora-
tory, Pasadena, CA, May 199 1.

[24] Y. Xiong and L. Matthies, “Error analysis of a real-time
stereo system,” in Pmc. IEEE ConJ Computer Ksion
and Pattern Recognition, 1997.

[25] I. Nesnas, A. Wright, M. Bajracharya, R. Simmons,
T. Estlin, and W. S. Kim, “CLARAty: An Architecture
for Reusable Robotic Software,” in SPIE Aerosense
Conference, (Orlando, Florida), Apr. 2003.

[26] “Jpl’s mars yard.” URL: http://marsyard.jpl.nasa.gov.

[27] L.. Fluckiger and N. C., “A new simulation framework
for autonomy in robotic missions,” in International
Conference on Intelligent Robot Systems (IROS), (Lau-
sanne, Switzerland), Oct. 2002.

http://eis.jpl.nasa.gov
http://marsyard.jpl.nasa.gov

