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Abstract 
This paper describes recent developments in the ROAMS 

physics-based simulator for planetary surface exploration 
rover vehicles. ROAMS includes models for various sub- 
systems and components of the robotic vehicle including 
its mechanical subsystem, sensors, on-board resources, on- 
board control software, the terrain environment and ter- 
raidvehicle interactions. The ROAMS simulator can be used 
for stand-alone simulation, closed-loop simulations with on- 
board software or for operator-in-the-loop simulations. 

1 Introduction 
There has been significant growth in the number of space ex- 
ploration missions devoted to planetary surface exploration 
using mobile rover vehicles. The Mars Exploration Rover 
(MER) project launched in 2003 is a prime example of such 
a current mission, with the Mars Science Laboratory (MSL) 
representing the next generation of such surface exploration 
missions. Highlights of the MSL mission include signifi- 
cantly extended mission life (over 18 months) and rover tra- 
verse distances for Mars surface exploration. 

The development and testing of onboard software for 
planetary rovers has traditionally been done using rover 
hardware platforms and testbeds. These hardware resources 
however are expensive and typically over-subscribed. To al- 
leviate this situation, validated modeling and simulation ca- 
pabilities for surface rovers are being developed to support 
the mission in carrying out surface system trade studies, de- 
velopment of new rover technologies, closed-loop develop- 
ment and test of onboard flight software, and for use during 
mission operations. 

ROAMS includes models for various subsystems and 
components of the robotic vehicle including its mechani- 
cal subsystem, sensors, onboard resources, on-board control 
software, the environment and terraidvehicle interactions. 
ROAMS provides interfaces to close the many different rover 
control loops ranging from low level motor control, locomo- 
tion estimation and control, to navigation and vision con- 
trol loops shown in Figure 1. The ROAMS simulator is be- 
ing used for stand-alone simulation, closed-loop simulations 
with onboard software and for operator-in-the-loop simula- 
tions. ROAMS is also being used to support the develop- 
ment, testing and maturation of new rover technologies for 
eventual infusion into missions such as MSL and beyond. 

Figure 1: Typical closed-loop interfaces to the raver 

. .  
References [ 1,2] earlier reported on the key architectural 

elements of ROAMS and provided a snapshot descripiion of 
its functionality. In this paper, we describe the further ca- 
pabilities that have been developed in ROAMS as well as 
preliminary validation results. 

2 ROAMS Design Goals 
We describe first some of the key design goals that are driv- 
ing the ROAMS development. 

2.1 Validated Physics Based Models 
A primary requirement on ROAMS is that it serve as a high- 
fidelity surrogate rover to support closed-loop testing beyond 
what is possible with just hardware rover testbeds. These 
high fidelity needs require ROAMS to implement (a) de- 
tailed physics based models of the rover mechanical plat- 
form including its kinematics and dynamics, (b) its suite of 
actuators and sensors such as wheel & steering motors and 
encoders, inertial measurement units (IMUs), sun sensors, 
cameras, and (c) models of the environment and the rover's 
interactions with the environment. Hand in hand wiih the 
model development process is an ongoing ROAMS simula- 
tor validation effort consisting of a series of experiments in- 
volving deterministic as well as statistical comparison:; with 
physical rover data. 

2.2 Model Configurability 
The rover flight system development typically involves test 
rover platforms ranging from experimental technology de- 
velopment rovers all the way to flight breadboards and 
spares. The configuration of these platforms typically 
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evolves over time with updates to the sensor/actuator suite, KOAhlS/Surface 
its avionics and other hardware. ROAMS is expected to pro- 1 Arm j 
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vide models that shadow these multiple rover platform con- 
figurations at any given time and their evolution over time. 
This requires that ROAMS stay away from monolithic, rover 
platform specific simulation implementation. Instead a con- 
scious design strategy has been to allow users to configure 
ROAMS for different rover models easily at run-time via 
model data files. While allowing users to easily tailor sim- ~n&jd & I Casdni, Gmlileo, 
ulations to the specific platforms, this configurability has 
been useful during the simulation validation effort to tai- 
lor ROAMS to specific configurations to match experimental 
rover models. 

2.3 Closed-Loop Simulations 
As a test platform, ROAMS is meant to be used in closed- 
loop with the onboard rover software and hardware. This re- 
quires ROAMS to be embeddable within closed-loop testbed 
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Figure 2: Common Dshell simulation infrastructure 
for ROAMS and Dsends 

environments containing a mix of onboard software, real 
hardware and simulated hardware. ROAMS provides hard- 
ware like command and sensing interfaces to allow such loop 
closure. Particular attention has been paid to keeping the 
simulation algorithm performance high to meet the closed- 
loop timing requirements. Also, ROAMS is portable across 
Unix as well as real-time VxWorks platforms. The Dmex 
tool [I] is also available to auto-generate interfaces for em- 
bedding ROAMS within a Matlab/Simulink environment for 
control algorithm development and testing. 

2.4 Layered Toolkit Approach 
While simulations are expected to to the “right” thing, i.e. 
provide good fidelity, they also need to provide a significant 
level of instrumentation and features for them to be usable. 
Since the inclusion of these features adds to code size and 
the number of external dependencies, ROAMS has adopted a 
layered design, where many of the features are implemented 
as optional plug-in extensions so they can be included as 
needed at run-time. This approach has also helped increase 
the amount of reusable modules within ROAMS . 
2.5 Spacecraft Simulation Framework 
To accelerate the development of ROAMS , we decided to 
build ROAMS upon the existing DARTS & Dshell simula- 
tion framework [3] in use for spacecraft simulations.. This 
strategy has allowed the ROAMS development to focus on 
the extensions needed for the surface rover domain. Like- 
wise this has had the effect of making available these exten- 
sions to other simulators sharing the same simulation infras- 
tructure. A case in point here is the Dsends entry, descent 
and landing simulation tool [4] which uses the same DARTS 
& Dshell simulation framework and shares several modules 
with ROAMS including those for dynamics simulation and 
terrain environment modeling. 

2.6 Open source tools 
Complementing our goal of using established spacecraft 
simulation capabilities, we have placed emphasis on us- 
ing and adapting open source software wherever possible. 

This has led to the use of computational libraries such as 
SWIFT++ [5]and ANN [6], visualization layers such as 
OpenInventor [7], POVRAY [XI, graphical user interface 
tools such as Tk [9], Tix, Gtk [lo], Gnocl [ I  13, TCL [9] & 
SWIG [ 121 scripting interfaces, and documentation genera- 
tion tools such as Doxygen [ 131 within ROAMS . 

2.7 Usable 
With the increase in detail and functionality of ROAMS , 
we recognize the need to provide user interfaces to facili- 
tate the use of ROAMS and help reduce the learning curve. 
While the ROAMS core is implemented in C/C++, ROAMS 
includes a TCL [9] scripting interface (auto-generated by the 
SWIG [ 121 wrapper generation tool) to its C/C++ cla,sses to 
facilitate the configurability of the simulation and facilitate 
regression testing. This scripting interface is also used to 
develop graphical user interfaces for users to change simu- 
lation modes, set rover goals, change simulation speed, take 
time steps, exercise rover degrees of freedom, select terrain 
models etc. The Dspace 3D visualization tool [I] provides 
run-time visualization of the rover simulation state. 

3 ROAMS Models 
In order to provide a high-fidelity virtual rover, ROAMS ’ 
vehicle models span rover kinematics and dynamics algo- 
rithms as well as models of its hardware components., mod- 
els of the rover environment including the terrain and the 
sun, and interactions between the rover and its environment. 
To facilitate testing of the simulated rover, ROAMS also in- 
cludes representative models for software components such 
as navigation, locomotion and motor control algorithms. 

The sections below describe in more detail some of the 
recent ROAMS model developments in the areas of camera 
image synthesis, terrain models, wheel-soil interaction, plan- 
etary ephemerides and sun camera models. Reference 1:1] de- 
scribes previously developed ROAMS ’ models of the rover 
kinematics and dynamics as well of its hardware devices 
such as inertial measurement units (IMU), motors etc. 



In addition to vehicle modeling, ROAMS must also model 
the rover environment. As a surface vehicle, the rover in- 
teracts with the environment primarily through the terrain. 
Accurately modeling of this terrain and the contact forces 
between it and the rover are the primary focus of environ- 
mental modeling in ROAMS . In addition to physical char- 
acteristics, ROAMS also provides an accurate graphical rep- 
resentation of the terrain for presentation to onboard cam- 
era models. The relative position of the sun can be used to 
generate realistic shadows and is computed using planetary 
ephemeris information. 

3.1 Rover Model Definition 
An important provision within ROAMS is a flexible model- 
ing infrastructure that can handle multiple vehicle types and 
configurations. ROAMS employs modular, hierarchical pa- 
rameter templates to provide the flexibility needed to manage 
rover simulations involving hundreds of parameters. These 
template trees are constructed using the Tree TCL package 
[14]. Branches of the parameter tree are based on physical 
rover sub-systems (Le. arms, wheels, mast) and environment 
(Le. location, soil type, time of day). These parameters are 
used to instantiate the run-time rover model. 

At start-up, ROAMS constructs a parameter tree contain- 
ing default values along with text descriptions of each pa- 
rameter. When a particular rover type is loaded into ROAMS 
at run-time, it inherits these defaults. However, the model 
can also overload or modify any of the existing parameters. 
This is required in order to specialize parameters such as 
kinematics, mass and inertia properties for a particular rover. 
This ability to inherit and overload parameters has been use- 
ful in allowing new parameters to be added to the ROAMS 
parameter tree without any changes to the vehicle models 
(unless the default value needs to be modified). It also allows 
ROAMS to instance multiple rovers of the same or different 
types with ease as well as to easily vary the rover parameters 
for Monte Carlo simulations. 

3.2 Terrain Modeling 
An important consideration in rover simulation is modeling 
the terrain upon which the vehicle moves. Being a surface 
vehicle, the rover has intimate interaction with the terrain. 
ROAMS provides provisions and common interface for us- 
ing digital elevation map (DEM) terrain models from a vari- 
ety of sources, which can be generally categorized as empir- 
ical, analytical or synthetic. 

Empirical terrain models are representations of natural 
landscapes used for rover traverses such as in field tests. 
These terrain models are useful for comparing physical rover 
data with simulated rover data for simulation validation as 
well as for predictive purposes. The mechanism by which 
empirical terrain data is collected ranges from manual mea- 
surement and optical surveying to high-precision radar and 
laser scanning techniques. In all cases, the data are collected 
from the actual landscape under consideration and are later 
reconstructed to generate a topography of the landscape. 

Analytical terrain models are useful when specific sur- 
face topography (eg. constant slope) is desired for simulat- 

ing controlled rover scenarios. Such terrain models can be 
generated algorithmically using parameterized mathematical 
functions. Using this analytical method, surfaces such as a 
precisely controlled slope or a specific type of obstacle such 
as a bump or a pothole may easily be generated with precise 
characteristics. 

Synthetic terrain models are useful in simulation scenarios 
where statistically realistic planetary landscapes, eg. Mar- 
tian landing sites, are required for the simulations. Synthetic 
terrain generation algorithms [ 15,161 allow the user to spec- 
ify general characteristics such as the range of rock sizes 
and distribution densities, along with other features such as 
craters. The terrains can be synthesized from scratch or can 
be enhancements of lower resolution base terrains. These in- 
put parameters for these terrain synthesis algorithms can be 
varied to generate a range of terrain models for use in statis- 
tical rover simulation studies. 

3.3 Soil contact modeling 
The primary goal of the terrain interaction modeling in 
ROAMS is to compute the forces and moments exerted by 
the terrain on the vehicle. Given these forces, the reisulting 
motion of the rover is a well understood rigid multi-body 
dynamics problem. ROAMS makes the simplifying assump- 
tion that contact forces are applied at a single point for each 
wheel and hence the applied moments from contact can be 
regarded zero. The force at the contact point for each wheel 
is decomposed into normal and tangent components. The 
normal direction is defined as perpendicular to the terrain 
at the contact point. ROAMS uses a non-linear compliance 
system to compute the force in the normal direction. As 
the rover sinks into the terrain, the compliance syst1:m in- 
creases the normal force until equilibrium is reached. This 
allows ROAMS to solve for the statically indeterminate nor- 
mal forces. The magnitude of the normal force serves as the 
foundation for almost every contact model. 

Once the normal force has been computed, the forces in 
the tangent plane can be computed. ROAMS employs a 
two-dimensional compliance system described in [ 171. Pre- 
viously, ROAMS used a simple Coulomb friction law to 
compute the maximum allowable tangent force (IlF~ll  5 
pI IFN I I). This has been updated to limit tangent force based 
on the soil mechanics parameters of internal friction angle 
(4) and soil cohesion (c). These parameters provide :I more 
accurate representation of the transition between rolling and 
sliding behavior in soil. Maximum tangent forces are now 
given as: 

IlFTll I c A c  + IlFNll *tan$  

where A, is the area of the wheelkoil contact patch. 
ROAMS currently uses heuristic techniques for computing 
the area of the contact patch. These heuristics will be re- 
placed by more accurate modeling based on terra-mechanics 
equations [ 181. 

3.4 Ephemeris Interface 
Another new feature of ROAMS is an interface to the SPICE 
software package [19]. The SPICE package provides ii pow- 



erful, extensible database of ephemeris information for all 
major bodies in the solar system. Sun position relative to the 
rover can be computed at any time and for any location on 
the surface of Earth or Mars. The sun position in the sky 
is used by several models including the sun-sensor and sun 
camera models, the solar panel model, and in the future will 
be used for the accurate generation of shadows for camera 
image synthesis. ROAMS provides the sun position infor- 
mation to Dspace to generate a graphical image of the sun 
for simulating a sun camera image. The SPICE interface 
also allows the computation of relative planetary positions 
for simulating antenna pointing and telecommunication up- 
link/downlink link scenarios. In addition to planetary bodies, 
SPICE can import spacecraft ephemeris in order to compute 
the position of orbiting spacecraft relative to the rover. 

3.5 Camera Image Synthesis 
Camera image synthesis is an important new capability cur- 
rently under development within ROAMS . Simulation of 
stereo camera images allows ROAMS to close the loop with 
with the stereo pipeline in the onboard software. The stereo 
pipeline is used for generating range maps for the onboard 
hazard detection and rover navigation algorithms. These im- 
ages can also be used for visual odometry and visual tracking 
applications. We describe here the current status of our cam- 
era image synthesis work while it remains an active area for 
both development and validation. 

3.5.1 CAHVORE Camera Models 
The basic camera model in use for robotic vehicles used 
in Mars planetary exploration was originally developed by 
Yakimovskly and Cunningham [20,2 I]. This model included 
a central perspective projection and an arbitrary affine trans- 
formation in the image plane. Since then this model has been 
extended to include radial lens distortion [22] and represen- 
tation of entrance pupils suitable for use with fish-eye type 
lenses [23]. The basic camera parameter in these models 
consist of C - the Center Vector of the entrance pupil, A - the 
Axis Vector normal to the image plane, H - the Horizontal 
Vector for the image, V - the Vertical Vector for the image, 0 
- the Optical Vector that is the symmetry axis for radial dis- 
tortion, R - Radial Distortion polynomial coefficients, and 
E - Entrance Pupil polynomial coefficient terms. Together 
these CAHVORE parameters (1 8 for the CAHVOR portion) 
allow modeling of a wide variety of optical system including 
lenses with wide field-of-views and fish-eye distortions. Rig- 
orous least square procedures exist for estimating the values 
of all of the CAHVORE parameters. 

3.5.2 Image Synthesis using Dspace 
Currently the ROAMS simulated camera models take into 
account only the CAHV camera parameters while the simu- 
lation of the radial and fish-eye distortion effects is planned 
for the near future. ROAMS utilizes the Dspace 3D visu- 
alization tool to synthesize stereo image pairs for the vari- 
ous hazard cameras (hazcams) and panaromic cameras (pan- 
cams) on the rover. To perform image synthesis, Dspace 
uses its list of 3D visualization graphical objects such as 

DEM based terrains, associated textures, CAD file represen- 
tations for all rovers in the simulation, the position of the Sun 
and other light sources, in combination with camera param- 
eters derived from the CAHV parameters for each of 1 he left 
and right stereo cameras, to render images for processing by 
stereo correlation code. 

For each simulated camera, position and attitude informa- 
tion for the camera is passed to Dspace by ROAMS . along 
with the field of view and resolution (in pixels) for tb: cam- 
era. Since the camera’s optical axis may not be perfectly 
centered in the image plane, Dspace renders an image larger 
than the resolution of the camera and then extracts thi: cam- 
era image region from about the optical center to plroduce 
the final rendered image. This over-rendering is required 
because OpenInventor/OpenGL cameras do not support off- 
center boresite rendering. Currently, depth-of-field c(3lcula- 
tions are not supported. When camera image rendering is 
complete, that image is converted to a 8 bit greyscale image 
for further processing. Dspace performs the camera render- 
ing in an “off-screen” mode. Figure 3 shows an example 

Figure 3: Synthetic stereo camera image pair 

We have used a Stereo Vision C++ library [24] dev’eloped 
at JPL to verify that range map information can be success- 
fully extracted from the synthetic images. Figure 4 shows 
the resulting range map generated for the stereo image pair 

Figure 4: Range map from the synthetic stereo camera 
image pair 

representations of the the distance and height for each point 
in the range map. The bottom image shows a top down view 



of the range map where the dark areas in the middle are the 
"holes" in the range map due to occlusion of the area by the 
rocks. The Stereo Vision library is flexible in the image input 
format and can process 8 bit grey-scale to color pixels (up to 
96-bits of precision) if greater accuracy is desired. Using 
a CAHVOR camera model as input, the Stereo Vision code 
compares the camera images to produce a single "disparity" 
image from which a range map (three-dimensional distance 
of each pixel from the camera) is computed. We have been 
using this stereo code to test and validate the synthetic cam- 
era images being generated by ROAMS . 
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In order for a rover simulation to be useful in developing 
rover navigation and control software, its behavior must cor- 
respond well with the operation of a real physical rover 
in a real environment. Hence, in parallel with the ongo- 
ing development of ROAMS , we have been undertaking a 
validation effort for ROAMS using experimental data from 
rover mobility runs. Our validation strategy has two tracks. 
One track is pursuing deterministic validation for parts of 
the system that are deterministic (eg. the rover hardware 
model). Another track is using statistical matching for the 
non-deterministic or difficult to characterize parts of the sys- 
tem (eg. wheel slippage). Deterministic comparisons be- 
tween simulated and experimental data is difficult due to the 
uncertainty in environment models and the inherent com- 
plexity in creating them. 

The motion of a rover over a planetary terrain is a product 
of many different components and levels of the system. At 
the lowest level, there are rover rockers and bogeys (suspen- 
sion components), wheels, actuators (motors), and sensors. 
External influences, such as the terrain shape and properties, 
are also a critical factor in the rover motion. A key goal of 
our ROAMS validation effort is to validate the rover motion 
at various levels of operation. We are validating the opera- 
tion of actuator and other individual component models. We 
also seek to validate the overall motion of the simulated rover 
to validate the higher level navigation loops in the system. It 
is important to establish good correspondence for the lower 
loops in the system between the simulation and physical ex- 
periments, since they serve as the foundation for the system 
level behavior of the system. 

Eventually, the level of detail needed in the individual 
component models for adequate simulation fidelity is in- 
timately driven by the rover's operational parameters, i.e. 
rover speed, terrain slope and roughness, onboard sensors 
etc. One of our goals in the validation activity is to develop 
benchmarks and guidelines in this area. To this end, we are 
carrying out a series of validation experiments that allow us 
to analyze the performance of individual components as well 
as of the over all system over controlled, easily modeled, sur- 
faces. The following section describes the results from these 
experiments. Our eventual goal is to validate the simulation 
over natural terrains. However, such validation requires good 
simulation models of the terrain, and Section 4.2 describes 
our current work on terrain model reconstruction. 

4.1 Vehicle model validation on controlled 
surfaces 

Our first rover model validation experiments included driv- 
ing a rover straight on a flat surface. We used these early 
experiments to improve our motor and gear train models for 
the wheels and steering motors. 

4.1.1 
We performed an experiment of driving the Rocky8 [25] 
rover in a 45 degree circular arc of 0.5 meters radius on a 
flat surface in the JPL Mars Yard [26]. The Mars Yard is an 
area with rocks and surface materials that are representative 
of Martian surfaces. The purpose of the experiment was to 
validate various rover wheel and steering motor control mod- 
els associated with making a turn, the wheel diameters and 
the IMU model. During the turn, the average wheel angle 
deviations at the end of the turn was approximately 2 1 YO as 
shown in Figure 5.  Figure 6 shows the steering angle profile 
whose the average deviation was 0.9%. During the time the 
rover chassis was rotating, the IMU rate deviation bctween 
the experimental and simulation data was about 4% as shown 
in Figure 7. 

Rocky8 rover driving in a 0.5 meter circular arc 

FRONT WHEEL ANGLES Rocky8 45 Degree Arc Turn 0 5 MBlw Radius (Mas Yard 200 bo1 24) 
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Figure 5: Front wheel angles during Rocky8 circular arc 

STEERING ANGLES R d y 8  45 Degree Arc Turn. 0 5 Meter Radus (Mam Yard 2003.01-24) 

Figure 6: Steering angles during Rocky8 circular arc 

In summary, this experiment showed excellent agreement 
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Figure 7: IMU Z rotation during Rocky8 circular arc 
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on Rocky8 steering kinematics, wheehteering motions, and 
gyro response. We were unable to compare actual vehicle 
motion because the physical positions were not measured 
during the experiments. 

4.1.2 
We subsequently performed an experiment driving the Fido 
rover [25] from a flat surface up a 13.4 degree slope. The 
rover went a total of 230 cm, including about 65cm on the 
flat surface before the front wheels touched the ramp. In this 
experiment we were able to accurately measure the position 
of the rover at the beginning and ends of the motion using a 
Totalstation. The purpose of this experiment was to validate 
rover kinematics, dynamics, and wheel slippage models over 
a non-flat terrain. In this experiment, the wheel angle devi- 
ation at the end of the run was 5% or less. The deviation in 
the total distance moved was 1.6% based on the Totalstation 
measurements. 

This was the first experiment that included significant 
rockerhogey motions. Since the rover contacted the ramp 
straight on, the rocker angles should be small since they mea- 
sure the relative rotation between the rockers on the two sides 
The deviation of the bogey angles was about 27.1% and the 
left bogey and 30.4% for the right bogey and is shown in 
Figure 8. 

Various data-collection and calibration problems pre- 
vented us from analyzing IMU operation during the exper- 
iment. 

This experiment also allowed us to do some rough analysis 
of the traction of the wheels on the ramp surface (which was 
covered with a plywood board). We did a series of simula- 
tions that varied the coefficient of friction between the wheel 
and the ramp surface. We obtained a good match the actual 
motion with a coefficient of friction of 0.6 as seen in Figure 
9. 

In summary, this experiment shows good agreement on 
wheel angles and actual overall rover motion. It allowed us 
to estimate the coefficient of friction between the wheels and 
the ramp. There was moderately good agreement between 
real and simulated bogey angles. Some of the discrepancy 
between real and simulated bogey angles may be due to cal- 

Fido rover driving up a ramp 
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Figure 8: Rocker and bogey angles for Fido rover driv- 
ing up a ramp 
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Figure 9: Forward motion for various wheel-surface 
coefficients of friction 

ibration problems on the Fido rover and needs hrther inves- 
tigation. 

4.2 Empirical Terrain Reconstruction from 

In more interesting scenarios, the rover will drive ovtx nat- 
ural terrains which are not geometrically simple surfaces. 
Different wheels can encounter different rocks at different 
times and produce complex motions. In order to validate 
rover simulations in realistic situations, it is clear that ia good 
model of the terrain surface and traction properties is essen- 
tial. This section provides an overview of an empirical ter- 
rain topography reconstruction process we have been devel- 
oping at JPL's Mars Yard. 

4.2.1 The Laser Scanner 
The scan of the Mars Yard was done using a high-end 
laser scanning device, the LMS-Z360, manufactured by 
Riegl Laser Measurement Systems. The LMS-Z360 is a 
lasedmirror scanning device that utilizes a fixed laser beam 
and a rotating deflection mirror, mounted within a rotat- 
ing pedestal. This configuration allows the user to obtain 

Laser Scanner data 



a panoramic range map of the environment surrounding the 
scanner. The device uses the time of flight (TOF) of a pulsed 
laser beam to determine range information, while precisely 
controlling the rotation angle of the mirror to effect a vertical 
scan range of approximately +/- 45 degrees from horizontal. 
This provides a precisely controlled vertical sweep of range 
measurement locations. 

Rotating mirror 

Lasa plse & 
detector 

Object (e&. rock) 

Figure 10: Laser Mechanism 

Figure 10 shows a simple schematic diagram of this mech- 
anism. The entire laser/mirror unit is then rotated about it’s 
vertical axis to provide the horizontal sweep, generating a 
panoramic set of vertical scans centered about the scanner’s 
position. The scanner unit itself is mounted on a tripod to 
provide portability. This also gives it a vertical elevation cen- 
terline from the ground on the order of about 1-1.5 meters. 

The manufacturer claims the best-case resolution of the 
range data to be 5mm, with a 1 sigma std dev accuracy of 
+/- 12”. Angular resolution for both the vertical and hori- 
zontal sweeps is specified at a minimum of 0.01 degrees. The 
software allows selection of various modes of operation, an- 
gular scan limits and resolution as well as selecting the focal 
point of the laser beam. The various quality settings have a 
large impact on the time it takes to scan an area as well as 
the volume of data collected. 

4.2.2 Scanner Output 
The output produced from the LMS-Z360 software consists 
of an ASCII file containing data for each individual laser 
range measurement and a set of three bitmap images: a range 
image, an intensity image and a true-color image. Each pixel 
in the image corresponds to an individual laser measurement 
point, which in turn corresponds to an entry in the ASCII 
data file. The ASCII data file consists of one line for each 
point containing a user-selectable set of data for that point. 
In this experiment the software was configured to output the 
(X, Y, Z) coordinate of each sample along with a laser re- 
flection intensity value. The coordinate of each point is in 
a scanner-relative frame of reference where the scanner is at 
the origin. This X, Y, Z representation of the scanner data is 
a point cloud of individual points in 3D space but contains no 
explicit surface information (Le. no correlation as to which 
points are part of the same objects surface.) When plotted on 
a computer with a 3D viewer (for example as a VRML file), 

the human eye can easily distinguish the original scene as 
long as sufficiently high resolution was used when collect- 

Figure 11: Sample point cloud generated by the scanner 

4.3 Scan procedure 
By nature, laser is a line-of-sight mechanism and can there- 
fore only produce range data (Le. reflections) from surfaces 
that are reasonably normal to, and lie along, the path of 
the laser beam. However just as when shining a flashlight 
against a tree or a rock, a shadow is cast behind the (object. 
In the case of a laser scan, there will be no range information 
obtained in these shadow areas. This effect can be seen in 

Figure 12: Laser shadows behind rocks 

of the image. As a result, the scanner data collection must be 
done from several strategic vantage points for full coverage 



of the terrain, and each scanner position must then be merged 
into a single dataset. For example, 4 separate scans, one from 
each of the front, back, left and right "sides" of the area un- 
der consideration may be needed. This will insure coverage 
of all sides of objects such as rocks, terrain undulations and 
other markers. When the multiple scans are later merged, 
the resulting 3D topology may be viewed from virtually any 
angle covered by the collective scanner perspectives. 

In order to register and correctly merge the multiple scan 
data sets, a number of fiducials - or fixed-place markers - 
visible to the laser from each of the scanner orientations are 
used. The fiducials are generally small, highly reflective tar- 
gets placed at precisely known locations. In Figure 13, a 

Figure 13: Mars Yard scan setup 

fiducial is placed at each comer of the Mars Yard and has 
been precisely surveyed using a Totalstation. The reflec- 
tive targets produce bright, well-defined reflections (spikes) 
in the laser intensity data. We created utilities to post-process 
the intensity image data and automatically locate the posi- 
tions of the reflectors relative to the scanner location. 

In this experiment, we also placed several standard pa- 
tio bricks at various points in the terrain and measured their 
precise locations. These "markers" were used later to mea- 
sure the accuracy of the reconstructed terrain. The layout 
of the scanner positions and bricks is shown in Figure 13. 
The green squares are bricks and the blue circles are scan 
positions. The laser target detection software annotates the 
intensity image as shown in Figure 14, and outputs an ASCII 
table of coordinates for the location and dimensions of each 
reflector as well as a 3D laser intensity surface plot, which 
is useful for visualizing the quality of the scan data of each 
reflector as show in Figure 15. 

4.4 Registering and Merging the Scan Data 
Sets 

Using the known absolute locations of the reflector fidu- 
cials in together with their scanner-relative locations in the 
scanned data, one can construct a transformation matrix for 
each scanner position. Using this transformation matrix, the 
point clouds for each scanner position can then be translated 

Figure 14: Annotated laser scanner image 

and rotated so as to register each individual scanner-centric 
coordinate frame into a common reference frame (wlhich is 
typically the frame of the fixed fiducials.) Again, we created 
utilities to automate this process and produce a set of ASCII 
point cloud files in one (Mars Yard) frame of reference. The 
accuracy with which the location of the fiducials are known 
along with the accuracy and resolution of the scanned data 
determine to a large extent the accuracy of the registration 
of the point clouds, and therefore the fidelity of the recon- 
structed terrain. 

Another utility then merges the multiple co-registered 
scanner positions into a single dataset. This software can 
provide false coloring of the point clouds from eaclh scan 
position. The idea being that the merged scans from mul- 
tiple strategic vantage points will fill-in the distant low- 
density areas from scans taken further away. We can see 
from the merged, color coded point cloud in Figure 16 color- 
coded scans where each scan position was taken frorn (e.g. 
green=left, red=top etc.), and how each local scan filled in 
missing data from the distant scans across the Mars Yard. 
When plotted in a 3D viewer, the colorized point clouds re- 
veal a great deal of information as to the contribution of each 
scan position to the overall dataset. Figure 17's shows ii close 
up view of the false coloring of the merged data. 

4.5 Surface Reconstruction 
There are many factors that contribute to the actual resolu- 
tion and accuracy of the data obtained from a laser scanner. 
In the LMS-Z360 the laser beam emanates from a fixed point 
in space and is then deflected, by mirror angle and device ro- 
tation angle, to a target sample vector. This geometry ,results 
in an angular separation of adjacent scanned points that in- 



Figure 15: Reconstructed surface of a reflector 

creases with the distance from the scanner; the further away 
from the scanner a surface is, the lower the effective reso- 
lution of the scanned image at that surface. In other words, 
scanner resolution decreases as distance from the scanner in- 
creases, resulting in a variable resolution of scanned data. It 
is therefore important to consider the number and position of 
each scanner location such that distant objects receive ade- 
quate coverage to faithfully represent the surface. For exam- 
ple, with the scanner set to a vertical and horizontal angular 
rotation step of 0.05 degrees (a medium-high resolution set- 
ting for the Z360), a vertical surface 2 meters away will see 
an effective coverage of about 1.7mdpoint whereas a ver- 
tical surface 20 meters away will see an effective resolution 
of about 17.5mdpoint - 1/10 the coverage! This effect is 
illustrated in Figure 18. 

Applying the same reasoning to a horizontal surface (e.g. 
the ground) with the scanner mounted 1 meter off the ground, 
the difference in resolution goes from a about 3mdpoint at 
2 meters away to over 30mdpoint at 20 meters from the 
scanner! When scanning large areas such as the JPL Mars 
Yard (which is approximately 20x20 meters in size), this ef- 
fect must be taken account and additional scanner positions 
must be considered to maintain a minimum level of scanner 
coverage. When looking at the point cloud of a single scan- 
ner position, this effect is very pronounced as can be seen 
in Figure 19. In this top view illustration, the scanner is in 
the upper-left corner, where one can see a very dense point 
distribution, but by the time you get to the lower-right cor- 
ner, only 4 or 5 meters away, the degradation in resolution 
coverage along the ground is already quite apparent. 

A second significant factor to consider when using a laser 
scanner instrument such as the LMS-Z360 is the actual di- 
ameter of the laser beam itself, and the response timing ca- 
pabilities of the receiving electronics. For the LMS-Z360, 
the laser beam is under software focus control, and can be 
focused from 2 meters to infinity. According to the man- 
ufacturers specifications, at 2m focus the beam diameter is 
approximately 5mm, while at 10m focus, the beam diameter 
is approximately 22”. Given the above described impli- 

Figure 16: Merged, color-coded scans 

cations of angular separation effects on resolution, consider 
that at 10 meters there is an effective resolution of about 
9 W p o i n t  and a beam diameter of 22”. This mems that 
the laser beam will overlap each adjacent scan point, provid- 
ing a level of uncertainty in the exact location of the detected 
reflection. 

In addition, when the beam hits the edge of an object (for 
example a flat-edged rock or a brick “marker”), the beam 
will be “split.” Part of the beam will reflect from the brick’s 
surface, the other part of the beam will continue on past the 
brick and reflect from whatever it happens to hit along it’s 
path beyond the brick. The effect is that the scanner will 
see multiple reflections from a single laser pulse. If those 
reflections fall within the pulse timing detection window of 
the receiver, the scanner will not be able to resolve the dif- 
ference. The LMZ-Z360 allows the user to select either the 
“first return” or the “last retum” to resolve this ambiguity in 
choosing the range value from the multiple reflections. This 
beam splitting effect is very pronounced in terrains w Ith ob- 
jects having sharp edges (such as the bricks used for val- 
idation of the scan registration) and in fact is a source of 
great distortion in the reconstructed terrain that must be fil- 
tered out to retain the fidelity of the original landscape. This 
beam-splitting effect can be seen in Figure 20. Here is a side 
view of a brick, scanned from several meters away with the 
beam focus set to infinity. You can actually trace the angle of 
the “shroud” of sample over-spray back to the originail scan- 
ner location. Given the beam diameter overlap with apparent 
resolution coverage that varies with distance, the best {choice 
between first or last response is not always clear. In adtiition, 
the reflective qualities of the actual material being scanned 
will affect the intensity of the reflections (and components 
of split reflections) so as to potentially trick the thresholding 
of the laser response detection sensor circuitry, adding fur- 



Figure 17: Close-up view of the color-coded merged 
scans 

Figure 18: Angular separation effect on resolution 

ther “noise” to the measurements. By controlling the beam 
focus and taking banded, limited-range scans (by limiting 
the vertical sweep angles to cover a small concentric radius 
about the scanner’s position) you can achieve significantly 
better results as shown in Figure 2 1. Of course, this requires 
a many more extensive scans, with a significant increase in 
the amount of post-processing of the data. 

Again we wrote utilities to perform further filtering of the 
point clouds, which removed most of the beam splitting ar- 
tifacts, but at the cost of some lost information. The filter- 
ing algorithm passes a cube of configurable size (e.g. lcm) 
throughout the entire 3D terrain dataset and simply deletes 
all points within the cube if the density of points is below 
some specified threshold. This type of filtering must be per- 
formed on the final, merged datasets to prevent it from delet- 
ing entire valid, low-density regions of a single scan position 
that are far from the scanner location (Le. due to the resolu- 
tion degradation effects described previously.) 

More work is needed in separating out the features (rocks, 

Figure 19: Decrease in scan point density with distance 

bricks etc) from the base terrain to retain detail in the ren- 
dered image. An example of a 12m x 14m patch 01‘ Mars 
Yard, as a 3D mesh an be seen in Figure 22 as a VRML 
mesh. 

4.5.1 Surface Texture 
Another step in the reconstruction process makes use of 
the true-color image generated by the LMS-Z360 software. 
Using the same transformations of each scan position, and 
a simple 3D to 2D projection algorithm, the true-color 
panorama images can be merged and converted into a tex- 
ture overlay for the terrain data. Some image process,ing to 
adjust gamma, brightness and contrast provides a realistic 
looking terrain for rover simulation - Figure 23. In this view, 
it is possible to see the effects of each scan position as the 
subtle radial shadows emanating from each of the 4 scanner 
positions. Some image processing was done to compensate 
for this, but the effects could not be eliminated completely. 
Additional, more closely spaced scanner positions will likely 
make a significant improvements here. 

In the final analysis, our validation analysis showed i:he re- 
constructed terrain to be mostly within 1 cm accuracy, with a 
worst-case of less than 2cm error. This is well within the ex- 
pected limitations of the scanner for the scanner modes used 
for the data collection. Future terrain reconstruction experi- 
ments will make use of the lessons learned here to improve 
the quality and accuracy of the reconstructed terrain. 

5 Closed-Loop Simulations 
In stand-alone simulation mode, a user normally interacts 
with ROAMS through a comprehensive GUIs (shown in Fig- 
ure 24), for simulation configuration, control and visualiza- 
tion. The majority of the simulator is written in C++, with 
scripting interfaces (e.g. TCL) exposed at key points in the 



Figure 20: Shroud effect from brick beam splitting 

Figure 22: Reconstructed Mars Yard terrain mesh 

Figure 21: Reduction in shroud effect with improved 
beam focus 

architecture. In order for an extemal application to close 
the loop with ROAMS , a light-weight set of C++ interface 
classes, denoted RoamsIF, has been developed to provide 
programmatic access to initialize, configure and interact with 
the simulator. 

5.1 Overview of RoamsIF 
Using RoamsIF, an application can gain complete control 
of the ROAMS simulator, from high-levels to the very low- 
level. RoamsIF provides two C++ classes with which a users 
application program can interact with ROAMS , 

The primary class, RoamsIF, provides methods for sim- 
ulation configuration and control as well as various utility 
methods for timer callbacks and terrain selection. For exam- 
ple, RoamsIF exposes methods for selecting the state prop- 
agation mode (e.g. kinematics or dynamics), methods for 
adding new rover vehicles to the simulation and methods for 
controlling the simulation clock and advancement of time. 
The application program can then step the simulation one 
step at a time, or it can advance the simulation to some point 

into the future. 
For each new rover that is added to the simulation, a 

RoverIF object is created for the rover. The RoverLF ob- 
ject provides methods for accessing rover-specific inlorma- 
tion and settings. RoverIF has methods for selecting high- 
level features such as the navigation algorithm to use (or no 
navigation at all), for specifying the rover’s position and nav- 
igation goal location. RoverIF also provides low-levell com- 
mand access to the rover’s underlying subsystems, such as 
it’s wheel and steering motors. Using these methods, the ap- 
plication software can control the rover’s movement at the 
individual wheel motor level by commanding motion pro- 
files (e.g. maximum acceleration, coast velocity and final 
desired position). 

Both RoamsIF and RoverIF also provide acces., e to a 
wealth of simulation parameters and run-time variables. This 
enables the application to tune the behavior of the simulation 
and the simulated rover vehicles, as well as to monitor and 
log output from the rover’s simulated sensor devices (e.g. a 
wheel position encoder, or the outputs of a gyro). 

The RoamsIF interface is continuing to evolve as do the 
simulator and the users needs. A recent addition to Ro,amsIF 
has been the addition of a “takepicture” methods to generate 
synthetic images from ROAMS hazcam and pancam camera 
models. The RoamsIF interface is currently in use by JPL‘s 
Mission Data System (MDS) and CLARAty [25] projects 
for closed loop rover simulations with ROAMS . We plan to 
convert the current ROAMS closed-loop interface to NASA 
Ames’ Mission Simulation Framework [27] to RoamsIF in 
the near future. 

6 Rover 3D Visualization Models 
ROAMS uses the Dspace 3D graphics tool for visualizing 



Figure 23: Texture image for the Mars Yard terrain 

simulation output [I]. Dspace displays include graphics 
models of the rover, the terrain environment as well as graph- 
ics “omaments” to annotate and highlight simulation state 
such as trails, field of view displays, frame axes etc. The 
graphical terrain models are auto-generated from the under- 
lying terrain DEM at run-time so that they are always con- 
sistent with the underlying simulation model of the terrain. 

On the other hand, in the case of rover models, corre- 
sponding CAD like graphical models of the rover are needed 
to visualize the rover behavior during simulations. Unfortu- 
nately, even when they are available, CAD based graphics 
models are typically unsuitable for use in closed-loop sim- 
ulations. For one, these models are often far too detailed 
and when used in real-time they significantly impact the per- 
formance of the simulation. Secondly, the instrumentation 
needed to display the rover articulation is absent from CAD 
models. As a result, such models in the past have required 
labor-intensive processing to either simplify the models and 
add the articulation information in, or to simply create the 
needed rover graphics model from scratch. While techni- 
cally possible, this approach however tums out to be imprac- 
tical when used with ROAMS which is meant to handle a 
whole variety of existing and new rover models. The pri- 
mary bottleneck is the labor-intensive process for generat- 
ing the rover graphics model for new rovers to be used in 
simulations. Moreover, keeping such models in sync with 
parameter updates and changes to the kinematics and geo- 
metric configuration of the rover has to be manually done 
and is difficult in the best of circumstances. Due to these 
difficulties, the graphics models can get out of sync with the 
underlying physics based model and can be a source of con- 
fusion for users who may rely on the graphics feedback to 
interpret and monitor simulation behavior. 

Figure 24: ROAMS ’ graphical user interface 

We have recently developed a strategy to address these 
issues. We have created a utility within ROAMS that can 
auto-generate a VRML “stick” graphics model for the rover 
from the the rover’s kinematics data. The “stick” mnemonic 
for this model reflects the fact that this graphics model only 
contains the backbone information from the rover model and 
is exactly faithful to the underlying kinematics of the rover. 
Thus the location and orientation of all attachment nodes, 
articulation hinges, body center of mass etc. are included in 
the graphics model. Some simple wheel and chassis graph- 
ics objects are attached to the backbone to generate a rea- 
sonable representation of the rover. The left image in Fig- 
ure 25 shows an example of such a stick graphics model. 

Figure 25: Stick and Xmas rover graphics models 

The key benefits of the stick graphics model are thiit it is 
auto-generated and hence does not require any manual effort, 
and that it is always consistent with the underlying physical 
model of the rover. This model can be generated for any 
rover - including conceptual ones for design and analysis. 



The one drawback - though not a serious one - of the 
stick model is that it lacks geometrical information and while 
kinematically accurate may lack the intuitive look of the 
physical rover. To address this concem, we have taken the 
stick model one step further, where a user can attach graph- 
ics components for the various parts of the rover (eg. the 
rockers, the bogeys, the chassis etc.) to the backbone. We 
refer to the resulting model as the “Xmas tree” model since 
the process mimics one of adding omaments to a Christmas 
tree. The right image in Figure 25 contains an example of the 
Xmas tree version of the stick figure in the left image. When 
generating the Xmas tree model, the user is able to scale, 
position, rotate the individual graphics parts as needed. We 
have found the combination of the stick and Xmas tree mod- 
els generation capability to be very valuable since it allows 
users to use arbitrary rover designs in the simulation and 
have a good visualization capability right away to accom- 
pany the simulations. In any case, when CAD like models 
for specific rovers are available, users have the option of us- 
ing them instead of the stick or Xmas models. 

7 Conclusions 

“DSENDS - A High-Fidelity Dynamics and Spacecraft 
Simulator for Entry, Descent and Surface Landing,” in 
IEEE 2002 Aerospace ConJ, (Big Sky, Montana), Mar. 
2002. 

[5] S. A. Ehmann, “Swift++: Speedy walking via im- 
proved feature testing for non-convex objects,” 1997. 
URL: http://www.cs.unc.edu/ geom/SWIFT++. 

[6] D. M. Mount and S. Arya, “Ann: Library for 
approximate nearest neighbor searching.” URL: 
http://www.cs.umd.edul mounVANN. 

[7] “Openinventor.” URL: 
http://oss.sgi .com/proj ectsiinventor. 

[8] “Povray.” URL: http://www.povray.org. 

[9] J. Ousterhout, “Tcl - tool command language.” URL: 
http://www.tcl.tk. 

[ 101 “Gtk.” URL: http://www.gtk.org. 

[ 1 I] “Gnocl.” URL: http://www.dr-baum.net!gnocl. 

This paper contains an overview of new ROAMS capa- 
bilities developed beyond what was previously reported in 
reference [ 11. While continuing the addition of new model- 

[I21 ‘‘Swig.” URL: hWwww.swig.org. 

[I3] ‘‘Doxygen.” URL: http:’’www.doxygen.org. 
~~ 

ing hnctionality such as synthetic stereo camera simulation 
models, there has been a parallel validation effort to validate 
the ROAMS models. The target user for these ROAMS de- 

[ 141 “Tcl tree package.” URL: http://www.uvic.ca/ erem- 
pel/tcl/tree/tree. html. 

velopments is NASA’s Mars Science Laboratory mission. [151 R. Gaskell, J. collier, L. H ~ ~ ~ ~ ~ ,  and R. Chen, “syn- 
thetic Environments for Simulated Missions,” in Pro- 
ceedings IEEE Aerospace Conference, (Big Sky., Mon- 
tana), Mar, 2o01, 
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